搜档网
当前位置:搜档网 › 英文文献及翻译-

英文文献及翻译-

英文文献及翻译-
英文文献及翻译-

本科生毕业设计英文文献及翻译

题目宽频带频率计的设计

姓名

学号

专业电子信息工程

指导教师

英文文献及翻译

班级:姓名:学号:

An alternative method of precise frequency by the aid of a DDS 1 The proposed frequency measurement technique

The idea that led to our present design came from the extremely high frequency resolution of the DDS devices and is enforced by the noise immunity of its closed loop form. A (known) frequency source, the DDS, is employed in a closed loop and is forced progressively to produce an output with a frequency equal to the unknown input . A rule of thumb in the DDS systems is that the maximum acceptable synthesized frequency is about 25% of the clock frequency (well below the Nyquist limit). According to this, our prototype that uses a 33 MHz clock would effectively count up to 8 MHz. Looking at the GaAs products, we can see that recently available DDS devises can operate at clock frequencies up to the extent of 400 MHz. Therefore, by the present method, frequency counters working up to 100 MHz can be designed. The resolution will depend on the number of FSW bits and the clock frequency. The clock frequency fclk of the DDS is very critical because as it decreases, the resolution of the proposed method (defined as fclk/ 2n ) becomes finer i.e. it improves. The impact of the clock frequency decrease is the subsequent decrease of its maximum output frequency that limits the counter's maximum count. The major blocks have been shown . Among them are the Frequency Comparator and the DDS. To overcome some disadvantages of the specific frequency comparator a correction stage has been incorporated. This stage is also used for the measurement extraction in order to display the correct reading.

1.1Operation of the circuit

The circuit operates in such a way that at the beginning of a new measurement the DDS output frequency would be controlled in a successive approximation way. The initial DDS frequency would be half of it's maximum. In addition, the frequency step of the approximation would equal the 1/4 of the DDS maximum frequency. On every approximation the frequency step is divided by two and added or subtracted to the FSW of the DDS, depending on the output of the Frequency Comparator. The approximation procedure stops when the step size decreases to one. After that, an

up/down counter substitutes the approximation mechanism. The digital FSW, after the appropriate correction and decoding, is presented in an output device i.e. an LCD display or any other suitable means. Alternatively, it can be digitally recorded or it can be read by a computer. As conclusion of this initial approach we could say that the proposed method is based on a Digital Controlled Synthesizer which is forced to produce a frequency almost equal to the unknown one.

1.2Frequency comparison

The frequency comparator seems to be the most critical stage of the design. The implementation is based on a modified phase/frequency comparator proposed by Philips in the 74HC4046 PLL device. It consists primarily of two binary counters, counting up to two and an RS flip-flop. The function of the frequency comparator is based on the principle that the lower frequency, i.e. larger period, includes (embraces) at least one or more full periods of the higher frequency (smaller period). This means that two or more rising edges of the higher frequency waveform are included within the lower frequency period. Considering the above, the circuit operates as follows: When the first counter (#1) encounters two rising edges of the unknown frequency in one period of the DDS, it sets the output of the RS flip-flop. The logic "1" of the RSflip-flop acting at the U/D control input of the Up/Down counter forces the DDS to rise its output frequency. On the contrary, when the second counter (#2) counts two rising edges of the DDS output within a period of the unknown frequency it resets the RS flip-flop's output. This action decreases the frequency of the DDS. At a first glance one could think that the synthesized frequency could reach the measured one (fin) and then the operation of the counter stops. Unfortunately this is not the case. A dynamic mechanism takes place instead. The circuit needs some time to realize the correct frequency relation. We will refer to this time as "hysteresis". Hysteresis depends on the initial timing relation of the DDS output and on the unknown frequency. Initially, during the hysteresis period, the indication regarding the larger frequency is ambiguous i.e. it can be erroneous. The ambiguity settles when two rising edges of the higher frequency waveform occur during one period of the lower one. If we consider the case of the DDS frequency to be equal to the unknown one, we will find that the comparator's output will toggle, indicating alternatively that the DDS frequency is higher or lower than the unknown. This is actually an acceptable and expected condition, because (as in a voltage comparator) an equality indication could not exist. In our case this is not a problem because the circuit is embedded in a closed loop. The loop will act in a manner that after some short time, the hysteresis, the situation will be reversed and so on. The duration of hysteresis is variable. This situation is controlled, as will be explained later. Although an analog implementation of the frequency comparator would look more robust to noise we insisted to the digital implementation for three reasons: ease of implementation in VLSI or Programmable Logic Devices (PLDs) with no need of analog components, wide frequency range of operation and shorter response time.

1.3Interaction between frequency comparator and digital

synthesizer

After the successive approximation of the unknown frequency the Frequency Comparator "realizes" that the synthesized frequency is higher (lower) than the unknown one and produces a

logic 0 (1) at the output which commands the up/down counter to count in the down (up) direction. As previously mentioned, the output of this counter is considered to be the FSW to the DDS stage. In the case when the DDS frequency was initially lower, the synthesized frequency will increase progressively to reach the unknown one. This will not be "realized" by the frequency comparator and the synthesized frequency will keep on increasing for some clock cycles, until the comparator detects the correct relation of it's two input frequencies, the unknown one and the DDS output. The same phenomenon will be observed for the opposite (decreasing) case also. This is due to hysteresis that was mentioned earlier. When DDS output (fDDS) has approached fin, due to hysteresis, no specific frequency is synthesized. Instead, it swings between f1 and f2, where f1 and f2 are the two extreme values of the frequency swing lying symmetrically around fin. The DDS output can be considered as a frequency modulated carrier by a triangular waveform. The triangular waveform is the analog representation of the FSW applied to the DDS. lower trace shows a typical output of the Frequency Comparator. In the same figure, upper trace, is shown in analog form the FSW variation as it is trying to approach the correct value. This waveform has been captured using an auxiliary hardware circuit: A digital-to-analog converter (DAC) was connected to the output of the U/D counter (MSBs) in order to study the operation. This DAC is not shown in the block diagram of the circuit. Stated differently, the lower trace is the U/D command (input) to the counter while the upper trace is a hypothetical "frequency modulating" waveform. It is obvious that the term "hypothetical" is used because there is not such a waveform available somewhere in the circuit (except for the auxiliary DAC). Instead, its numerical equivalent exists. The magnitude of the slope of the elements of the triangular waveform is constant for constant input frequency and depends on the clock of the U/D counter (horizontal axis) and the voltage reference of the DAC (vertical axis). This slope is ± k i fin .

1.4 Description of the prototype hardware

For evaluation purposes two prototypes have been built and tested in the laboratory. The first approach was a low frequency instrument (operating up to 15 KHz) . The purpose of this implementation was to study the principles of operation of the proposed method. Next, a higher frequency prototype was built which will be described in more detail here. In order to implement the digital part of the prototype, (Frequency Comparator, Successive Counter, Correction Stage) two PLD devices from Altera (EPF 8064LC68-12) were used. These devices are interconnected with

the DDS, which is the Q2240I-3S1 from Qualcomm. The DDS has a 32-bit input and

a 12-bit output for the sine lookup table (LUT). The 12-bit output of the LUT is fed into the D/A converter, the AD9713B from Analog Devices. Its analog output is connected to an I/V amplifier (current-to-voltage converter). The generated sinewave has upper harmonics, due to the DAC operation. These harmonics are removed from the filters that follow the DAC. The correction stage is implemented partially on the PLDs and partially on the microcontroller. Based on the up-down command of the frequency comparator we store the two extreme values, FSW1 and FSW2, which are then transferred into the micro-controller (Atmel AT89C52), transformed into numerical representation and fed to the LCD Display. The micro-controller also controls the whole operation of the prototype. The behaviour of the instrument was according to the expected and was alike to a conventional

bench frequency counter. The speed of measurement was checked using lower trace, obtained by the aid of a digital oscilloscope. Each state, high or low, of this waveform corresponds to the time required for one measurement.

1.1 电路的操作

该电路工作在这样的方式即一个新测量的 DDS 的输出频率会在开始以逐

次逼近的方法受到控制。初始 DDS 的频率将是它最大值的一半。此外,该步骤将频率近似等于 DDS 的最大频率的 1/ 4。根据比较器输出的频率,在每一个近似值中频率被分成两个并且增加或减少到 DDS 的 FSW 中。在步长下降到一定程度时逼近过程停止。在此之后,向上/向下计数器替代逼近机制。在适当的修正和解码后,数码的 FSW 被显示在一个输出设备中,即一台液晶显示器或任何其他合适的设备。或者,也可以进行数字记录,也可以由计算机阅读。作为这一初步方法的结论,我们可以说,该方法是基于数字控制合成的,这个数字合成器能被迫产生和未知频率几乎相等的频率。

1.2 频率比较

频率比较似乎是设计的最关键阶段。该实现是基于一种改进的相位/频率比较器,由飞利浦在 74HC4046 PLL 设备中生产。它主要包括两个二进制计数器和一个 RS 触发器。频率比较器的功能是基于较低频率,即较大的周期的原则,包括至少有一个或多个频率较高(小周期)的完整周期。这意味着,在较低频率周期内包含两个或两个以上的有较高频率上升边缘的波形。鉴于上述情况,电路操作如下:当第一个计数器(#1)在一个时期内遇到 DDS 的两个未知频率的上升边缘,它设置 RS 触发器的输出。触发器的逻辑“1” 在向上/向下计数器的 U / D 的控制输出中起 RS 作用,强制 DDS 升高输出频率。相反,当第二个计数器(#2)在一个周期内记录 DDS 输出的两个未知频率的上升边缘,它又恢复成 RS 触发器的输出。这个动作降低了 DDS 的频率。乍一看人们可能认为,合成频率可达到实测值,然后计数器停止运作。不幸的是并非如此。一个充满活力的机制代替了它。该电路需要一些时间来实现正确的频率关系。我们将把这个时间称为“迟滞” 。迟滞取决于最初的 DDS 输出时序关系和未知频率。最初,在滞后期,有关更大的频率的指示是不明确的,即它可能是错误的。当更高的频率上升边缘波形发生在较低的时期时将会产生歧义。当我们考虑 DDS 的频率等于未知频率之一时,我们会发现,比较器的输出将切换,说明 DDS 的频率高于或低于未知频率。这实际上是一个可以接受和预期的状况,因为一个相同的指示(如电压比较器)可能不存在。在我们的例子中,这不是一个问题,因为这个电路是嵌入在一个封闭的循环之中。该循环经过一段短暂的时间,迟滞等情况将得到扭转。滞后的时间是可变的。这种情况如何控制,也将在后面解释。虽然与模拟执行频率相比较将产生更大的噪音,我们仍坚持数字化的实现,原因有三:超大型电路或可编程逻辑器件(PLD)容易实现,不需要模拟组件,频率范围宽并且需要更短的响应时间。

1.3 频率比较器和数字频率合成器之间的相互作用

在频率比较器“实现” 的未知频率逐次逼近之后,合成的频率较高(低)于未知,并在控制向上/向下计数器的输出端产生向下(上)的一个逻辑 0(1)的方向。如前所述,这个计数器的输出被认为是从 FSW 到 DDS 的阶段。在最初的 DDS 频率降低时,合成频率将会逐步增加,达到未知频率之一。这不会通过频率比较器“实现”,合成频率将会在一些时钟周期内继续增加,直到比较器检测出它的两个输入即频率未知的一方和 DDS 输出的正确关系。在相反(降低)的情况下,同样的现象也将会被观察到。这是因为前面提到的滞后作用。当 DDS 输出(fDDS)已接近 fin,由于滞后性,没有特定的频率合成。相反,它摇摆于 F1 和 F2 之间,其中 F1 和 F2 是频率对称摆动的两个极端值。DDS 的输出可以被看作是一个三角波形调制载波频率。三角波形是 FSW 施加到 DDS 的模拟表示法。较低的跟踪显示一个比较典型的频率输出。在相同的图上跟踪,以模拟的形式显示 FSW 的变化,这是因为它企图接近正确的值。利用辅助硬件电路这个波形已被俘获:为了研究操作,输出数字至模拟转换器(DAC)连接到 U / D 转换计数器(最高位。该 DAC 没有显示电路框图。换句话说,较低水平的跟踪是将 U / D 命令(输入)到计数器上,而跟踪的痕迹是一个假设的“调频”波形。很明显,使用“假设”是因为在电路(除辅助 DAC)中没有一个可用的波形。相反,其相等数值存在。三角波形的坡度大小对于常数输入频率是恒定的,并且取决于 U/ D 转换计数器(水平轴)时钟和 DAC(垂直轴)的电压基准。这里的坡度为± k i fin 。

1.4 硬件原型的说明

用于评估的两个原型在实验室已建成并进行测试。第一种方法是用低频率仪器(工作达15千赫。这次实验实施的目的是研究该方法的操作原则。接下来,用一个更高频率的仪器原型,将在这里进行更详细的描述。为了使原型的数字部分(频率比较,连续计数器,校正阶段)生效,两个产自 Altera(EPF8064LC68 - 12)的 PLD 器件将被使用。这些设备和由高通 Q2240I - 3S1 所生产 DDS 相互联系。 DDS 具有 32 位输入和 12 位输出的正弦查找表(LUT)。送入到由模拟设备 AD9713B 发出的 D / A 转换器中。其模拟输出连接到 I / V 放大器(电流电压转换器)。由于DAC的工作,生成的正弦波具有较高的谐波。这些谐波在DAC 之后将从过滤器删除。这次调整阶段一部分实施在 PLD一部分在微控制器。基于频率比较器的上下命令,我们存储两个极端值,FSW1和FSW2,然后再进入微控制器( Atmel AT89C52)转换成数字表示并反馈到 LCD 显示器。该微控制器还控制着整个运作的原型。仪器的行为和预期的一样,和常规的频率计数器工作台是一样的。在数字示波器的帮助下,测量采用较低速度跟踪检查。每个状态,波形的高或低,对应一个测量所需的时间。

英文文献翻译

中等分辨率制备分离的 快速色谱技术 W. Clark Still,* Michael K a h n , and Abhijit Mitra Departm(7nt o/ Chemistry, Columbia Uniuersity,1Veu York, Neu; York 10027 ReceiLied January 26, 1978 我们希望找到一种简单的吸附色谱技术用于有机化合物的常规净化。这种技术是适于传统的有机物大规模制备分离,该技术需使用长柱色谱法。尽管这种技术得到的效果非常好,但是其需要消耗大量的时间,并且由于频带拖尾经常出现低复原率。当分离的样本剂量大于1或者2g时,这些问题显得更加突出。近年来,几种制备系统已经进行了改进,能将分离时间减少到1-3h,并允许各成分的分辨率ΔR f≥(使用薄层色谱分析进行分析)。在这些方法中,在我们的实验室中,媒介压力色谱法1和短柱色谱法2是最成功的。最近,我们发现一种可以将分离速度大幅度提升的技术,可用于反应产物的常规提纯,我们将这种技术称为急骤色谱法。虽然这种技术的分辨率只是中等(ΔR f≥),而且构建这个系统花费非常低,并且能在10-15min内分离重量在的样本。4 急骤色谱法是以空气压力驱动的混合介质压力以及短柱色谱法为基础,专门针对快速分离,介质压力以及短柱色谱已经进行了优化。优化实验是在一组标准条件5下进行的,优化实验使用苯甲醇作为样本,放在一个20mm*5in.的硅胶柱60内,使用Tracor 970紫外检测器监测圆柱的输出。分辨率通过持续时间(r)和峰宽(w,w/2)的比率进行测定的(Figure 1),结果如图2-4所示,图2-4分别放映分辨率随着硅胶颗粒大小、洗脱液流速和样本大小的变化。

论文外文文献翻译3000字左右

南京航空航天大学金城学院 毕业设计(论文)外文文献翻译 系部经济系 专业国际经济与贸易 学生姓名陈雅琼学号2011051115 指导教师邓晶职称副教授 2015年5月

Economic policy,tourism trade and productive diversification (Excerpt) Iza Lejárraga,Peter Walkenhorst The broad lesson that can be inferred from the analysis is that promoting tourism linkages with the productive capabilities of a host country is a multi-faceted approach influenced by a variety of country conditions.Among these,fixed or semi-fixed factors of production,such as land,labor,or capital,seem to have a relatively minor influence.Within the domain of natural endowments,only agricultural capital emerged as significant.This is a result that corresponds to expectations,given that foods and beverages are the primary source of demand in the tourism economy.Hence,investments in agricultural technology may foment linkages with the tourism market.It is also worth mentioning that for significant backward linkages to emerge with local agriculture,a larger scale of tourism may be important. According to the regression results,a strong tourism–agriculture nexus will not necessarily develop at a small scale of tourism demand. It appears that variables related to the entrepreneurial capital of the host economy are of notable explanatory significance.The human development index(HDI), which is used to measure a country's general level of development,is significantly and positively associated with tourism linkages.One plausible explanation for this is that international tourists,who often originate in high-income countries,may feel more comfortable and thus be inclined to consume more in a host country that has a life-style to which they can relate easily.Moreover,it is important to remember that the HDI also captures the relative achievements of countries in the level of health and education of the population.Therefore,a higher HDI reflects a healthier and more educated workforce,and thus,the quality of local entrepreneurship.Related to this point,it is important to underscore that the level of participation of women in the host economy also has a significantly positive effect on linkages.In sum, enhancing local entrepreneurial capital may expand the linkages between tourism and other sectors of the host country.

外文文献及翻译

外文文献及翻译 题目:利用固定化过氧化氢酶 回收纺织品漂染的废水 专业食品科学与工程 学生姓名梁金龙 班级B食品072 学号0710308119 指导教师郑清

利用固定化过氧化氢酶回收纺织品漂染的废水 Silgia A. Costa1, Tzanko Tzanov1, Filipa Carneiro1, Georg M. Gübitz2 &Artur Cavaco-Paulo1,? 1纺织工程系, 米尼奥大学, 4810吉马尔, 葡萄牙 2环境生物技术系, 格拉茨技术大学, 8010格拉茨, 奥地利 ?作者联系方式(Fax: +351 253 510293; E-mail: artur@det.uminho.pt) 关键词:过氧化氢酶的固定化,酶稳定,过氧化氢,纺织印染 摘要 过氧化氢酶固定在氧化铝载体上并用戊二醛交联,在再循环塔反应器和CSTR反应器中研究贮存稳定性,温度和pH值对酶的活性。固定化酶的在的活性维持在44%,pH值11(30?C),对照组是活性为90%,pH值7(80?C),过氧化氢酶固定化的半衰期时间被提高到2小时(pH12,60?C)。用过氧化氢漂白织物后,洗涤过程中的残留水被固定化酶处理,可以用于再次印染时,记录实验数据。 1 序言 由于新的法规的出台,从生态经济的角度来看(Dickinson1984年),对于纺织行业中存在的成本和剩余水域的污染问题,必须给予更多的关注。过氧化氢是一种漂白剂,广泛应用于工业纺织工艺(Spiro & Griffith1997年)。在去除H2O2时,会消耗大量的水和能源(Weck 1991, St?hr & Petry 1995),以避免对氧气敏感的染料(Jensen 2000)产生后续问题。过氧化氢酶可用于降低过氧化氢的含量(Vasudevan & Thakur 1994, Emerson et al. 1996),从而减少水分消耗或方便回收印染洗涤液。过氧化氢酶的使用主要问题出在漂白时温度和清洗液碱度过高。以前,我们试图通过筛选新的嗜热嗜碱的微生物(Paar et al. 2001)或使用不同的酶稳定剂(Costa et al. 2001)来解决此问题。但是染料与蛋白质之间的潜在相互作用(Tzanov et al. 2001a, b)表明,可溶性过氧化氢酶的使用是不恰当的。固定化过氧化氢酶的使用还有一种选择(Costa et al. 2001, Amar et al. 2000)。在这项研究中,我们对氧化铝进行共价固定并使用戊二醛作为交联剂,这种方法在商业中得到验证。本项研究的目的就是探讨过氧化氢酶的固定化动力学,及其稳定性和工艺条件,这将使我们能够应用此系统,以处理可能被用于清洗染色的反复使用的酒。 2 材料和方法 2.1 酶 Terminox(EC1.11.1.6),50L以上,由AQUITEX- Maia提供,葡萄牙产。 2.2 过氧化氢酶的固定化 取Al2O3颗粒或薄片(Aldrich),直径分别为3和7毫米,在45摄氏度下,先经浓度4%的γ-氨丙基三乙氧基硅烷(Sigma)烷基化,再放入丙酮中浸泡24小时。用蒸馏水洗涤硅烷化载体后,放入浓度为2%戊二醛水溶液中室温下浸泡2小时(Aldrich),重复清洗一次并在60?C下干燥1小时。取五克的烷基化载体,室温24?C下浸泡在25毫升粗酶制剂中(Costa et al. 2001)。得出,每克Al2O3

中英文对照资料外文翻译文献

中英文对照资料外文翻译文献 平设计任何时期平面设计可以参照一些艺术和专业学科侧重于视觉传达和介绍。采用多种方式相结合,创造和符号,图像和语句创建一个代表性的想法和信息。平面设计师可以使用印刷,视觉艺术和排版技术产生的最终结果。平面设计常常提到的进程,其中沟通是创造和产品设计。共同使用的平面设计包括杂志,广告,产品包装和网页设计。例如,可能包括产品包装的标志或其他艺术作品,举办文字和纯粹的设计元素,如形状和颜色统一件。组成的一个最重要的特点,尤其是平面设计在使用前现有材料或不同的元素。平面设计涵盖了人类历史上诸多领域,在此漫长的历史和在相对最近爆炸视觉传达中的第20和21世纪,人们有时是模糊的区别和重叠的广告艺术,平面设计和美术。毕竟,他们有着许多相同的内容,理论,原则,做法和语言,有时同样的客人或客户。广告艺术的最终目标是出售的商品和服务。在平面设计,“其实质是使以信息,形成以思想,言论和感觉的经验”。

在唐朝(618-906 )之间的第4和第7世纪的木块被切断打印纺织品和后重现佛典。阿藏印在868是已知最早的印刷书籍。在19世纪后期欧洲,尤其是在英国,平面设计开始以独立的运动从美术中分离出来。蒙德里安称为父亲的图形设计。他是一个很好的艺术家,但是他在现代广告中利用现代电网系统在广告、印刷和网络布局网格。于1849年,在大不列颠亨利科尔成为的主要力量之一在设计教育界,该国政府通告设计在杂志设计和制造的重要性。他组织了大型的展览作为庆祝现代工业技术和维多利亚式的设计。从1892年至1896年威廉?莫里斯凯尔姆斯科特出版社出版的书籍的一些最重要的平面设计产品和工艺美术运动,并提出了一个非常赚钱的商机就是出版伟大文本论的图书并以高价出售给富人。莫里斯证明了市场的存在使平面设计在他们自己拥有的权利,并帮助开拓者从生产和美术分离设计。这历史相对论是,然而,重要的,因为它为第一次重大的反应对于十九世纪的陈旧的平面设计。莫里斯的工作,以及与其他私营新闻运动,直接影响新艺术风格和间接负责20世纪初非专业性平面设计的事态发展。谁创造了最初的“平面设计”似乎存在争议。这被归因于英国的设计师和大学教授Richard Guyatt,但另一消息来源于20世纪初美国图书设计师William Addison Dwiggins。伦敦地铁的标志设计是爱德华约翰斯顿于1916年设计的一个经典的现代而且使用了系统字体设计。在20世纪20年代,苏联的建构主义应用于“智能生产”在不同领域的生产。个性化的运动艺术在2俄罗斯大革命是没有价值的,从而走向以创造物体的功利为目的。他们设计的建筑、剧院集、海报、面料、服装、家具、徽标、菜单等。J an Tschichold 在他的1928年书中编纂了新的现代印刷原则,他后来否认他在这本书的法西斯主义哲学主张,但它仍然是非常有影响力。Tschichold ,包豪斯印刷专家如赫伯特拜耳和拉斯洛莫霍伊一纳吉,和El Lissitzky 是平面设计之父都被我们今天所知。他们首创的生产技术和文体设备,主要用于整个二十世纪。随后的几年看到平面设计在现代风格获得广泛的接受和应用。第二次世界大战结束后,美国经济的建立更需要平面设计,主要是广告和包装等。移居国外的德国包豪斯设计学院于1937年到芝加哥带来了“大规模生产”极简到美国;引发野火的“现代”

计算机网络-外文文献-外文翻译-英文文献-新技术的计算机网络

New technique of the computer network Abstract The 21 century is an ages of the information economy, being the computer network technique of representative techniques this ages, will be at very fast speed develop soon in continuously creatively, and will go deep into the people's work, life and study. Therefore, control this technique and then seem to be more to deliver the importance. Now I mainly introduce the new technique of a few networks in actuality live of application. keywords Internet Network System Digital Certificates Grid Storage 1. Foreword Internet turns 36, still a work in progress Thirty-six years after computer scientists at UCLA linked two bulky computers using a 15-foot gray cable, testing a new way for exchanging data over networks, what would ultimately become the Internet remains a work in progress. University researchers are experimenting with ways to increase its capacity and speed. Programmers are trying to imbue Web pages with intelligence. And work is underway to re-engineer the network to reduce Spam (junk mail) and security troubles. All the while threats loom: Critics warn that commercial, legal and political pressures could hinder the types of innovations that made the Internet what it is today. Stephen Crocker and Vinton Cerf were among the graduate students who joined UCLA professor Len Klein rock in an engineering lab on Sept. 2, 1969, as bits of meaningless test data flowed silently between the two computers. By January, three other "nodes" joined the fledgling network.

毕业论文英文参考文献与译文

Inventory management Inventory Control On the so-called "inventory control", many people will interpret it as a "storage management", which is actually a big distortion. The traditional narrow view, mainly for warehouse inventory control of materials for inventory, data processing, storage, distribution, etc., through the implementation of anti-corrosion, temperature and humidity control means, to make the custody of the physical inventory to maintain optimum purposes. This is just a form of inventory control, or can be defined as the physical inventory control. How, then, from a broad perspective to understand inventory control? Inventory control should be related to the company's financial and operational objectives, in particular operating cash flow by optimizing the entire demand and supply chain management processes (DSCM), a reasonable set of ERP control strategy, and supported by appropriate information processing tools, tools to achieved in ensuring the timely delivery of the premise, as far as possible to reduce inventory levels, reducing inventory and obsolescence, the risk of devaluation. In this sense, the physical inventory control to achieve financial goals is just a means to control the entire inventory or just a necessary part; from the perspective of organizational functions, physical inventory control, warehouse management is mainly the responsibility of The broad inventory control is the demand and supply chain management, and the whole company's responsibility. Why until now many people's understanding of inventory control, limited physical inventory control? The following two reasons can not be ignored: First, our enterprises do not attach importance to inventory control. Especially those who benefit relatively good business, as long as there is money on the few people to consider the problem of inventory turnover. Inventory control is simply interpreted as warehouse management, unless the time to spend money, it may have been to see the inventory problem, and see the results are often very simple procurement to buy more, or did not do warehouse departments . Second, ERP misleading. Invoicing software is simple audacity to call it ERP, companies on their so-called ERP can reduce the number of inventory, inventory control, seems to rely on their small software can get. Even as SAP, BAAN ERP world, the field of

英文文献及中文翻译

毕业设计说明书 英文文献及中文翻译 学院:专 2011年6月 电子与计算机科学技术软件工程

https://www.sodocs.net/doc/eb1225094.html, Overview https://www.sodocs.net/doc/eb1225094.html, is a unified Web development model that includes the services necessary for you to build enterprise-class Web applications with a minimum of https://www.sodocs.net/doc/eb1225094.html, is part of https://www.sodocs.net/doc/eb1225094.html, Framework,and when coding https://www.sodocs.net/doc/eb1225094.html, applications you have access to classes in https://www.sodocs.net/doc/eb1225094.html, Framework.You can code your applications in any language compatible with the common language runtime(CLR), including Microsoft Visual Basic and C#.These languages enable you to develop https://www.sodocs.net/doc/eb1225094.html, applications that benefit from the common language runtime,type safety, inheritance,and so on. If you want to try https://www.sodocs.net/doc/eb1225094.html,,you can install Visual Web Developer Express using the Microsoft Web Platform Installer,which is a free tool that makes it simple to download,install,and service components of the Microsoft Web Platform.These components include Visual Web Developer Express,Internet Information Services (IIS),SQL Server Express,and https://www.sodocs.net/doc/eb1225094.html, Framework.All of these are tools that you use to create https://www.sodocs.net/doc/eb1225094.html, Web applications.You can also use the Microsoft Web Platform Installer to install open-source https://www.sodocs.net/doc/eb1225094.html, and PHP Web applications. Visual Web Developer Visual Web Developer is a full-featured development environment for creating https://www.sodocs.net/doc/eb1225094.html, Web applications.Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.sodocs.net/doc/eb1225094.html,ing the development tools in Visual Web Developer,you can develop https://www.sodocs.net/doc/eb1225094.html, Web pages on your own computer.Visual Web Developer includes a local Web server that provides all the features you need to test and debug https://www.sodocs.net/doc/eb1225094.html, Web pages,without requiring Internet Information Services(IIS)to be installed. Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.sodocs.net/doc/eb1225094.html,ing the development tools in Visual Web Developer,you can develop https://www.sodocs.net/doc/eb1225094.html, Web pages on your own computer.

材料英文文献翻译

The development of plastic mould China's industrial plastic moulds from the start to now, after more than half a century, there has been great development, mold levels have been greatly enhanced. Mould has been at large can produce 48-inch big-screen color TV Molded Case injection mold, 6.5 kg capacity washing machine full of plastic molds, as well as the overall car bumpers and dashboards, and other plastic mould precision plastic molds, the camera is capable of producing plastic mould , multi-cavity mold small modulus gear and molding mold. --Such as Tianjin and Yantai days Electrical Co., Ltd Polaris IK Co. manufactured multi-cavity mold VCD and DVD gear, the gear production of such size precision plastic parts, coaxial, beating requirements have reached a similar foreign the level of product, but also the application of the latest gear design software to correct contraction as a result of the molding profile error to the standard involute requirements. Production can only 0.08 mm thickness of a two-cavity mold and the air Cup difficulty of plastic doors and windows out of high modulus, and so on. Model cavity injection molding manufacturing accuracy of 0.02 to 0.05 mm, surface roughness Ra0.2 μ m, mold quality, and significantly increase life expectancy, non-hardening steel mould life up to 10~ 30 million, hardening steel form up to 50 ~ 10 million times, shorten the delivery time than before, but still higher than abroad,and the gap between a specific data table. Process, the multi-material plastic molding die, efficient multicolor injection mould, inserts exchange structure and core pulling Stripping the innovative design has also made great progress. Gas-assisted injection molding, the use of more mature technologies, such as Qingdao Hisense Co., Ltd., Tianjin factory communications and broadcasting companies, such as mold manufacturers succeeded in 29 ~ 34-inch TV thick-walled shell, as well as some parts on the use of gas-assisted mould technology Some manufacturers also use the C-MOLD gas-assisted software and achieved better results. Prescott, such as Shanghai, such as the new company will provide users with gas-assisted molding equipment and technology. Began promoting hot runner mold, and some plants use rate of more than 20 percent, the general heat-thermal hot runner, or device, a small number of units with the world's advanced level of rigorous hot runner-needle device, a small number of units with World advanced level of rigorous needle-hot runner mould. However, the use of hot runner overall rate of less than 10%, with overseas compared to 50 ~ 80%, the gap larger. In the manufacturing technology, CAD / CAM / CAE technology on the level of application of a new level to the enterprise for the production of household appliances representatives have introduced a considerable number of CAD / CAM systems, such as the United States EDS UG Ⅱ,

变电站_外文翻译_外文文献_英文文献_变电站的综合概述

英文翻译 A comprehensive overview of substations Along with the economic development and the modern industry developments of quick rising, the design of the power supply system become more and more completely and system. Because the quickly increase electricity of factories, it also increases seriously to the dependable index of the economic condition, power supply in quantity. Therefore they need the higher and more perfect request to the power supply. Whether Design reasonable, not only affect directly the base investment and circulate the expenses with have the metal depletion in colour metal, but also will reflect the dependable in power supply and the safe in many facts. In a word, it is close with the economic performance and the safety of the people. The substation is an importance part of the electric power system, it is consisted of the electric appliances equipments and the Transmission and the Distribution. It obtains the electric power from the electric power system, through its function of transformation and assign, transport and safety. Then transport the power to every place with safe, dependable, and economical. As an important part of power’s transport and control, the transformer substation must change the mode of the traditional design and control, then can adapt to the modern electric power system, the development of modern industry and the of trend of the society life. Electric power industry is one of the foundations of national industry and national economic development to industry, it is a coal, oil, natural gas, hydropower, nuclear power, wind power and other energy conversion into electrical energy of the secondary energy industry, it for the other departments of the national economy fast and stable development of the provision of adequate power, and its level of development is a reflection of the country's economic development an important indicator of the level. As the power in the industry and the importance of the national economy, electricity transmission and distribution of electric energy used in these areas is an indispensable component.。Therefore, power transmission and distribution is critical. Substation is to enable superior power plant power plants or power after adjustments to the lower load of books is an important part of power transmission. Operation of its functions, the capacity of a direct impact on the size of the lower load power, thereby affecting the industrial production and power consumption.Substation system if a link failure, the system will protect the part of action. May result in power outages and so on, to the production and living a great disadvantage. Therefore, the substation in the electric power system for the protection of electricity reliability,

英文文献及其翻译

步进电机的知识 什么是步进电机: 步进电机是一种把电脉冲转化为角位移的执行机构。通俗的说:当驱动程序收到一个步进脉冲信号,将驱动步进电机轴旋转一个固定的角度(步进角)。您可以通过控制脉冲个数来控制角位移,从而达到准确定位的目的;同时,你可以通过控制脉冲频率来控制电机的旋转速度和加速度,实现速度控制的目的。 步进电机的种类: 步进电机分为三种:永磁式(PM),反应式(VR)和混合式(HR)永磁式步进电机一般为两相,转矩和体积较小,步进角一步7.5度或15度;反应式一般有三相可以实现大转矩输出,步进角一般是1.5度,但噪声和振动大。在欧洲和美洲80个国家已被淘汰;混合式步进是混合了永磁式和反应的优势。它由两相和五相:一般两相的步距角是1.8度,而的五相步距角为0.72度。是使用最广泛的的步进电机。 步进电机允许的最高表面温度 步进电机温度过高首先会的磁性材料退磁,导致转矩降低甚至失步,电机表面温度允许的最大值取决于的磁性材料退磁点;一般来说,磁性材料退磁点在摄氏130度以上有些材料甚至高达摄氏200度高,所以步进电机表面温度在摄氏80-90度是正常的。 步进电机精度为多少?是否累积 一般步进电机的精度为步进角的3-5%,且不累积 如何确定步进电机驱动器直流电源 A.电压确定 混合式步进电机驱动器的电源电压范围较广(比如IM483的供电电压12?48VDC),电源电压通常根据电机的转速和响应要求来选择。如果要求较快的运行速度较高的响应速度就选用较高的电压,但注意电源电压的峰值不能超过驱动器的最大输入电压,否则可能会损坏驱动器。 B.电流确定 电源电流一般根据输出相电流I来确定。如果采用线性电源,电源电流一般可取I的1.1?1.3倍;如果采用开关电源,电源电流一般可取I的1.5?2.0倍。 步进电机的主要特性 在步进电机关机时要确保没有脉冲信号,当电机运行时 如果加入适当的脉冲信号,它会转过一定的角度(称为步距角是)。转速与脉冲频率成正比。 2龙式步进电机步距角7.5度,旋转360度,需要48个脉冲来完成。 3步进电机具有快速启动和停止的优良特性。 4只要改变脉冲,可以很容易地改变电机轴旋转的方向。 因此,目前的打印机,绘图仪,机器人设备以步进电机作为动力核心。 步进电机控制的例子 我们以四相单极步进电机为例: 四个相绕组引出四个相和两个公共线(连接到正极)。一相接地。会被激发,。我们使用四相八拍控制,即第1阶段第2阶段交替反过来,会提高分辨率。步距角0.9°,可以转移到控制电机励磁是为了转移如下: 如果电机反转的要求,传输的激励信号可以逆转的。2控制方案 控制系统框图如下

相关主题