搜档网
当前位置:搜档网 › 汽车发动机发展史

汽车发动机发展史

汽车发动机发展史
汽车发动机发展史

汽车发动机发展史

汽车整体技术日新月异,而作为汽车的心脏——发动机技术的进步显得更受关注。如今介绍一辆汽车的发动机时:可变气门正时技术,双顶置凸轮轴技术,缸内直喷技术,VCM汽缸管理技术,涡轮增压技术,等等都已经运用的相当广泛;在用料上也是往轻量化的方向发展:全铝发动机目前的应用已经非常广泛;汽车的污染也是不可避免,于是新能源技术,包括柴油机的高压共轨,燃料电池,混合动力,纯电动,生物燃料技术也已经有普及的趋向,但回顾一下发动机的历史或许更能理解这一百多年来汽车技术所发生的巨大变革。

十佳发动机VQ35

汽车技术的迅猛发展从我国的汽车教材也能看出端倪:新技术的发展已经让汽车教材难以跟上步伐!如今大部分汽车教材还是以东风汽车的发动机来作为范例,而东风发动机还是带化油器的老式发动机,与如今全电子化的发动机简直就隔了几个世纪。

回到汽车的起步阶段,那时的汽车被马车嘲笑,污染严重,但起步的意义却非同寻常。

汽油机之前的摸索阶段

18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。法国的居纽(N.J.Cugnot)是第一个将蒸汽机装到车子上的人。1770年,居纽制作了一辆三轮蒸汽机车。这辆车全长7.23米,时速为3.5公里,是世界上第一辆蒸汽机车。1771年古诺改进了蒸汽汽车,时速可达9.5千米,牵引4-5吨的货物。

蒸汽机汽车

1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。

N.J.Cugnot

1867年,德国人奥托(Nicolaus August Otto)受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参观者极大的兴趣。在长期的研究过程中,奥托提出了内燃机的四冲程理论,为内燃机的发明奠定了理论基础。德国人奥姆勒和卡尔·本茨根据奥托发动机的原理,各自研制出具有现代意义的汽油发动机,为汽车的发展铺平了道路。

1892年,德国工程师狄塞尔根据定压热功循环原理,研制出压燃式柴油机,并取得了制造这种发动机的专利权。奔驰的单缸二冲程汽油发动机

奔驰1号上用的是二冲程发动机

1886年被视为汽车的诞生日,那辆奔驰一直为人所津津乐道。但是其动力单元却实在“寒酸”:第一辆“三轮奔驰”搭载的卧式单缸二冲程汽油发动机,最高时速16KM每小时。这就是第一辆汽车的发动机,那时勇敢卡尔奔驰的夫人驾驶这辆奔驰1号上坡还需要儿子推车,当然沿途不停的熄火,转向也不灵,回娘家100公里的路程硬是走了一整天。四冲程发动机的应用

四冲程发动机工作图

四冲程发动机其实早就由德国人奥托研制出来了。但应用的汽车上不得不提戴姆勒,他由于协助奥托研制四冲程发动机的原因而成为了第一个将四冲程发动机装上汽车的人。显然,从四冲程到二冲程是个巨大的进步。四冲程发动机的

平衡性与燃烧效率都更加好。如今的汽车发动机技术已经基本全部用的是四冲程技术。而在发动机的基本运行方式确定后,却有人又向传统发出了挑战。

转子式发动机

马自达坚持的转子发动机

1957年,德国人汪克尔发明了转子活塞发动机,这是汽油发动机发展的一个重要分支。转子发动机的特点是利用内转子圆外旋轮线和外转子圆内旋轮线相结合的机构,无曲轴连杆和配气机构,可将三角活塞运动直接转换为旋转运动。它的零件数比往复活塞式汽油少40%,质量轻、体积小、转速高、功率大。

1958年汪克尔将外转子改为固定转子为行星运动,制成功率为22.79千瓦、转速为5500转/分的新型旋转活塞发动机。该机具有重要的开发价值,因而引起各国的重视。日本东洋公司(马自达公司)买下了转子发动机的样机,并把转子发动机装在汽车上,可以说,转子发动机生在德国,长在日本。如今转子发动机依然只是马自达一家公司在用,不知道马自达这门独门技术何时能全面开花。

发动机的工作形式确定后,就是发动机技术的完善了,随着时间的推移,好多发动机的经典设计都已经不能满足人们的需求了。

化油器式发动机

化油器最早诞生于1892年,由美国人杜里埃发明。随着技术的演进,化油器功能愈加完备,直到上个世纪中后期,化油器已经分为五部分:主供油系统、起动系统、怠速系统、大负荷加浓系统(省油器)和加速系统。五部分的作用在于:根据发动机在不同情况下的需要,将汽油气化,并与空气按一定比例混合成可燃混合气,及时适量进入气缸。

即将淘汰的化油器

化油器的优点有:能够将内燃机的油气比控制在理想的水平上,不论天候、温度,永远进行着一成不变的工作。而且化油器的成本低、可靠度高,维修、保养容易。当然化油器也存在许多弱点:比如,在冷车启动、怠速运转、急加速或低气压环境等,这样固定的供油方式实际上并无法全面满足引擎的运转需求,甚至可能因而产生黑烟、燃烧不全与马力不足等状况。因此,2002年起,中国已经明令禁止销售化油器轿车,此后所有车型都改用电喷发动机。

当然目前在马路上跑的还有化油器式的发动机,随着时间的推移,化油器式发动机将彻底退出历史的舞台。

电喷发动机

电喷提供最早出现于1967年,由德国保时捷公司研制的D型电子喷射装置,随后被用在大众等德系轿车上。这种装置是以进气管里面的压力做参数,但是它与化油器相比,仍然存在结构复杂,成本高,不稳定的缺点。针对这些缺点,波许公司又开发了一种称为L型电子控制汽油喷射装置,它以进气管内的空气流量做参数,可以直接按照进气流量与发动机转速的关系确定进气量,据此喷射出相应的汽油。这种装置由于设计合理,工作可靠,广泛为欧洲和日本等汽车制造公司所采用,并奠定了今天电子控制燃油喷射装置的雏形。

大众1.8T电喷发动机

目前,电喷系统的行车电脑会随时侦测引擎温度、进气流量、转速变化、震动状况,并依照实际需求调整供油量与点火时间,因此在动力输出、燃油经济与排污表现上可以取得相当不错的平衡。同时为了增加发动机进气量,提高燃油效率,发动机从早期的单点喷射,演化至多点喷射,气门数量从两个增加至五个。目前最先进的当属搭载VVT可变气门技术的电喷发动机。

总体而言,电喷供油系统的最大优点就是燃油供给之控制十分精确,让引擎在任何状态下都能有正确的空燃比,不仅让引擎保持运转顺畅,其废气也能合乎环保法规的规范。然而,电喷供油系统并不是最科学的。由于内燃机构造的先天限制,电喷喷嘴安装在气门旁,只有在气门打开时才能完成油气喷射,因此喷射会受到开合周期的影响,产生延迟,因而影响电脑对喷射时间的控制。不过好在这一问题已经被缸内直喷技术解决了。

缸内直喷发动机

近两年,当欧美厂商意识到电喷技术的研发已经进入瓶颈期,于是缸内直喷技术成为了各大厂商的主攻方向。目前市场上备受关注的缸内直喷发动机包括:奥迪FSI缸内直喷发动机、凯迪拉克SIDI双模直喷发动机。

与电喷发动机相比,缸内直喷发动机的喷油嘴被移到了汽缸内部,因此缸内油气的量不会受气门开合的影响,而是直接由电脑自动决定喷油时机与份量,至于气门则仅掌管空气的进入时程,两者则是在进入到汽缸内才进行混合的动作。由于油、气的混合空间、时间都相当短暂,因此缸内直喷系统必须依靠高压将燃油从喷油嘴压入汽缸,以达到高度雾化的效果,从而更好的进行油气混合。

其中混合油气的压缩比越高的发动机,它的动力表现越强大,相应的节能效果越明显。奥迪3.2升FSI缸内直喷发动机的压缩比达到了10.3:1;凯迪拉克3.6升SIDI 双模缸内直喷发动机的压缩比达到了11.3:1。此外,缸内直喷系统的燃烧室、活塞也大多具有特殊的导流槽,以供油气在进入燃烧室后能够产生气旋涡流,来提高混合油气的雾化效果与燃烧效率。

一般而言,应用了缸内直喷技术的发动机要比同排量的多点喷射发动机的峰值功率提升10%至15%,而峰值扭矩能提升5%至10%。这样的提升,可谓是一种质变,而单靠增加气门数量是难以达到这一效果的。

发动机新技术的不断涌现:

在发动机的工作方式和喷油方式确定后,发动机的进化之路并没有终止,在发动机技术的完善上一代一代的汽车人在做着不懈的努力。有些完善甚至都没办法记录。很显然现在的发动机运转更加平顺了,抖动也不是那么激烈了。燃油经济性也更好了,马力更足了。而这些都是依赖于新技术的运用。为了改善进气就有了:本田的ECVT,丰田的VVT-I,现代的CVVT,通用的DVVT等可变气门正时技术;为了获得更好的空燃比,就有了大众的TFSI分层喷射技术,VIS可变进气道技术,涡轮增压中冷技术等等;为了使环境污染最小在排气管里又增加了氧传感器,三元催化转化器,以及废弃在循环技术。

目前,由于环境污染的恶劣影响,对汽车尾气排放的要求也越来越高,老气的发动机技术淘汰已经成了必然,更多充分利用能源的技术也在不停的研发当中。同时由于全球能源危机的巨大影响,更加节能的新能源技术必将在发动机技术的发展上书写重重的一笔。

附:发动机相关知识

发动机就是一个能量转换机构,即将汽油(柴油)的热能,通过在密封汽缸内燃烧气体膨胀时,推动活塞作功,转变为机械能,这是发动机最基本原理。发动机所有结构都是为能量转换服务的,虽然发动机伴随着汽车走过了100多年的历史,无论是在设计上、制造上、工艺上还是在性能上、控制上都有很大的提高,其基本原理仍然未变,这是一个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近乎完善的程度,各世界著名汽车厂商也将发动机的性能作为竞争亮点。

发动机的分类

现代高科技在发动机上得到完美的体现,一些新技术、新结构广泛应用在发动机上。如V12、V8、V6发动机:它们均指气缸排列成V型,这种发动机充分利用动力学原理,具有良好的平稳性,增大发动机排量,降低发动机高度。如:AudiA860使用W12-12缸V型排列发动机,BENZS600使用V12-12缸IV型排列发动机等。

一般情况下,按照排量大小的不同发动机分为三缸、四缸、六缸、八缸几种类型。目前1.3L-2.3L排量的车大多采用直列四缸发动机,其特点是体积小、结构简单、维修方便;2.5L以上的排量一般采用多缸设计,其中有直列六缸,如宝马;也有呈一定角度分两边排列的V型六缸发动机,可有效果降低震动和噪音,如别克车系;一般来说排量越大,发动机的功率就越高。但现在也有些小排量的车通过涡轮增压、多气门、可变正时器等技术来提高功率。

发动机的性能

发动机性能参数也就是最能体现发动机工作能力的参数,主要包括:排量、最大功率、最大扭矩。

关于排量:排量往往与发动机功率联系在一起,排量的大小影响着发动机功率的高低,通常也把它作为划分高、中、低档车的标准。什么是排量呢?大家都清楚,活塞在气缸内作往复上下运动,这样往复运动必然有一个最高点和最低点,活塞从最低点到最高点所扫过的气缸容积,称为单缸排量,所有气缸排量总和称为发动机排量,很显然3.0的排量对你来说应该心满意足了。

关于最大功率与最大扭矩:这往往是大家最容易混淆的两个概念,有人认为车的功率越大,力就越大,其实不然。同样300匹马力,在跑车上可以让车跑到250公里/小时以上的速度,但在一部货柜车上,可能最多只有150公里/

小时的速度,但它能拖动30-40吨重的货柜。这里面的奥秘就在于两部车的扭矩有很大的不同,简单来说,功率表现在高转速,在发动机性能曲线图上,随着转速上升而明显上升,它决定了车子能跑多快,扭矩不一定在高转速时发挥,在曲线图上较为平直,它可以决定车行驶时的力量,包括加速性。

在解读发动机参数时,需要注意的是,不要单看功率有多大,同时也要看到扭力参数,并注意当发动机处于最大功率、最大扭矩时的转速,当然以转速值稍低为好。

发动机中英文术语

发动机中英文术语 ( Carrot Download) 2007-3-14 发动机 engine 内燃机 intenal combusiton engine 动力机装置 power unit 汽油机 gasoline engine 汽油喷射式汽油机 gasoline-injection engine 火花点火式发动机 spark ignition engine 压燃式发动机 compression ignition engine 往复式内燃机 reciprocating internal combustion engine 化油器式发动机 carburetor engine 柴油机 diesel engine 转子发动机 rotary engine 旋轮线转子发动机 rotary trochoidal engine 二冲程发动机 two-stroke engine 四冲程发动机 four-stroke engine 直接喷射式柴油机 direct injection engine 间接喷射式柴油机 indirect injection engine 增压式发动机 supercharged engine 风冷式发动机 air-cooled engine 油冷式发动机 oil-cooled engine 水冷式发动机 water-cooled engine 自然进气式发动机 naturally aspirated engine 煤气机 gas engine 液化石油气发动机 liquified petroleum gas engine 柴油煤气机 diesel gas engine 多种燃料发动机 multifuel engine 石油发动机 hydrocarbon engine 双燃料发动机 duel fuel engine 热球式发动机 hot bulb engine 多气缸发动机 multiple cylinder engine 对置活塞发动机 opposed piston engine 对置气缸式发动机 opposed-cylinder engine 十字头型发动机 cross head engine 直列式发动机 in-line engine 星型发动机 radial engine 筒状活塞发动机 trunk-piston engine 斯特林发动机 stirling engine 套阀式发动机 knight engine 气孔扫气式发动机 port-scavenged engine 倾斜式发动机 slant engine 前置式发动机 front-engine 后置式发动机 rear-engine 中置式发动机 central engine

实用文档之汽车发动机的发展历程

实用文档之" 汽车发动机的发展历程" 摘要:汽车在现代社会生产生活中发挥着重要作用,而汽车发动机更是其核心部分;可以说汽车发动机的发展历程在一定程度上就是汽车的完善过程。本文阐述了汽车发动机的构造及原理,并讲述了汽车发动机的发展历程。而且笔者还对汽车发动机未来的发展趋势进行了合理预测。 【关键字】汽车发动机原理发展历程新技术 自从第二次工业革命以来,汽车得到迅猛发展。如今,汽车已经渗透到人类社会的各个方面。每天,数以千万计的汽车行驶在大大小小的公路上,而汽车生产所需的零件更是数以亿计。其广阔的市场使得汽车成为各种高科技应用的载体。汽车发动机为汽车提供动力,更是汽车的核心。汽车发动机的发展能极大地促进汽车的发展。在环境日益恶化的今天,传统发动机面临这巨大挑战。 1.发动机的类别 发动有很多种类,按不同划分方法有不同的类型。 按发动机所使用燃料来划分,发动机主要可分为汽油发动机、柴油发动机、天然气发动机、液化石油气发动机、混合动力发动机;根据发动机可分为四冲程发动机和二冲程发动机;按照气缸数,发动机可分为单缸发动机、两缸发动机、多缸(三缸以上)发动机;按照冷却方式不同,发动机可分为水冷式发动机(见图1)和风冷式发动机(见图2);根据排列方式,发动机可分为直列L型发动机、H型发动机、W型发动机、V型发动机等;按照发动机在车身上的布局不同,发动机可分为前置发动机,中置发动机和后置发动机。

2.发动机构造及原理 发动机是一个热能转换机构,通过在密封汽缸内燃烧汽油(柴油)或天然气,使气体膨胀并推动活塞做往复运动,从而使物质的内能转

化为机械能。发动机是一种有许多机构和系统组成的复杂的机械设备。无论是哪种类型的发动机,要想完成热能转化为机械能的能量转化过程,实现工作循环,保证发动机能持续正常工作,都离不开发动机中各个机构和系统之间的配合。 汽油机是由五大系统和两大连杆组成,即曲柄连杆机构、配气机构、燃料供给系、润滑系、冷却系、点火系和起动系组成。 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 在汽油机中,气缸内的可燃混合气是K电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系。

汽车发动机基本知识

精心整理汽车是指由独立的动力装置驱动,有4个或4个以上的车轮,可以单独行驶并完成运载任务的非轨道无架线的车辆。 汽车的总体构造:发动机、底盘、电气设备和车身等四个主要部分组成。 发动机工作原理和总体构造 发动机是将热能转化为机械能的机器。它利用燃料在气缸内燃烧所产生的热能使气体膨胀以推动曲柄连杆机构运动,并通过传动系驱动汽车行驶。作用是将化学能通过燃烧转化为热能,再通过受热气体膨胀将热能转化为机械能。 现代汽车一般采用往复活塞式内燃机,根据其不同的工作特征和结构可分为:点燃式与压燃式发动机,四(行)冲程和二(行)冲程发动机,汽油机、柴油机和新型燃料发动机,化油器和喷射式发动机,单缸和多缸发动机,风冷和水冷发动机,增压式和非增压式发动机,气门顶置式和侧置式发动机。(蓝色加粗为现代常用。) 发动机基本术语 上止点:活塞顶部在气缸内的最高位置,即活塞距离曲轴回转中心最远处。 下止点:活塞顶部在气缸内的最低位置,即活塞距离曲轴回转中心最近处。 活塞行程S:指气缸上、下止点间的距离。活塞从一个止点运动到另一个止点间的距离称为一个活塞行程行程,单位为mm。 曲柄半径R:曲轴连杆轴颈中心的距离。活塞移动一个行程,曲轴转过半圈(180度),即S=2R。 气缸的工作容积:指活塞从上止点到下止点让出空间所对的容积。(即上下止点间的气缸容积) 发动机工作容积:多缸发动机各缸的工作容积之和,也称发动机的排量。 燃烧室容积:指活塞在上止点时,活塞顶部以上的空间。 气缸总容积:指活塞在下止点时,活塞顶部以上的空间。

压缩比:指气缸总容积和燃烧室容积的比值。 四行程汽油机工作原理:四行程发动机曲轴转两圈,活塞在气缸内依次往复运动经历进气、压缩、作功和排气四个行程,完成一个工作循环。 进气行程:曲轴带动活塞从上止点向下止点移动,进气门开启,排气门关闭。活塞顶部空间增大,气缸内压力降低到小于外界大气压。空气和汽油经混合形成的可燃混合气通过进气管道、进气门被吸入气缸。 压缩行程:进气结束,进、排气门都关闭。曲轴带动活塞由下止点向上止点运动,活塞顶部的可燃混合气被压缩。作功行程:当压缩行程接近上止点时,进、排气门都处于关闭状态,火花塞发出电火花点燃可燃混合气,混合气迅速燃烧使气体温度和压力急剧升高,推动活塞下止点运动,经过连杆使曲轴旋转作功,并对外输出功。 排气行程:曲轴带动活塞从下止点向上止点运动,排气门打开,进气门关闭。在活塞和废气自身的压力作用下,废气经排气门排出气缸,活塞到达上止点时排气结束。 四行程柴油发动机工作原理: 进气行程:汽油机在进气行程中吸入的是可燃混合气,而柴油发动机吸入的是纯空气

汽车发动机中英文对照

汽车发动机相关术语中英文对照(1240条) 发动机 engine 内燃机 internal combustion engine 动力机装置 power unit 汽油机 gasoline engine 汽油喷射式汽油机 gasoline-injection engine 火花点火式发动机 spark ignition engine 压燃式发动机 compression ignition engine 往复式内燃机 reciprocating internal combustion engine 化油器式发动机 carburetor engine 柴油机 diesel engine 转子发动机 rotary engine 旋轮线转子发动机 rotary trochoidal engine 二冲程发动机 two-stroke engine 四冲程发动机 four-stroke engine 直接喷射式柴油机 direct injection engine 间接喷射式柴油机 indirect injection engine 增压式发动机 supercharged engine 风冷式发动机 air-cooled engine 油冷式发动机 oil-cooled engine 水冷式发动机 water-cooled engine 自然进气式发动机 naturally aspirated engine

煤气机 gas engine 液化石油气发动机 liquified petroleum gas engine 柴油煤气机 diesel gas engine 多种燃料发动机 multifuel engine 石油发动机 hydrocarbon engine 双燃料发动机 duel fuel engine 热球式发动机 hot bulb engine 多气缸发动机 multiple cylinder engine 对置活塞发动机 opposed piston engine 对置气缸式发动机 opposed-cylinder engine 十字头型发动机 cross head engine 直列式发动机 in-line engine 星型发动机 radial engine 筒状活塞发动机 trunk-piston engine 斯特林发动机 stirling engine 套阀式发动机 knight engine 气孔扫气式发动机 port-scavenged engine 倾斜式发动机 slant engine 前置式发动机 front-engine 后置式发动机 rear-engine 中置式发动机 central engine 左侧发动机 left-hand engine

汽车发动机的发展史

汽车发动机的发展史发动机,汽车中最重要的部分,可以说没有发动机的存在,就不存在汽车。发动机的发展即是汽车的发展。 发动机作为汽车的心脏,为汽车的行走提供动力和汽车的动力性、经济性、环保性。简单讲发动机就是一个能量转换机构,即将汽油(柴油)的热能,通过在密封气缸内燃烧气体膨胀时,推动活塞做功,转变为机械能,这是发动机最基本原理。发动机所有结构都是为能量转换服务的,虽然发动机伴随着汽车走过了100多年的历史,无论是在设计上、制造上、工艺上还是在性能上、控制上都有很大的提高,其基本原理仍然未变,这是一个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近乎完善的程度,各世界著名汽车厂商也将发动机的性能作为竞争亮点。 所以可以说发动机的发展史即是汽车的发展史。 而发动机的发展也经历了无数人的努力,无数人的智慧与汗水。 发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。 往复活塞式四冲程汽油机是德国人奥托在大气压力式发动机基础上,于1876 年发明并投入使用的。由于采用了进气、压缩、做功和排气四个冲程,发动机的热效率从大气压力式发动机的11%提高到14%,而发动机的质量却降低了70%。 1892 年德国工程师狄塞尔发明了压燃式发动机(即柴油机),实现了内燃机历史上的第二次重大突破。由于采用高压缩比和膨胀比,热效率比当时其他发动机又提高了1 倍。1956年,德国人汪克尔发明了转子式发动机,使发动机转速有较大幅度的提高。1964年,德国NSU公司首次将转子式发动机安装在轿车上。 1926 年,瑞士人布希提出了废气涡轮增压理论,利用发动机排出的废气能量来驱动压气机,给发动机增压。50 年代后,废气涡轮增压技术开始在车用内燃机上逐渐得到应用,使发动机性能有很大提高,成为内燃机发展史上的第三次重大突破。 1967 年德国博世公司首次推出由电子计算机控制的汽油喷射系统,开创了电控技术在汽车发动机上应用的历史。经过30年的发展,以电子计算机为核心的发动机管理系统(Engine Management System,EMS)已逐渐成为汽车、特别是轿车发动机上的标准配置。由于电控技术的应用,发动机的污染物排放、噪声和燃油消耗大幅度地降低,改善了动力性能,成为内燃机发展史上第四次重大突破。 1971年,第一台热气发动机——斯特林机的公共汽车已开始运行。1972年,日本本田技研工业在市场售出装有复合涡流控制燃烧的发动机的西维克牌轿车,打响了稀薄气体燃烧发动机的第一炮。这种发动机是在普通发动机燃烧室的顶部加上一个槌状体的副燃烧室,先将这处副燃烧室中较浓

国内外汽车发动机发展现状与趋势

国内外汽车发动机的技术现状及发展趋势 摘要:内燃机从发明发展到一百多年后的今天,相关技术不断创新和走向成熟。但内燃机作为汽车动力仍然面临着诸多问题,主要是热效率还不够高(特别是汽油机),所依赖的石油资源逐渐减少,废气排放污染大气环境,并难以集中治理等。因此,先进的发动机技术将在汽车节能、环保技术开发中起着关键的决定性的作用。 关键词:高压共轨;汽油直喷技术(GDI);可变气门正时技术(VVT);均质充量压缩点燃(HCCI) Abstract:With the invention of the development of internal combustion engine, to over one hundred years later, the related technical innovation and to mature. But internal combustion engines as a motor power still faces many problems, which is still not tall enough thermal efficiency (especially the gasoline engine), dependent on oil resources reduce gradually, emissions atmospheric pollution environment, and difficult to focus on control, etc.Therefore, the advanced engine technology will in car the energy conservation, the environmental protection technology development plays a key of the decisive role. Keywords: gasoline direct injection technology (GDI); Variable valve timing technology (VVT); Homogeneous filling quantity compression lighting (HCCI); Electric auxiliary pressurization 当今世界,为了保护环境,节约能源并减少温室气体二氧化碳的排放,人们不断的探索和改进车用动力的解决方案。 一、车用柴油机的现状及发展趋势 1.1车用柴油机的性能特点 1)有能量密度高(大型低速增压柴油机的有效热效率已超过50%),燃油消耗率低,这对节约能源和提高经济效益都很重要。 2)好的燃油经济性; 3)温室效应气体排放少,其CO2的排放量比汽油机大约低30-35%,但废气中含有害成分(NO,颗粒物等)较多,噪声较大,在环境环保方面已引起重视。4)功率和转速范围很大(功率1—65580KW,转速54—5000r/min),因此应用领域宽 5)结构较复杂,零部件材料和工艺要求较高,制造成本较高,与汽油机相比质量较大。主要有三大优点: a.经济。首先, 每单位柴油的能量含量比汽油高;其次,柴油机的压燃特性, 使其热效率比汽油机高。一般柴油机的油耗要比汽油机的低30%~40%。 b.环保。一般来说, 机动车的主要排放物有一氧化碳、碳氢化合物、二氧化碳、颗粒物和氮氧化物。相对而言, 柴油机的一氧化碳、碳氢化合物和二氧化碳排放量极低, 但在颗粒物和氮氧化物的排放控制上要比汽油机更难处理。这是柴油机本身的特性造成的, 可通过现代技术处治。 c.柴油机低速大扭矩的特性, 为汽车提供了更好的使用性能。通过采用先进的燃油喷射技术和电控技术, 现代柴油机在动力性、加速性、舒适性指标上已经

汽车各部分部件的作用

汽车各主要部份的作用 汽车一般由发动机、底盘、车身和电气设备等四个基本部分组成。 一.汽车发动机 发动机是汽车的动力装置。由2大机构5大系组成:①曲柄连杆机构②配气机构③燃料供给系统④冷却系统⑤润滑系统⑥点火系统⑦起动系统。 1、冷却系统:一般由水箱、水泵、散热器、风扇、节温器、水温表和放水开关组成。汽车发动机采用两种冷却方式,即空气冷却和水冷却。一般汽车发动机多采用水冷却。 2、润滑系统:发动机润滑系由机油泵、集滤器、机油滤清器、油道、限压阀、机油表、感压塞及油尺等组成。 3.燃料系:汽油机燃料系由汽油箱、汽油表、汽油管、汽油滤清器、汽油泵、化油器、空气滤清器、进排气歧管等组成。 二.汽车的底盘 底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。底盘由传动系、行驶系、转向系和制动系四部分组成。 1、传动系统:汽车发动机所发出的动力靠传动系传递到驱动车轮。传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。主要是由离合器、变速器、万向节、传动轴和驱动桥等组成。 离合器:其作用是使发动机的动力与传动装置平稳地接合或暂时地分离,以便于驾驶员进行汽车的起步、停车、换档等操作。 变速器:由变速器壳、变速器盖、第一轴、第二轴、中间轴、倒档轴、齿轮、轴承、操纵机构等机件构成,用于汽车变速、变输出扭矩。/ z& K1 w w$ L 2.行驶系统:由车架、车桥、悬架和车轮等部分组成。行驶系的功用是:

A、接受传动系的动力,通过驱动轮与路面的作用产生牵引力,使汽车正常行驶; 1B、承受汽车的总重量和地面的反力; C、缓和不平路面对车身造成的冲击,衰减汽车行驶中的振动,保持行驶的平顺性; D、与转向系配合,保证汽车操纵稳定性。 3.转向系统:汽车上用来改变或恢复其行驶方向的专设机构称为汽车转向系统。转向系统的基本组成 A、转向操纵机构主要由转向盘、转向轴、转向管柱等组成。 B、转向器将转向盘的转动变为转向摇臂的摆动或齿条轴的直线往复运动,并对转向操纵力进行放大的机构。转向器一般固定在汽车车架或车身上,转向操纵力通过转向器后一般还会改变传动方向。 C、转向传动机构将转向器输出的力和运动传给车轮(转向节),并使左右车轮按一定关系进行偏转的机构。 4.制动系统:汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统。其作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。 制动系分类: A、按制动系统的作用 制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不

汽车中英文对照表

汽车中英文对照表(五) EAMT——电控机械自动变速器 EAQF——法国汽车工业质量标准 EAS——能量吸收式转向盘;吸能式转向盘 EAS——电子空气悬架 EAT——电控液力自动变速器 EAT——Electrically Assisted Turbocharger——电动辅助涡轮增压EBA——Emergency-Braking Advisory——紧急制动警告 EBA——Electronic Brake Assist或Emergency Brake Assist或Electronic Brake Auxiliary——电控制动辅助系统;紧急制动辅助系统 说明:在一些非常紧急的事件中,驾驶员往往不能迅速地踩下制动踏板,EBA就是为此而设计的。该系统利用传感器感应驾驶员对制动踏板踩踏的力度与速度大小,然后通过电脑判断驾驶员此次制动的意图。如果属于非常紧急的制动,EBA此时就会指示制动系统产生更高的油压使ABS发挥作用,从而使制动快速产生,减少制动距离。而对于正常情况的制动,EBA 则会通过判断不予启动ABS。通常情况下,EBA的响应速度都会远远快于驾驶员,这对缩短制动距离,增强安全性非常有利。此外,对于脚力较差的女性及高龄驾驶员闪避紧急危险的制动,也帮助很大。有关测试表明,EBA可以使车速高达200km/h的汽车完全停下的距离缩短21m之多,尤其是对在高速公路行驶的车辆,EBA可以有效防止常见的车辆“追尾”意外。EBC——发动机制动控制 EBCM——Electronic Brake Control Module——电子制动控制模块 EBD /EBV——英文:Electric Brake Force Distribution或Eletronic Brake Differential;德文:Electronicsche Bremsenkraft Verteiler——电子制动力分配系统 说明:EBD能够根据汽车轴荷由于汽车制动时产生轴荷转移的不同,而自动调节前、后轴的制动力分配比例,提高制动效能,并配合ABS系统提高制动稳定性。通常情况下,由于4只轮胎附着地面的条件不同,因此,汽车制动时,很容易因轮胎与地面的摩擦力不同,产生打滑、倾斜和侧翻等现象。EBD的功能就是在汽车制动的瞬间,分别计算出4个轮胎摩擦力的数值,然后通过调整制动装置,使其按照设定的程序在运动中快速调整,达到制动力与摩擦力(牵引力)的匹配,以保证车辆的平稳和安全。EBD主要是对ABS起辅助功能,提高ABS 的功效。当重踩制动踏板时,EBD会在ABS起作用之前,自动以前轮为基准去比较后轮轮胎的滑动率,如果发现此差异程度必须被调整时,依据车辆的重量分布和路面条件,有效分配制动力(制动油压系统将会调整传至后轮的油压),以使4个车轮得到更平衡且更接近理想化制动力的分布。因此,ABS+EBD就是在ABS的基础上,平衡每一个车轮的有效地面抓地力,改善制动力的平衡,防止出现甩尾和侧移,并缩短汽车制动距离,使得汽车的安全性能更胜一筹。 EBDL——电子制动力分配装置 EBP——Error Back Propagetion——误差反向传播 EBS——Eletronic Brake System——电子控制制动系统;电子制动力分配系统EBTC——Electronic Brake and Traction Control——电子制动与牵引控制系统EBTCM——Electronic Brake and Traction Control Module——电子制动牵引控制模块

汽车的发展史

汽车的发展史 摘要: 汽车自上个世纪末诞生以来,已经走过了风风雨雨的一百多年。 从卡尔.本茨造出的第一辆三轮汽车以每小时18公里的速度,跑到现在,竟然诞生了从速度为零到加速到100公里/小时只需要三秒钟多一点的超级跑车。这一百年,汽车发展的速度是如此惊人!同时,汽车工业也造就了多位巨人,他们一手创建了通用、福特、丰田、本田这样一些在各国经济中举足轻重的著名公司。本文回望这段历史,回顾了汽车的起源,论述了汽车的功用、分类及性能要求,对国内外汽车的发展历史及各时期主要车型作了系统介绍,对军用汽车发展趋势作了简要分析,叙述汽车给我们的生活带来的翻天覆地的变化。 关键词军用汽车车辆分类车辆性能 引言 汽车同其它现代高级复杂工具如电子计算机等一样,并非是哪一个人坐在那里发明了的。发明之初的汽车也不是现在之个式样,如果你能见到当时的汽车,你也可能认为这不是汽车呢。汽车的发展也有一个漫长的历程,总的说来,汽车发展史可能分为蒸汽机发明前、蒸汽汽车的问世、大量流水生产汽车开始等三个阶段。人类最初的工作劳动完全是由本身来完成,根本没有什么汽车和发动机,如果说有的话,在未使用牛和马之前使用的是人体的股份这台发动机。奴隶就是一种“生物发动机”。随着人类的进步与发展,人们对自然界的认识越来越深,利用自然、改造自然的能力日益加强,人们不仅使用人力、畜力、而且知道使用水力、风力。 1.汽车的起源 马车和蒸汽机车以及19世纪的三轮汽车都可算作现代汽车的始祖。在铁路诞生以前,陆上道路通常是未铺路面的,因此,中世纪欧洲的骡马商队很普遍。后来,随着道路的改善,出现了宽轮子的四轮货车和公共马车。那时候的陆上运输成本高,而且客货运输安全系数低,陆上交通除受气候条件限制之外,还受水陆交叉、盗劫和战争等问题的影响。到17世纪,这种格局随着公路的改进而开始被打破。

氢气发动机的发展和现状

课程结业论文 题目:氢气发动机的发展和现状 学生姓名: 学生学号: 专业班级: 课程名称:现代汽车新技术概论 所属院部: 指导教师: 2013——2014学年第 1 学期

目录 第一章绪论 (1) 1.1氢气发动机的历史 (1) 1.2 氢动力汽车的现状 (2) 1.3氢动力汽车的研究发展方向 (3) 1.4发展氢动力汽车的必要性 (3) 第二章氢气能源性质 (4) 2.1 氢的特征 (4) 2.2氢气与传统燃料的性质对比 (5) 2.3 氢能的开发和利用 (6) 2.3.1 氢能的开发 (6) 2.3.2氢能的应用 (8) 第三章氢气的存储 (10) 3.1高压气瓶储氢 (10) 3.2液氢储氢 (11) 3.3金属氢化物储氢 (11) 3.4 浆液储氢技术 (12) 第四章氢气发动机的发展前景 (13)

氢气发动机的发展和现状 第一章绪论 1.1氢气发动机的历史 随着“汽车社会”的逐渐形成,汽车保有量不断地上升,而石油等资源却捉襟见肘,同时,消耗大量汽油的车辆不断排放有害气体和污染物质,对环境造成严重的危害。这一问题的解决之道当然不是限制汽车产业的发展,而是开发替代石油的新能源—氢能。氢作为内燃机的燃料并是人类最近的发明。在内燃机中使用氢气已有相当长的历史。 人类历史上第一款氢气内燃机的历史可以上溯到 1807 年,瑞士人伊萨克·代·李瓦茨制成了单缸氢气内燃机。他把氢气充进气缸,氢气在气缸内燃烧,最终推动活塞往复运动。该项发明在 1807 年 1 月 30 日获得法国专利,这是第一个关于汽车产品的专利。但由于受当时的技术水平所限,制造和使用氢气远比使用蒸汽和汽油等资源复杂,氢气内燃机于是被蒸汽机、柴油机以及汽油机“淹没”。 早在十九世纪中期,人们就开始对使用氢气作为内燃机燃料产生了兴趣。1841 年英国颁发了第一个用氢气和氧气的混合气体工作的内燃机专利证。1852 年,慕尼黑的宫廷钟表技师制成一台用氢气-空气混合气体工作的内燃机。 在氢内燃机的历史上,德国一直占有很重要的地位。德国的 Rudolph Erren 尝试在氢内燃机中采用内部混气的方式。在他的研究工作中,穿过内燃机的冷水套的管道,氢气被一些小喷嘴直接喷入气缸内进行混合。氢喷入的质量和时间由燃料分配器控制,这种方案可以用任何燃料或是采用双燃料的方式让发动机工作。他还提出氢氧内燃机构想,并据此设计了实验,用到潜艇上。德国的奔驰公司开发组建的氢动力车队是世界首个用氢气作为内燃机燃料的车队,该车队在柏林已经试运行多年。氢气输送管道,加氢站也是最先在德国兴建的。现在,空中客车公司德国分部,奔驰航空公司也都正在努力开发装备氢动力内燃机的空中飞机。德国的其他汽车公司如宝马等都在大力发展氢动力汽车。 1.2 氢动力汽车的现状 日本自 1984 年实施“阳光计划”,投入示范运行氢动力车,仅日本武藏工业大学就有多达九辆的氢动力车投入试验,且型号各不相同;日本各大汽车公司,如马自达,本田等,也都在积极加入氢动力车行列;马自达公司推出了第一款氢动力概念车 HR-X,金属氢化物储氢罐储氢,

汽车发动机发展史

汽车发动机发展史 汽车整体技术日新月异,而作为汽车的心脏——发动机技术的进步显得更受关注。如今介绍一辆汽车的发动机时:可变气门正时技术,双顶置凸轮轴技术,缸内直喷技术,VCM汽缸管理技术,涡轮增压技术,等等都已经运用的相当广泛;在用料上也是往轻量化的方向发展:全铝发动机目前的应用已经非常广泛;汽车的污染也是不可避免,于是新能源技术,包括柴油机的高压共轨,燃料电池,混合动力,纯电动,生物燃料技术也已经有普及的趋向,但回顾一下发动机的历史或许更能理解这一百多年来汽车技术所发生的巨大变革。 十佳发动机VQ35 汽车技术的迅猛发展从我国的汽车教材也能看出端倪:新技术的发展已经让汽车教材难以跟上步伐!如今大部分汽车教材还是以东风汽车的发动机来作为范例,而东风发动机还是带化油器的老式发动机,与如今全电子化的发动机简直就隔了几个世纪。 回到汽车的起步阶段,那时的汽车被马车嘲笑,污染严重,但起步的意义却非同寻常。 汽油机之前的摸索阶段

18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。法国的居纽(N.J.Cugnot)是第一个将蒸汽机装到车子上的人。1770年,居纽制作了一辆三轮蒸汽机车。这辆车全长7.23米,时速为3.5公里,是世界上第一辆蒸汽机车。1771年古诺改进了蒸汽汽车,时速可达9.5千米,牵引4-5吨的货物。 蒸汽机汽车 1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。 N.J.Cugnot 1867年,德国人奥托(Nicolaus August Otto)受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参观者极大的兴趣。在长期的研究过程中,奥托提出了内燃机的四冲程理论,为内燃机的发明奠定了理论基础。德国人奥姆勒和卡尔·本茨根据奥托发动机的原理,各自研制出具有现代意义的汽油发动机,为汽车的发展铺平了道路。 1892年,德国工程师狄塞尔根据定压热功循环原理,研制出压燃式柴油机,并取得了制造这种发动机的专利权。

国内外汽车发动机的现状和发展趋势

国内外汽车发动机的现状和发展趋势姓名:祖春胜班级:车辆09-2 学号:0901040440 摘要:本文综述了发动机的发展带动汽车的发展,随着汽车产销量的不断增长, 大气污染,石油资源枯竭,故而,世界汽车界将在发动机上发展更先进的技术从而实现汽车的节能和环保,通过列举大量国内外发动机的技术现状及发展趋势,从而更进一步的了解发动机的节能与环保。 关键词:电控液压进气系统;涡轮增压;燃油品质;排气后处理;汽油机直喷(GDI)技术 The status and development trend of Domestic and foreign automobile engines Abstract: The paper distract the development of internal combustion engine driven vehicle development, accompanied by rapid growth in automobile production and sales from the atmospheric pollution and oil consumption. Undoubtedly, the development advanced engine technology in the automotive energy-saving, environmental protection is the important issue to the world automotive industry.By listing plenty of domestic and foreign engine technology situation and the development tendency, so as to further understand the engine of energy conservation and environmental protection Keywords:Electric hydraulic air intake system;Monomer pump technology; Fuel Character;Exhaust Gas After Treatment、Gasoline direct injection (GDI) technology 伴随着汽车产销量的不断增长,从而带来了世界石油资源日趋枯竭的压力, 面对汽车急剧增长对环境的影响, 世界汽车界不停地在寻找实现汽车工业可持续发展的解决方法,对发动机的环保,能源诸方面的技术加以改进。 一.柴油机的发展及现状 1.1柴油机的性能特点 (1)好的燃油经济性。 (2)有能量密度高,燃油消耗率低,这对节约能源和提高经济效益都很重要。(3)结构较复杂,零部件材料和工艺要求较高,制造成本较高,与汽油机相比质量较大。柴油机主要有三大优点: (1) 经济。首先,每单位柴油的能量含量比汽油高;其次,柴油机的压燃特性,使其热效率比汽油机高。一般柴油机的油耗要比汽油机的低 30%~40%。 (2) 环保。一般来说, 机动车的主要排放物有一氧化碳、碳氢化合物、二氧

汽车发动机发展史

汽车发动机发展史 1110100C20涂小政发动机,汽车中最重要的部分,可以说没有发动机的存在,就不存在汽车。发动机的发展即是汽车的发展。 发动机作为汽车的心脏,为汽车的行走提供动力和汽车的动力性、经济性、环保性。简单讲发动机就是一个能量转换机构,即将汽油(柴油)的热能,通过在密封气缸内燃烧气体膨胀时,推动活塞做功,转变为机械能,这是发动机最基本原理。发动机所有结构都是为能量转换服务的,虽然发动机伴随着汽车走过了100多年的历史,无论是在设计上、制造上、工艺上还是在性能上、控制上都有很大的提高,其基本原理仍然未变,这是一个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近乎完善的程度,各世界著名汽车厂商也将发动机的性能作为竞争亮点。 所以可以说发动机的发展史即是汽车的发展史。 而发动机的发展也经历了无数人的努力,无数人的智慧与汗水。发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。 惠更斯于1673年设计绘制了方案图,如下图所示。

第一台蒸汽机的的设计于1712年设计完成,如下图所示。

1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。 1867年,德国人奥托(Nicolaus August Otto)受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参观者极大的兴趣。在长期的研究过程中,奥托提出了内燃机的四冲程理论,为内燃机的发明奠定了理论基础。德国人奥姆勒和卡尔—本茨根据奥托发动机的原理,各自研制出具有现代意义的汽油发动机,为汽车的发展铺平了道路。 1886年被视为汽车的诞生日,那辆奔驰一直为人所津津乐道。但是其动力单元却实在“寒酸”:第一辆“三轮奔驰”搭载的卧式单缸二冲程汽油发动机,最高时速16KM每小时。这就是第一辆汽车的发动机,那时勇敢卡尔奔驰的夫人驾驶这辆奔驰1号上坡还需要儿子推车,当然沿途不停的熄火,转向也不灵,回娘家100公里的路程硬是走了一整天。 四冲程发动机其实早就由德国人奥托研制出来了。但应用的汽车上不得不提戴姆勒,他由于协助奥托研制四冲程发动机的原因而成为了第一个将四冲程发动机装上汽车的人。显然,从四冲程到二冲程是

汽车发动机电子控制系统开发现状及趋势

汽车发动机电子控制系统开发现状及趋势 丁志盛叶挺宁 摘要:介绍了汽车发动机电子控制系统相关技术背景、开发现状及发展趋势。 关键词:EECS,ECU汽车发动机电喷 一、汽车发动机电子控制系统概述 汽车发动机电子控制系统(Engine Electronic Control System,简称EECS)通过电子控制手段对发动机点火、喷油、空气与燃油的比率、排放废气等进行优化控制,使发动机工作在最佳工况,达到提高性能、安全、节能、降低废气排放的目的。汽车发动机电子控制系统主要包括: - 燃油喷射控制; - 点火系统控制; - 怠速控制; - 尾气排放控制; - 进气控制; - 增压控制; - 失效保护; - 后备系统; - 诊断系统等功能。 另外,随着网络、集成控制技术的广泛应用,作为汽车控制主要单元的EMS系统通过 CAN(Controllers Area Network)总线与其他控制系统,例如:安全系统(如ABS、牵引力电子稳定装置ESP (Electronic Stability Program))、底盘系统(如主动悬挂ABC(Active Body Control))、巡航控制系统(Speed Control System或Cruse Control System)以及空调、防盗、音响等系统实现网络互联,实现信息共享并实施集成优化统一控制。在不久的将来,车载通讯平台将利用现有无线通讯网络为汽车驾驶提供更广泛的咨询、娱乐等增值服务(如GPS全球定位系统的应用)。 汽车发动机电子控制系统的开发主要涉及以下技术内容: - 传感器

主要包括空气流量传感器、空气温度传感器、节气门位置传感器、冷却液温度传感器、转速传感器、曲轴位置传感器、凸轮轴位置传感器、爆燃传感器、车速传感器、氧传感器等。 - 执行器 主要包括喷油器、点火控制模块、怠速空气控制阀以及各种电磁阀等。 - 电控单元ECU(Electronic Control Unit) 和控制算法程序软件其作用是通过采集各种传感器输入信号并将信号进行调理,根据发动机管理控制算法进行运算,然后输出控制信号并进行功率放大给执行器。同时检测传感器信号正常状态,出现故障时报警。 图1描述了汽车发动机电子控制系统示意图。 图1 另外,为了应对汽车产业产品作为多种产品链状集成开发的特点以及快速更新的市场需求,高性能的发动机试验台架、集成开发环境工具以及测试产品耐环境性能的设备为快速开发高质量面向不同汽车发动机的管理系统产品提供保障:

汽车发动机的工作原理和各部件作用

汽车发动机的工作原理和各部件作用 汽车, 原理, 发动机 发动机,又称为引擎,是一种能够把一种形式的能转化为另一种更有用的能的机器,通常是把化学能转化为机械能。(把电能转化为机器能的称谓电动机)有时它既适用于动力发生装置,也可指包括动力装置的整个机器.比如汽油发动机,航空发动机. 基本理论 汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。 有两点需注意: 1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。 2.同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽 车不用蒸汽机。 相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。 结构 机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。 一. 气缸体 水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却 水套和润滑油道等。 气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常 把气缸体分为以下三种形式。

相关主题