搜档网
当前位置:搜档网 › 锚杆支护理论计算方法(规范)

锚杆支护理论计算方法(规范)

锚杆支护理论计算方法(规范)
锚杆支护理论计算方法(规范)

锚杆支护参数的确定

一、锚杆长度

L≥L1+L2+L3------------------------- ①

=0.1+1.5+0.3=1.9m

式中:

L——锚杆总长度,m;

L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m;

L2 ——锚杆有效长度或软弱岩层厚度,m;

L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。

(一)锚杆外露长度L1

L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)]

(二)锚入岩(煤)层内深度(锚固长度)L3

1.经验取值法

《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定:

第3.3.3条端头锚固型锚杆的设计应遵守下列规定:

一、杆体材料宜用20锰硅钢筋或3号钢钢筋;

二、杆体直径按表3.3.3选用;

三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟;

四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度

宜为300~400毫米;

五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米;

六、锚头的设计锚固力不应低于50千牛顿;

七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm ~400mm

2. 理论估算法

《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定:

第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式:

公式(3.3.11-1)、(3.3.11-2)见图形所示。

cs st f f d k l 412≥ (3.3.11-1)

cr

st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm ); d1——锚杆钢筋直径走私或锚索体直径(cm );

d2——锚杆孔直径(cm );

f st ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2);

f cs ——水泥砂浆与钢筋或水泥砂浆与锚索的设计粘结强度

(N/cm 2);圆钢为2.5MPa ,螺纹钢为5MPa 。

fcr ——水泥砂浆与孔壁岩石的设计粘结强度(N/cm 2);砂浆与石灰岩粘结强度为2.5MPa ,砂浆与粘土岩粘结强度为1.8MPa ,

K ——安全系数,取1.2。

(三) 锚杆有效长度或软弱岩层厚度L2

1. 根据“悬吊理论”确定L 2

L2=KH

式中:K --- 安全系数,一般取2;

H ---软弱岩层厚度,m ;

2. 根据“普氏自然平衡供理论”确定L2

顶板锚杆有效长度L 2顶

当f ≥3时,f

B K b L 22==顶 ---------------②-1 当f <3时,顶

f H B b L ??? ??-?+==245tan 212ω --------------- ②-2 式中:K --- 安全系数,一般取1.5~2;

b 或b1 --- (普氏免压拱高)围岩松动圈冒落高度,m ;

B --- 巷道开掘宽度,此处取B=5.3m ;

f --- 巷道顶板的岩石普氏坚固性系数,(煤取2.5);

H --- 巷道掘进高度,取3.3m ;

顶f --- 顶板岩石普氏系数;(煤取2.5);

ω--- 两帮围岩的似内摩擦角,取顶f 反算;

= arctan(2.5)=68.2°

帮锚杆有效长度L 2帮的确定

??? ?

?-?==245tan 2ωH c L 帮 --------------- ②-3 =0.64 m 或

1

12112+-+++=B B f f L 帮 --------------- ②-4 =1.27 m

式中:c --- 帮破碎深度(m );

H --- 巷道掘进高度,取3.3m ;

ω ---两帮围岩的内摩擦角,取40°;

)arctan(f =ω

B --- 巷道开掘宽度,5.3m ;

f ---岩石普氏系数;(煤取2.5);

将以上L 1、L 2、L 3的值代入①式得:

L 顶≥L 1+L 2顶+L 3

L 帮≥L 1+L 2帮+L 3

3. 根据“组合拱理论”计算L2

组合拱理论设计锚杆的支护参数,一般适用于围岩破碎,巷道断面为拱顶的巷道 Ⅰ、两帮煤体受挤压深度C

)245tan()12cos 1000(?αγ-???-=h K f HB K C c

c --------------- ① )arctan(顶f =ω

=(2.8×24×100×1/(1000×2.5×1)×Cos1.5°-1)

×3.3×tan(45°-68.2°/2)

=2.05(m)

式中:K ——自然平衡拱角应力集中系数,与巷道断面形状有关;矩形断面,取2.8

r ---上覆岩层平均容重(KN/m 3),取24KN/m 3;

H --- 巷道埋深(m),取100m ;

B ---固定支撑力压力系数,按实体煤取1;

fc ---煤层普氏系数,取2.5;

Kc ---煤体完整性系数(取0.9-1.0),取1;

α ---煤层倾角,取3°;

h ---巷道掘进高度m ,取3.3m ;

? ---煤体内摩擦角,可按fc 反算,取68.2°;

()顶f arctan =?

=arctan(2.5)=68.2°

Ⅱ、潜在冒落高度b

)cos()(αy

y f K C a b += -------------------- ② =(2.65+1.26)×cos3°/(0.45×3)=2.89(m)

式中:a ——顶板有效跨度之半(m),取2.65m ;

C ——两帮煤体受挤压深度(m),由①式计算得1.05m ;

K y ——直接顶煤岩类型性系数; 取0.45

当岩石f=3-4时,取0.45;

f=4-6 时,取0.6;

f=6-9时,取0.75;

Fy ——直接顶普氏系数,取3;

α——煤层倾角,取5°; Ⅲ、两煤帮侧压值Qs

)]2

45tan(2cos sin [?

ααγ-???+?=b h KnC Q s 煤 ------- ③ =2.8×3×1.26×13×[3.3×sin3°+2.89×cos1.5°

×tg(45-68.2/2)]

=185(kN/m 2)

式中:K --- 自然平衡拱角应力集中系数,与巷道断面形状有

关;矩形断面,取2.8; n --- 采动影响系数(取2-5),取3

C --- 两帮煤体受挤压深度(m),由①式计算得1.26m ;

r 煤--- 煤体容重(KN/m 3),取24 KN/m 3;

h --- 巷道掘进高度m ,取3.3m ;

a --- 煤层倾角,取3°;

b --- 潜在冒落高度,由②式计算得2.89m ;

? --- 煤体内摩擦角,可按fc 反算得68.2°

L 2帮=C

L 2顶=b

将以上L 1、L 2、L 3的值代入①式得:

L 顶≥L 1+L 2顶+L 3

L 帮≥L 1+L 2帮+L 3

4. 根据“组合梁原理”计算L2

组合梁理论只适合层状顶板锚杆支护的设计,对于巷道的帮、底不适用,组合梁厚度越大,梁的最大应变值越小。组合梁充分考虑了锚杆对离层和滑动的约束作用,原理上对锚杆作用分析的比较全面,但是它存在以下明显缺点。

a.组合梁有效组合厚度很难确定。

b.没有考虑水平应力对组合梁强度、稳定性及锚杆荷载的作用。其实,在水平应力较大的巷道中,水平应力是顶板破坏、失稳的主要原因。

(x P K B L σσ?+=112935.1 式中:K1 --- 与施工方法有关的安全系数。掘进机掘进2-3;爆破法掘进3-5;巷道受动压影响5-6

P ---组合梁自重均布载荷(MPa),取0.06MPa ;

? --- 与组合梁层数有关的系数

组合层数: 1 2 3 ≥4

?值: 1.0 0.75 0.7 0.65

B --- 巷道跨度(m),取5.3m ;

σ1 --- 最上一层岩层抗拉计算强度(MPa),可取试验强

度的0.3-0.4倍,(没有参数)?

σx --- 原岩水平应力

H

H x γ??

λγσ?-==1

σx=λrz =0.4×24×10-9×100×103

=0.000960MPa

式中:λ—侧压力系数,一般为0.25-0.4,

γ ——上覆岩层平均容重,取24KN/m 3

; Z —巷道埋深(m),取100m ;

将以上L 1、L 2、L 3的值代入①式得:

L ≥L 1+L 2+L 3

5. 按经验公式计算锚杆长度L(加固拱理论)

L= N (1.1+B/10) ---------- ①

=1.0×(1.1+5.3/10)=1.63(m );

式中:L —锚杆长度(m );

N —围岩稳定影响系数,Ⅴ类围岩取系数1.2;

B —巷道跨度(m ),取5.3m 。

二、 锚杆间、排距

(一) 经验公式

根据《锚杆喷射混凝土支护技术规范》GBJ86-85规定: 第3.3.7条 系统锚杆的布置应遵守下列规定:

一、在隧洞横断面上,锚杆应与岩体主结构面成较大角度布置;当主结构面不明显时,可与隧洞周边轮廓垂直布置;

二、在岩面上,锚杆宜成菱形排列;

三、锚杆间距不宜大于锚杆长度的二分之一;Ⅳ、Ⅴ类围岩中的

锚杆间距宜为0.5 ~1.0米,并不得大于1.25米。

D ≤1/2L --------------- ①

D ≤0.5×2200=1100mm

(二) 根据锚杆支护的原理计算锚杆间/排距

1. 根据“悬吊理论”计算锚杆间、排距

2. 锚杆间距

D ≤1/2L

锚杆排距

当复合顶板厚度小于1.15 m, 即在巷道上方1.15m 范围内有关键层存在条件下, 关键层下面复合顶岩层可悬吊在稳定的关键层岩层上,支护设计按悬吊理论计算, 且不需锚索补强(4)。锚杆的有效长度L2 大于或等于关键层下位复合顶板厚度,锚杆的间排距则有:

γγγKb Q KL Q KH Q

D =≤2 或 γ2887.0KL Q d D ≤

式中:D — 锚杆间、排距,m ;

Q — 锚杆设计锚固力, 105 KN/根

K — 安全系数,一般取1.5~2;

L 2—软弱岩层厚度或冒落拱高度b ,取 m ;

H —软弱岩层厚度或冒落拱高度b ,取 m ;

f

B H 2= 式中 B ——巷道开挖宽度,m ;

f ——岩石坚固性系数,取3。

γ — 被悬吊岩石的容重,取24 KN/m 3;

d — 锚杆最小直径,mm ;

3. 根据“组合拱理论”计算锚杆间、排距

● (顶)锚杆间排距

ab

k Nn aL k Nn L γγ2220== 式中:L 0 --- 锚杆间、排距,m ;

N --- 锚杆设计锚固力, 105 KN/根

n --- 每排锚杆根数,根;

K --- 安全系数,一般取2~3;

γ --- 被悬吊岩石的容重,取24KN/m 3;

a --- 1/2巷道掘进宽度,m ;

L 2 --- 锚杆有效长度(顶锚杆取b 冒落拱高度),取1.31 m ; ● (帮)锚杆间排距

L KQ Nh D s = 式中:D --- 锚杆间、排距,m ;

N --- 锚杆设计锚固力, 105 KN/根

h --- 巷道掘进高度,m ;

K --- 安全系数,一般取2~3;

γ --- 被悬吊岩石的容重,取24KN/m 3;

a --- 1/2巷道掘进宽度,m ;

L 0 --- 帮锚杆排拒(同顶锚杆排拒),取 m ;

4. 根据“组合梁原理”计算锚杆间、排距

KP m D 263.111σ≥

式中:D --- 锚杆间、排距,m ;

m 1 --- 最上一层岩石厚度, m ;

σ1 ---最上一层岩石抗拉强度(MPa),可取实验强度的

0.3~0.4倍;

K --- 安全系数,一般取2~3;

P --- 本层自重均布载荷,P=m1×r1MPa ;

r1 --- 最下面一层岩层的容重,取24kN/m 3;

经计算选择锚杆间距×排距=900mm ×900mm 符合要求。

三、 锚杆直径 《方法一》:经验公式

110

L d = --------------- ④-1 式中:

d — 锚杆最小直径,mm ;

L — 锚杆长度,mm ;

《方法二》:

t t Q Q

d σπσ13.14== --------------- ④-2 =3803.141

.04??=0.018

式中:

d — 锚杆最小直径(mm );

Q — 锚杆设计锚固力(MPa ),100KN 取380MPa

σt — 锚杆杆体的抗拉强度(MPa ),取380MPa ;

《方法三》:根据杆体承载力和锚固力等强度数值加以确定

σQ

D 52

.35≤ --------------- ④-3 式中: D — 锚杆间、排距,m ;

Q — 锚杆设计锚固力, 105 KN/根

σ — 锚杆杆体抗拉强度(MPa);

四、 锚固力N

《方法一》:(可按锚杆杆体的屈服载荷计算)

)(4

2 σπ

?=d N --------------- ⑤-1 = 0.25×3.14×(20)2×335=105(KN)

式中: σ屈——杆体材料的屈服极限(φ20mm 螺纹钢为335MPa); d ——杆体直径d=20mm 。

《方法二》:

r

d KL N 22= --------------- ⑤-2

式中: Q — 锚杆锚固力,kN

K — 锚杆安全系数,取2~3;

L2 — 锚杆有效长度(m );

d ——锚杆杆体直径(m),d=0.02 m;

r —锚杆视密度,t/m3;

五、锚杆角度

靠近巷帮的顶板锚杆安设角度与垂线成15°,其它锚杆垂直于巷道顶部安设。

六、锚杆的选择

1、常用锚杆杆体的材料性能

常用钢材及其性能见表5;锚杆适宜选用45Mn罗纹钢,其承载能力见表6。

2、锚杆的选择

巷道锚杆选择Φ=20mm、45Mn螺纹钢锚杆。

锚固力Q=10.7t<12.4t

3、锚固剂的确定

锚杆支护巷道采用树脂锚固剂。树脂锚固剂应具备的主要特性见表7,树脂锚固剂产品型号见表8,树脂锚固剂的规格见表9,树脂锚固剂的主要技术指标见表10。

有关煤矿标准择录

**********************************************************

中华人民共和国国家标准

锚杆喷射混凝土支护技术规范

GBJ 86-85

主编部门:中华人民共和国冶金工业部

批准部门:中华人民共和国国家计划委员会

实行日期:一九八六年七月一日

关于发布《锚杆喷射混凝土支护技术规范》的通知

计标[1985]2064号

根据原国家建委(81)建发设字第546 号文的通知,由冶金工业部负责主编,由冶金工业部建筑研究总院会同有关单位编制的《锚杆喷射混凝土支护技术规范》已经有关部门会审。现批准《锚杆喷射混凝土支护技术规范》GBJ 86-85为国家标准,自一九八六年七月一日起施行。

本规范由冶金工业部管理,其具体解释等工作由冶金工业部建筑研究总院负责。

国家计划委员会

一九八五年十二月十七日

第3.3.8条设计局部锚杆时,拱腰以上的锚杆对危石的抗力可按下列公式验算:

水泥砂浆锚杆

K·G≤n·As·fst (3.3.8-1)

预应力锚索或预应力锚杆

K·G≤n·P (3.3.8-2)

或K·G≤n·Ay·σcon (3.3.8-3)

式中G——锚杆或锚索承受的危石重量(牛顿);

As——单根锚杆杆体的截面积(厘米2);

Ay——单根预应力锚索或预应力锚杆杆体截面积(厘米2)

n——锚杆、预应力锚索或预应力锚杆的根数;

fst ——水泥砂浆锚杆钢筋设计抗拉强度(牛顿/厘米2);

P——单根预应力锚索或预应力锚杆的预张拉力值(牛顿);

σcon——预应力锚索或预应力锚杆张拉控制应力(牛顿/厘米);

K——安全系数,取2。

第 3.3.9条拱腰以下及边墙局部锚杆的抗力可按下列公式验算:

水泥砂浆锚杆

K·G1≤f·G2+n·As·fsv+C·A (3.3.9-1)

预应力锚索或预应力锚杆

K·G1≤f·G2+Pt+f·Pn+C·A (3.3.9-2)

式中G1、G2——分别为不稳定岩块平行作用于滑动面和垂直作用于滑动面上的分力(牛顿);

As——单根水泥砂浆锚杆钢筋的截面积(厘米2);

n——锚杆根数;

A——岩石滑动面的面积(厘米2);

C——岩石滑动面上的粘结力(牛顿/厘米2);

fsv——水泥砂浆锚杆钢筋设计抗剪强度(牛顿/厘米2);

f——岩石滑动面的摩擦系数;

Pt 、Pn——分别为预应力锚索或预应力锚杆作用于不稳定岩块上的总压力在抗滑动方向及垂直于滑动面方向上的分力(牛顿);

K——安全系数,取2。

第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆

或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式:

公式(3.3.11-1)、(3.3.11-2)见图形所示。

cs st f f d k l 412≥ (3.3.11-1)

cr

st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(厘米); d1——锚杆钢筋直径走私或锚索体直径(厘米);

d2——锚杆孔直径(厘米);

fst ——锚杆钢筋或锚索体的设计抗拉强度(牛顿/厘米2); fcs ——水泥砂浆与钢筋或水泥砂浆与锚索的设计粘结强度(牛顿/厘米2);

fcr ——水泥砂浆与孔壁岩石的设计粘结强度(牛顿/厘米2); K ——安全系数,取1.2。

GB 1499.2-2007钢筋混凝土用钢

7.3.1 钢筋的屈服强度Rel、抗拉强度Rm、断后伸长率A、最大力总伸长率Agt等力学性能特征应符合表6的规定。表6中所列各力学性能特征值,可作为交货检验的最小保证值。

表6

牌号

R e l/

MPa

R m /

MPa

A /

%

A gt/

%

不小于

HRB335

HRBF335

335 455 17

7.5

HRB400

HRBF400

400 540 16

HRB500

HRBF500

500 630 15

锚喷支护工程质量检测规程

MT/T5015-96

5 锚杆抗拔力检测

5.1 检测方法

5.1.1 用锚杆拉力计作锚杆抗拔力检测,根据检测结果评判锚杆抗拔力和安装牢固程度的质量状况。

5.1.2 锚杆拉力计应符合以下要求:

a)最大工作荷载不小于70kN;

b)工作行程不小于10mm;

c)测力装置应使用标准精密压力表或数据显示系统,精密度等级宜为0.5级。

5.2 检测程序

5.2.1 确定检测数量:巷道每30~50m,取样不少于一组。立井、硐室每300根锚杆或300根以下,取样不少于一组;300根以上,每增加1~300根,相应多取样一组。设计或材料变更,应另取一组。每组不得少于3根。

5.2.2 在同一检查点内均匀取3根或3根以上作为一组。

5.2.4 将压力表读数(数显值)按公式5.2.4换算成锚杆抗拔力:

F=CPS (5.2.4)式中:F——锚杆抗拔力(N);

C——压力表值与锚杆抗拔力之间相关系数,在仪器标定时确定;

P——压力表读数(MPa);

S——锚杆拉力计千斤顶活塞面积(mm2)。

MT 中华人民共和国煤炭行业标准

MT 146.1—2002

树脂锚杆锚固剂

Resin anchor bolts—Capsules

5 技术要求

5.1 原材料

锚固剂所用原材料应符合有关国家标准和行业标准要求。

5.2 外观

树脂锚固剂应装填饱满,质地柔软,颜色均匀,树脂胶泥不分层沉淀,封口

严密,无渗漏,各型号锚固剂的标识应符合表1的规定。

5.3 直径、长度偏差

锚固剂直径偏差为±0.5mm;长度偏差为±10mm。

5.4 树脂胶泥稠度

环境温度为(22±1)℃时,不小于16mm。

5.5 凝胶时间

巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、

树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,因而亏损严重。为了摆脱煤炭行业的这种困境,在巷道支护方面积极发展锚杆支护,到1987年,英国从澳大利亚引进了成套的锚杆支护技术,从而扭转了过去的被动局面,煤巷锚杆支护得到迅速发展,经过近10年实验的基础上,又进行了改进和提高,到1994年在巷道支护中所占的比重己达到80%以上。锚杆支护技术的广泛采用给英国煤矿带来巨大的活力和经济效益。 德国是U型钢支架使用最早、技术上最为成熟的国家,自1932年发明U型钢支架以来,U型钢支架发展迅速,支护比重很快达到了90%以上,从井底车场一直到采煤工作面两巷均采用U型钢可缩性支架。但是自20世纪80年代以来,随着矿井开采深度日益增加,维护日益困难。面临这种困境,德国采用不断增加金属支架的型钢质量,逐步减小棚距的做法,这不仅使巷道支护费用增高,而且施工、运输更加困难和复杂。即便如此,巷道维护困难的状况仍然难以改观,于是寻求成本低,运输和施工简单方便、控制围岩变形效果好的锚杆支护变得尤为重要。到20世纪80年代初期,锚杆支护在鲁尔矿区实验成功后获得推广,现己应用到千米的深井巷道中,取得了许多成功的经验。 法国煤巷锚杆支护的发展也很迅速,到1986年其比重己达50%。在采区巷道支护中同时发展金属支架、锚杆支护、混凝土支架。 俄罗斯锚杆支护的发展也引人瞩目。他们研制了多种类型的锚杆,在俄罗斯第一大矿区——库兹巴斯矿区锚杆支护巷道所占比重己达50%。 我国在煤矿岩巷中使用锚杆支护也已有近50余年的历史。从1956年起在煤矿岩巷中使用锚杆支护,20世纪60年代锚杆支护开始进入采区,但由于煤层巷道围岩松软,受采动影响后围岩变形量很大,对支护技术要求很高,加之锚杆支护理论、设计方法,锚杆材料、施工机具、检测手段等还不够完善,因而发展缓慢。“八五”期间,原煤炭工业部把煤巷锚杆支护技术作为重点项目进行攻关,在“九五”期间,原煤炭工业部将“锚杆支护”列为煤炭工业科技发展的五个项目之一,

煤矿巷道锚杆支护技术规范

煤矿巷道锚杆支护技术规范 1 范围 本标准规定了煤矿巷道锚杆支护技术的术语和定义、技术要求、锚杆支护施工质量检测及锚杆支护监测。 本标准适用于煤矿岩巷、煤巷及半煤岩巷的锚杆支护。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 175-2007 硅酸盐水泥、普通硅酸盐水泥 GB/T 228.1-2010 金属材料拉伸试验第1部分:室温试验方法 GB/T 23561.1-2009 煤和岩石物理力学性质测定方法第1部分:采样一般规定 GB 50086 岩土锚固与喷射混凝土支护工程技术规范 GB/T 50266-2013 工程岩体试验方法标准 MT 146.1-2011 树脂锚杆第1部分:锚固剂 MT 146.2-2011 树脂锚杆第2部分:金属杆体及其附件 MT 285 缝管锚杆 MT/T 861 W型钢带 MT/T 1061-2008 树脂锚杆玻璃纤维增强塑料杆体及其附件 3 术语和定义 GB/T 228.1-2010、MT 146.1-2011、MT 285界定的以及下列术语和定义适用于本文件。 3.1 巷道 roadway 为煤矿提升、运输、通风、排水、行人、动力供应等而掘进的通道。 3.2 煤巷 coal roadway 断面中煤层面积占4/5或4/5以上的巷道。 3.3 岩巷 rock roadway 断面中岩石面积占4/5或4/5以上的巷道。 3.4

半煤岩巷 coal-rock roadway 断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。 3.5 锚杆 rock bolt 安装在围岩中,对围岩实施锚固的杆件系统。一般由杆体、托盘、螺母、垫圈、锚固剂或锚固构件组成。 3.6 预应力锚杆 pretensioned rock bolt 在安装过程中施加一定预拉力的锚杆。 3.7 无预应力锚杆 non-pretensioned rock bolt 在安装过程中不施加预拉力的锚杆。 3.8 树脂锚杆 resin anchored bolt 采用树脂锚固剂锚固的锚杆。 注:改写MT 146.1-2011,定义3.1。 3.9 注浆锚杆 grouting bolt 杆体为中空式,兼做注浆管,对围岩进行注浆加固的锚杆。 3.10 钻锚注锚杆 self-drilling bolt 杆体为中空式,自带钻头,集钻孔、锚固、注浆于一体的锚杆。 3.11 玻璃纤维增强塑料锚杆 glass fibre reinforced plastic bolt 杆体主体部分由玻璃纤维和树脂复合而成的锚杆。 3.12 缝管锚杆 s plit set bolt 经特殊加工成纵向开缝的钢管及其附件。 [MT 285—1992,术语 3.1] 3.13 锚索 cable bolt 安装在围岩中,对围岩实施锚固的索体系统。一般由钢绞线、托盘、锚具及锚固剂组成。 3.14 锚杆支护 rock bolting

锚杆参数计算

铁迈煤矿锚杆(索)支护参数计算 一、锚杆长度: 按照加固拱原理确定锚杆参数: L≥L1+L2+L3 其中:L -------锚杆全长,m; L1-------锚杆外露长度,一般取0.05-0.2m,包括垫板、螺母;为了进行拉拔试验通常取0.2M. L2-------锚杆有效长度(顶锚杆免压拱高与帮锚杆破碎深度较大值)m; L3-------锚杆锚固长度,一般为0.3-0.5m; L2= [B/2+Htan(45°-W/2)]/f 其中:L2-------锚杆有效长度,m; B-------巷道掘进跨度,取3.8m; H-------巷道掘进高度,取3.5m; W-------围岩(煤体)内摩擦角,取45°; f-------岩石普世系数,取2.5;则 L2=[3.8/2+3.5*tan(45°-45°/2)]/2.5=1.34 所以锚杆长度L≥L1+L2+L3=0.2+1.34+0.5=2.0m,因此采用长度 为2.0m的锚杆;

结论1:锚杆长度确定为2.0m 二、锚杆间排距 B=√---Q/-(khr)------ 式中: B:锚杆间排距; Q:锚杆锚固力;取80KN K:安全系数,取2; h:巷道掘进宽度;3.8m r:上覆岩层平均体积重量取25 KN/m3 则:B=√---Q/-(khr)-----= √-80/(2*3。8*25--=0.649m,取0.6m. 结论2:锚杆间排距确定为0.6m. 三、锚索长度: 为了加强锚固体的强度,减少煤岩顶板冒落,采用锚索的长度为: L=L1+L2+L3+L4 其中:L---------锚索长度,m; L1 --------锚索深入稳定岩层锚固长度,m; L2 --------需要悬吊不稳定岩层(煤体厚度),取 2.5m; L3 --------上托盘及锚具厚度,0.15m; L4 --------需要外露张拉的长度,取0.25m。

锚杆(锚索)支护设计公式

锚杆(锚索)支护设计技术参数 一、锚索设计承载力 钢绞线直径为φ15.24mm 时230kN ,钢绞线直径为φ17.8mm 时320kN ,钢绞线直径为φ21.6mm 时454kN 。 二、锚索设计破断力 钢绞线直径为φ15.24mm 时260kN ,钢绞线直径为φ17.8mm 时355kN ,钢绞线直径为φ21.6mm 时504kN 。 三、锚杆(锚索)支护参数校核 1、顶锚杆通过悬吊作用,帮锚杆通过加固帮体作用,达到支护效果的条件,应满足:L ≥L 1+L 2+L 3 式中L ——锚杆总长度,m ; L 1——锚杆外露长度(包括钢带、托板、螺母厚度),m ; L 2——有效长度(顶锚杆取围岩松动圈冒落高度b ,帮锚杆取帮破碎深度c ),m; L 3——锚入岩(煤)层内深度,m 。 其中围岩松动圈冒落高度 b=顶 f H B ??? ? ? -+?245tan 2ω 式中B 、H ——巷道掘进荒宽、荒高; 顶f ——顶板岩石普氏系数; ω——两帮围岩的似内摩擦角,ω=()顶f arctan 。 ? ?? ? ? -?=245tan ωH c 2、校核顶锚杆间、排距:应满足 γ 2kL G a < 式中a ——锚杆间、排距,m ;

G ——锚杆设计锚固力,kN/根; k ——安全系数,一般取2;(松散系数) L 2——有效长度(顶锚杆取b ); γ——岩体容重 3、加强锚索长度校核,应满足d c b a L L L L L +++= 式中L ——锚索总长度,m ; a L ——锚索深入到较稳定岩层的锚固长度,m ; c a a f f d K L 41? ≥ 其中: K ——安全系数; 1d ——锚索直径; a f ——锚索抗拉强度,N/㎜2; c f ——锚索与锚固剂的粘合强度,N/㎜2;(10)? b L ——需要悬吊的不稳定岩层厚度,m ; c L ——托板及锚具的厚度,m ; d L ——外露张拉长度,m ; 4、悬吊理论校核锚索排距: L ≤nF 2/[BH γ-(2F 1sin θ)/L 1] 式中 L---锚索排距,m ; B---巷道最大冒落宽度, m ; H---巷道最大帽落高度, m ;(最大取锚杆长度) γ---岩体容重,kN/m 3(包括顶煤+直接顶) L 1---锚杆排距, m, F 1---锚杆锚固力, kN;70

煤巷锚杆支护技术要求规范

煤巷锚杆支护技术规范 1 范围 本标准规定了煤巷锚杆支护技术的术语和定义、技术要求、煤巷锚杆支护监测及煤巷锚杆支护施工质量检测。 本标准适用于煤矿煤巷锚杆支护,也适用于半煤岩巷锚杆支护。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T5224-2003 预应力混凝土用钢绞线 GB/T14370-2000 预应力筋用锚具、夹具和连接器 GB50086-2001 锚杆喷射混凝土支护技术规范 MT146.1-2002 树脂锚杆锚固剂 MT146.2-2002 树脂锚杆金属杆体及其附件 MT/T942-2005 矿用锚索 MT5009-1994 煤矿井巷工程质量检验评定标准 3术语和定义 下列术语和定义适用于本标准。 3.1 煤巷coal roadway 断面中煤层面积占4/5或4/5以上的巷道。 3.2 半煤岩巷half-coal and half-rock roadway 断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。

锚杆支护bolt supporting 以锚杆为基本支护形式的支护方式。 3.4 锚杆杆体破断力breaking force of bolt bar 锚杆杆体能承受的极限拉力。 3.5 锚杆拉拔力pulling force of bolt 锚杆锚固后,拉拔试验时,锚杆破断或失效时的极限拉力。 3.6 锚固力anchor capacity 锚杆的锚固部分或杆体在拉拔试验时,所能承受的极限载荷。 〔MT146.1-2002,定义3.8〕 3.7 设计锚固力 design anchor capacity 设计时给定的锚杆应能承受的锚固力。 3.8 树脂锚杆resin anchor bolt 〔MT146.1-2002,定义3.1〕 3.9 树脂锚固剂capsule resin 起粘结锚固作用的材料称锚固剂,树脂锚固剂由树脂胶泥与固化剂两部份分隔包装成卷形。混合后能使杆体与被锚固体煤岩粘接在一起。 〔MT146.1-2002,定义3.2〕

锚杆支护理论计算方法

锚杆支护参数的确定 一、锚杆长度 L≥L1+L2+L3------------------------- ① =0.1+1.5+0.3=1.9m 式中: L——锚杆总长度,m; L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2——锚杆有效长度或软弱岩层厚度,m; L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。 (一)锚杆外露长度L1 L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)] (二)锚入岩(煤)层内深度(锚固长度)L3 1.经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定: 第3.3.3条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表3.3.3选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟;

四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度 宜为300~400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm~400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定: 第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式: 公式(3.3.11-1)、(3.3.11-2)见图形所示。 cs st f f d k l 412≥ (3.3.11-1) cr st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm); d1——锚杆钢筋直径走私或锚索体直径(cm ); d2——锚杆孔直径(cm ); fst ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2);

锚杆支护技术规范(正式版本)

锚杆支护技术规范(正式) 第一章总则 1 为贯彻安全第一的生产方针,严格执行《煤矿安全规程》和煤炭工业技术政策, 确保正确地进行锚杆支护设计和施工质量,促进煤巷锚杆支护技术的健康发 展,特制定本规范。 2 锚杆支护巷道施工必须进行设计。锚杆支护设计要注重现场调查研究,吸取国内 外锚杆支护设计、施工和监测方面的先进经验,积极采用新技术、新工艺、 新材料,做到技术先进、经济合理、安全可靠。 新采区采用锚杆支护时,要进行基础数据收集并进行锚杆支护试验工作,锚 杆支护设计要组织有关单位会审,并报集团公司备案。 3 对在煤巷应用锚杆支护的有关人员(管理人员、工程技术人员及操作人员),都必 须进行技术培训。 4 在应用锚杆支护的巷道中,必须有矿压及安全监测设计。在施工中必须按设计设置 矿压及安全监测装置,并有专人负责监测。 第二章巷道围岩的稳定性分类 5 采用煤巷锚杆支护技术,必须对巷道围岩稳定性进行分类,为指导锚杆支护设计、 施工与管理提供依据。 6 巷道分类按原煤炭部颁发的《缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案》执 行。 7 煤层围岩分类指标以缓倾斜、倾斜薄煤层及中厚煤层回采巷道分类指标为基本分

类指标。其它条件下的煤巷(如煤层上山)稳定性分类指标,可根据具体情况对分类指标进行相应替代,详见表1和表2。 缓倾斜、倾斜薄及中厚煤层回采巷道分类指标 表1 煤层上、下山分类指标 表2

第三章锚杆支护设计 8 锚杆支护设计应贯彻地质力学评估—初始设计—监测与信息反馈—修改设计等四 个步骤。 锚杆支护设计参考以地应力为基础的煤巷锚杆支护设计方法,结合锚杆支 护实践,可根据直接顶稳定情况,按悬吊理论、自然平衡拱理论、组合梁理 论或锚杆楔固理论进行设计计算;亦可采用工程类比法进行设计。无论采用 哪种设计方法,都必须对支护状况进行监测,包括锚杆受力、巷道围岩表面 与深部位移及弱化范围、顶板离层等内容。根据监测信息反馈结果对设计进 行验证或修改。 第9条为进行科学的锚杆支护设计,必须具备表3所要求的原始资料。巷道施工后,根据实际揭露的围岩及地质构造等情况,对有关数据进行校核,为修改和完 善锚杆支护设计提供依据。

煤巷锚杆支护理论与成套技术-名称.

煤巷锚杆支护理论与成套技术.. 作:康红普 煤炭工业出版 2007年11月 16开精装 一册 光盘:0 定价:286元 优惠:180元 .. 详细:.............................................. 联系式:O1O.5I65O723 Q:92824359O 1千五百多个县市送货上门 货到付款.............................................. 《煤巷锚杆支护理论与成套技术》 目录: 序 前言 第一章概述 第二章煤巷锚杆支护理论 第一节锚杆支护构件的作用 第二节锚杆支护的加固作用

第三节现有锚杆支护理论评述 第四节锚杆支护作用机理分析 第三章巷道围岩地质力学测试技术 第一节地应力测量 第二节巷道围岩强度原位测试 第三节巷道围岩结构观察 第四节巷道围岩地质力学快速测试系统的现场应用 第四章煤巷锚杆支护设计方法 第一节锚杆支护工程类比设计法 第二节锚杆支护理论分析设计法 第三节锚杆支护动态信息设计法 第四节锚杆支护预紧力设计 第五节锚杆支护参数设计 第六节煤巷锚杆支护设计软件 第五章煤巷锚杆支护材料 第一节锚杆种类与支护形式 第二节常用金属锚杆型式 第三节高强度锚杆杆体及附件 第四节树脂锚固剂 第五节组合构件与网 第六节可切割锚杆 第七节锚索 第八节锚杆桁架 第九节锚杆与注浆联合加固 第六章煤巷锚杆支护施工机具与工艺 第一节国内外锚杆钻机发展概况 第二节单体顶板锚杆钻机 第三节单体帮锚杆钻机 第四节锚索施工机具 第五节钻头与钻杆 第六节锚杆施工预紧机具 第七节锚杆与锚索施工工艺 第七章煤巷锚杆支护工程质量检测与监测技术 第一节锚杆支护工程质量检测技术

锚杆支护参数计算

1 地质条件 岱庄煤矿综掘煤巷位于313采区中部,沿3上煤层顶板掘进,巷道底板标高在-203~-208m ,地表松散层厚度平均36m ;煤层厚度为3~3.83m ,平均3.4m ;煤层直接顶为砂质泥岩,厚度在0.60~.95m 之间,平均0.8m ;老顶为细砂岩,厚度15m 左右;底板为粉砂岩,厚度在1.158~.58m ,平均为4.9m 。 煤巷两侧及底板为煤体,粘聚力0.45MPa 、内摩擦角26°、容重1.33kg /m 3、单向抗压强度6.35MPa ;煤巷顶板为砂质泥岩,粘聚力2MPa 、内摩擦角28°、容重 2.76kg/m 3单向抗压强度20MPa ;原岩应力6.48MPa ;围岩稳定性系数为1.7,巷道围岩为Ⅳ类,属较稳定围岩。 2 锚杆及托盘材料 目前顶板锚杆采用Φ16mm 螺纹钢,设计强度240MPa ,托盘为铸钢托盘;两侧采用压缩木锚杆,设计强度17.6MPa 。 3 锚杆支护参数计算 3.1锚杆长度计算 21l l l += (1) 式中:1l 为锚杆外露长度,一般为0.1m ;2l 为被锚固围岩的厚度, 2/2h R l p -= (2) Ccon rH rH R R p +=sin 0 (3) 式中:p R 巷道围岩塑性区半径;o R 为矩形断面的等效圆掘进半径(见图1),其值为 2.18m ;h 为巷道宽度或高度,两者之间取小值,即h =2.6m 。 将上述巷道围岩参数代入式(3)得: ①巷道顶板岩层: m con R p 53.228228sin 48.648.618.2=?+?= ②卷道侧壁(煤体): m con R p 08.32645.026sin 48.648.618.2=?+?= 由式(2),得锚杆锚固区围岩厚度: 煤巷顶板岩层:m l 23.12=

巷道锚杆支护计算公式

根据1552工作面围岩柱状资料分析,15#煤层顶板直接顶为粘土岩,厚度1.0-1.5m ,施工时,极易垮落,掘进施工时以14#煤层做顶沿15#煤层底板掘进,采取锚网支护。为了将锚杆加固的“组合梁”悬吊于老顶坚硬岩层中,需用高强度锚索做辅助支护。根据邻近1551运、回两巷掘进巷道的支护经验,确定1552回风巷、1552回风巷皮带机头硐室,采用锚杆—钢筋网—钢带--锚索联合支护。 二、支护参数设计 ㈠采用类比法合理选择支护参数:根据15#煤层邻近巷道的支护经验,1552回风巷巷道顶锚杆选用φ16mm ×1800mm 的圆钢锚杆,间距1000mm,排距900mm ;选用1x7丝φ15.24mm ,锚固力不小于230kN 冷拔钢筋,长度4.2m 的锚索加强支护。 ㈡采用计算法校核支护参数 1、锚杆长度计算 L = KH+L 1+L 2 式中:L ——锚杆长度,m H ——冒落拱高度,m K----安全系数,取2 L 1——锚杆锚入稳定岩层深度,取0.5m L 2——锚杆在巷道中的外露长度,取0.05m 其中: H=B/2f=3.4/(2×4)=0.43m 式中:B ——巷道宽度 f ——岩石坚固性系数,取4 L = 2H+L1+L2=2×0.43+0.5+0.05=1.41m 施工时取L=1.8m 2、锚杆间距、排距a 、b a=b= KHr Q 式中:a 、b ——锚杆间、排距m Q ——锚杆设计锚固力,50kN/根; H ——冒落拱高度,取0.58m ; K ——安全系数,取2; r ——被悬吊粘土岩的重力密度,26.44kN/m 3 a=b= 44 .2643.0250 ??=1.48m

煤矿锚杆支护技术参数

煤层集中皮带机道锚杆锚索支护 参数设计及计算方法 煤层平均厚度3.5m,煤层结构简单,夹石层数1~2层,夹石岩性为炭质泥岩、泥岩、粉砂岩,厚度一般为0.20~0.40m,煤层顶板岩性为砂砾岩、粉砂岩、细砂岩及泥岩;煤层底板岩性有炭质泥岩、粉砂岩、砂砾岩。 煤层集中皮带巷断面设计为矩形,巷道宽度4.0m,高度3.2m,采用锚网梁索联合支护方式支护顶板,锚网支护方式支护巷帮。 一、巷道锚杆支护参数设计 (一)顶板锚杆支护参数确定 1、锚杆支护参数确定采用悬吊作用理论进行。 1)锚杆长度的确定 LLLL =++312L——锚杆长度,m;式中 L——锚杆外露长度,m;1L——锚杆有效长度,m;2L——锚杆锚固长度,m。3L的确定)锚杆外露长度(11LL=0.05m ,一般)0.02~0.03m(螺母厚度垫板厚度= ++11(2)锚杆有效长度L 的确定2. L的确定:采用解释法中普式自然平衡拱巷道顶锚杆有效长度2L。理论确定2L=1.8B/f 3时,f≥f——普氏系数,取4.5;式中B——巷道跨度,取4m;

L= 1.8B/f =1.6m,取1.65m L = 0.3~0.4m,取0.3m。3LLLL= 2L的确定(3)锚杆锚固长度3 0.05+1.6+0.3=1.95m,结合矿井实际,=++取因此,321L=2.0m。 2)锚杆间排距的确定 对锚杆支护巷道,考虑施工工艺通常取间排距相等,锚杆间排D按下式计算:距 DL=0.5*2=1m≤0.5 3)锚杆直径的确定 d可按下式计算:锚杆直径d=L/110=2000/110=18.2mm,锚杆直径取20mm>18.2mm 4)锚杆锚固力计算 锚杆锚固力可按下式计算: Q——锚杆锚固力,t;式中 2rDQ?KL2 K——锚杆安全系数,取2~3; L;m——锚杆有效长度,2. 3r。——视密度,t/m2rD?KLQ=3*1.60*1*1.45=69.6KN,采用直径20mm 的等强螺纹钢2锚杆通过树脂药卷锚固后,锚固力约70KN≥Q=69.6 KN,符合要求。 锚杆锚固采用树脂药卷。当顶部煤体较好时,锚杆锚固方式可端部锚固;当顶板煤体松软破碎时,采用全长锚固。 (一)煤帮锚杆支护参数确定 1)煤帮锚杆长度

煤矿锚杆支护技术规范标准设计

煤矿锚杆支护技术规范(新) ICS 73.100.10 D 97 备案号:26921—2010 MT 2009-12-11发布 2010-07-01实施 中华人民共和国煤炭行业标准 MT/T 1104—2009 煤巷锚杆支护技术规范 Technical specifications for bolt supporting in coal roadway 国家安全生产监督管理总局发布 前言 本标准的附录A为资料性附录。 本标准由中国煤炭工业协会科技发展部提出。 本标准由煤炭行业煤矿专用设备标准化技术委员会归口。 本标准由中国煤炭工业协会煤矿支护专业委员会负责起草。煤炭科学研究总院南京研究所、煤炭科学研究总院开采设计研究分院、煤炭科学研究总院建井研究分院、中国矿业大学、兖州矿业集团公司、徐州矿务集团公司、鹤岗矿业集团公司、新汶矿业集团公司、山西焦煤西山煤电集团公司、江阴市矿山器材厂、石家庄中煤装备制造有限公司、深圳海川工程科技有限公司参加起草。 本标准主要起草人:袁和生、康红普、陈桂娥、权景伟、张农、王方荣、王富奇、何清江、周明、秦斌青、晨春翔、黄汉财、赵盘胜、何唯平。 煤巷锚杆支护技术规范 1 范围 本标准规定了煤巷锚杆支护技术的术语和定义、技术要求、煤巷锚杆支护监测及煤巷锚杆支护施工质量检测。 本标准适用于煤矿煤巷锚杆支护,也适用于半煤岩巷锚杆支护。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 5224-2003 预应力混凝土用钢绞线 GB/T 14370-2000 预应力筋用锚具、夹具和连接器 GB 50086-2001 锚杆喷射混凝土支护技术规范 MT 146.1-2002 树脂锚杆锚固剂 MT 146.2-2002 树脂锚杆金属杆体及其附件 MT/T 942-2005 矿用锚索 MT 5009-1994 煤矿井巷工程质量检验评定标准

锚索支护计算

锚索支护设计技术参数 1、加强锚索长度校核,应满足d c b a L L L L L +++= 式中L ——锚索总长度,m ; a L ——锚索深入到较稳定岩层的锚固长度,m ; M MM f f d K L c a a 27.13059.127010 431.14278.17241≥≥???≥?≥ 其中: K ——安全系数,一般取2; 1d ——锚索直径,17.8mm ; a f ——锚索抗拉强度,1427.31N/㎜2; c f ——锚索与锚固剂的粘合强度,10N/㎜2; b L ——需要悬吊的不稳定岩层厚度,3.7m ; c L ——托板及锚具的厚度,0.15m ; d L ——外露张拉长度,0.25m ; M L L L L L d c b a 37.525.015.07.327.1=+++=+++= 设计取锚索长度为8.3m 2、悬吊理论校核锚索排距: L ≤nF 2/[BH γ-(2F 1sin θ)/L 1] 式中 L---锚索排距,m ; B---巷道最大冒落宽度,4.2 m ; H---巷道最大帽落高度,2m ;(最大取锚杆长度) γ---岩体容重,39.42kN/m 3(包括顶煤+直接顶) L 1---锚杆排距, 0.8m, F 1---锚杆锚固力,70 kN; F 2---锚索极限承载力, 320kN; θ---角锚杆与巷道顶板的夹角,75°;

n---锚索排数,取1。 L ≤nF 2/[BH γ-(2F 1sin θ)/L 1]=1×320÷[4.2×2×39.42-(2 ×70×sin75°)÷0.8]=1.974m 3、加强锚索数目的校核,应满足 断P W K N ?≥ 式中N ——锚索数目; K ——安全系数;2 断P ——锚索最低破断力,360kN ; W ——被悬吊岩石的自重,kN ; ∑∑???=D h B W γ 其中:B ——巷道掘进荒宽,4.2m ; D ——锚索间排距,取不大于锚索长度的1/2,取4.15m ; ∑h ——悬吊岩石厚度,3.7m ; ∑γ——悬吊岩石平均容重,24.13kN/m 3。 KN D h B W 17.155615.413.247.32.4=???=???=∑∑γ 6.836017.15562=?=?≥断P W K N 根

锚杆支护参数设计

煤巷锚杆支护参数设计方法 煤巷的突出特点就是承受采动支承压力,围岩破碎,变形量大。巷道锚杆支护设计,首先要对巷道所经受采动影响过程及影响程度进行准确的评估,对巷道使用要求和设计目标要予以准确定位。比如,是按采动影响时的支护难度设计支护,还是按照采动影响前的使用要求设计,不同的设计思想,结果大不相同。 目前,我国煤巷支护设计方法大致分为三类,即工程类比法、理论计算法及实例法。 1)工程类比法 工程类比法是当前应用较广的方法。它是根据已经支护的类似工程的经验,通过工程类比,直接提出支护参数。它与设计者的实践经验有很大关系。然而,要求每一个设计人员都具有丰富的实践经验是不切实际的。为了将特定岩体条件下的设计与个别的工程相应条件下的实践经验联系起来进行工程类比,做出比较合理的设计方案,正确的围岩分类是非常必要的。进行围岩分类后,就可根据不同类别的岩层,确定不同的支护形式和参数。 (1)巷道围岩分类方法 围岩分类方法的研究工作历史悠久,早在18世纪,在采矿及各地下工程已开始用分类的方法研究围岩的稳定性。随着采矿和人们对岩石物理力学性质认识的不断深入,国内外围岩分类研究得到了迅速发展,据不完全统计,有影响的围岩分类有五六十种之多。 a. 普氏岩石分级法 该法用岩石坚固性系数f(普氏系数)来对围岩分类,f值等于岩石的单向抗压强度除以10。坚固性系数是岩石间相对的坚固性在数量上的表现,它最重要的性质在于不论是何种抗力,以及这种抗力是如何引起的,而给予岩石相互之间进行比较的可能性。普氏岩石分级法来自实践,并且有抽象概括的程序可取,所提出的岩石坚固性系数值简单明确,到目前仍有一定的使用价值。 b. 煤矿锚喷支护围岩分类 为了适应巷道锚杆支护的需要,原煤炭工业部颁布的《煤炭井巷工程锚喷支护设计试行规范》制定了煤矿锚杆支护围岩分类,见表1。该分类综合考虑了岩石的单向抗压强度、岩体结构和结构面发育状况、岩体完整性系数、围岩稳定时间等多种因素,是一种典型的多指标分类方法。 c. 围岩松动圈分类 围岩松动圈是一个定量的综合指标,它是建立在对巷道围岩实测的基础上,几乎不作任何假设,用现场实测和模拟试验,研究围岩状态,找出围岩松动圈这一综合指标,用来作为围岩分类的依据。这一分类方法简单、直观性强、易于掌握,受到众多煤矿巷道设计与施工人员的欢迎。 经过大量的现场松动圈测试及其与巷道支护难易程度相关关系的调研之后,依据围岩松动圈的大小将围岩分成小松动圈,中松动圈、大松动圈三大类六小类,如表2所示。

锚杆和锚索支护参数的计算

一、锚杆支护参数的计算 1)锚杆长度的确定: 顶锚杆 根据悬吊理论计算: 本矿的煤层顶板属中等稳定形,锚杆须锚入稳定岩石0.35米,锚杆外露0.05米,,则锚杆的长度L=l 1+l 2+l 3=1.3+0.35+0.05=1.7 (m) 其中 L 1------顶板最大松动圈的厚度,根据已掘巷道离层分析 得1.3米 L 2------锚杆须锚入稳定岩石长度,取0.35m L 3------锚杆外露长度,0.05m 结合锚杆支护技术规范要求及我矿生产实际选定锚杆长度1.8m 2)锚杆间排距的确定: L= h K Q =1.02米,考虑巷道宽度间距取0.8米,排距取1.0米。 锚杆的抗拉力为 5.0吨,经矿技术科和安全科做锚杆拉拔力实验,锚杆的抗拉力均在5.0吨以上。 其中 Q----抗拉力,取5.0 k-----安全系数,取1.5 γ---岩石容重,取2.5T/m 3 h----顶板最大松动圈的厚度,根据已掘巷道离层分析得1.3米 考虑巷道宽度,间距取0.8米,排间取1.0米,符合理论计算要求。 二、锚索间排距的确定: L=nF 2/[BH γ-(2F 1sin θ)/L 1]

式中: L—锚索排距,m; B—巷道最大冒落宽度,3.1m; H—巷道冒落高度,按最严重冒落高度取3.6米; γ—岩体容重,取25KN/m3; L1—锚杆排距,1.0米; F1—锚杆锚固力,取50KN; F2—单根锚索的极限破断力,取210KN; θ—角锚杆与巷道顶板的夹角,85o; n—锚索排数,取2; L =2×210/[3.1×3.6×23-(2×50×sin85o)/1]=2.5m 考虑巷道宽度,间距取1.6米,排距取2.0米,符合理论计算要求。

煤矿锚杆支护技术规范(新)

煤矿锚杆支护技术规范 锚杆支护中锚固力与锚杆拉拔力区别 ①锚固力是锚杆对围岩产生的约束力,是限制围岩变形,起支护作用的力。锚杆拉拔力是锚杆锚固后拉拔实验时,所能承受的极限载荷,反映的是杆体、锚固剂、岩石粘结到一起后,锚杆破断或失效的最大拉力。 ②锚固力随着被支护围岩变形、围岩的膨胀而增大,因此锚固力是一个动态发展并不断变化的力。锚杆拉拔力是一个固定值,不随围岩变形和锚杆受力而改变。如果围岩不发生变形且不考虑杆体的松驰效应,锚固力等于初锚力。 ③锚固力检测使用安装于锚杆螺母和托盘之间的锚杆测力计,一般在锚杆安装时把锚杆测力计安好。检测锚固力是为了监测锚杆受力状况,需要进行长期观测。锚杆拉拔力检测使用锚杆拉力计,检测可以在锚杆安装完成后任何时候进行,检测锚杆拉拔力是为了查验锚杆杆体、锚固剂、岩石粘结效果。在施工中,检测锚杆拉拔力时,一般只要达到设计锚固力即可;在做破坏性检测时,则要求锚杆被拉断或锚杆被拉出才终止。 ④检查锚杆施工质量时,一般检查锚杆拉拔力。监测分析锚杆工作情况时,测锚固力。测量锚固力是为了验证支护的可靠性,为以后修改支护设计提供依据。设计和施工时,必须保证锚杆拉拔力大于杆体破断力这一基本原则,即锚杆杆体受力超过其破断力后,锚杆可能被拉断,但锚杆不能被拉出。常见错误是设计的锚杆拉拔力小

于杆体破断力。 ⑤施工、设计中锚固力与锚杆拉拔力经常混淆、混用。二者混淆原因一方面是由于一些标准、教课书说法不一,造成混乱;另一方面对二者内涵认识理解有误,辨识不清。 一、术语和定义 1、煤巷:断面中煤层面积占4/5或4/5以上的巷道。 2、半煤岩巷:断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。 3、锚杆支护:以锚杆为基本支护形式的支护方式。 4、锚杆杆体破断力:锚杆杆体能承受的极限拉力。 5、锚杆拉拔力:锚杆锚固后,拉拔试验时,锚杆破断或失效时的极限拉力(锚杆拉拔力是锚杆锚固后拉拔实验时,所能承受的极限载荷,反映的是杆体、锚固剂、岩石粘结到一起后,锚杆破断或失效的最大拉力)。 6、锚固力:锚杆的锚固部分或杆体在拉拔试验时,所能承受的极限载荷(锚固力是锚杆对围岩产生的约束力,是限制围岩变形,起支护作用的力。)。 7、设计锚固力:设计时给定的锚杆应能承受的锚固力。 8、树脂锚杆:以树脂锚固剂配以各种材质杆体及托盘(托板)、螺母与减磨垫圈等构件组成的锚杆。

现阶段锚杆支护技术发展情况简介

现阶段锚杆支护技术发展情况简介 寸录 一,技术原理介绍。 二,锚杆支护的优缺点。 三,锚杆支护技术的发展历史及国外主要产煤国锚杆支护技术概况。 四,我国锚杆支护技术的现状及改进方法。 (一),我国锚杆技术发展历史。 (二),煤巷锚杆支护快速掘进技术的缺点。 (三),锚杆支护技术的改进方法。

锚杆支护技术是现在最流行的围岩支护技术。为了更好地了解该 项技术,服务于工程技术人员和与锚杆支护技术相关产品制造者、服务提供者,本文以煤矿锚杆支护技术为例,介绍了锚杆支护技术的原理、优缺点、国内外技术状况等。另外,本文还分析了我国煤巷锚杆支护技术现存的主要问题,并结合自己的工作实 际探讨了今后锚杆支护技术的发展途径和对策。 一,技术原理介绍。 在巷道开掘后,由于岩体内部应力重新分布即围岩出现应力集中,岩体的物性状态有一个由弹性状态向塑性状态转变的过程,巷道周边围岩产生塑性变形,并从周边向岩体深部扩张,出现塑性变形区,同时引起应力向围岩深部转移,导致周边围岩松散、破碎和发生位移,从而导致巷道变形。 软岩中,岩石的膨胀和崩解主要是其所表现的主要特征。软岩围岩里多为松软的粘土质岩层,巷道开掘后,粘土岩经不同程度的浸水或风化,体积增大和相应的引起压力增大,围岩松动圈和塑性变形发展很快,给巷道稳定性带来影响,不同软岩影响程度不同即围岩性质对巷道变形和破坏有决定性的影响。所以软岩巷道 掘进时受松动圈及塑性变形的影响,巷道稳定性较差。

锚杆支护对象是围岩松动发展过程中的碎胀变形,它起到阻止变形的作用。锚杆作用于围岩松动圈或塑性区中,正常情况下,锚杆能在巷道周围被加固地段内形成一定厚度的压缩带,这不仅可防止受节理等弱面切削的岩快产生滑动,而且锚杆本身也有抗剪 销钉的作用,能有效的防止层间滑动。在这种情况下,锚固层不仅能保持自身的稳定性,而且还有可能在一定程度上承受上位岩层的载荷和抑制变形和松动。根据围岩性质和结构不同,锚杆可起到悬吊、组合梁、挤压加固拱等作用。 二,锚杆支护的优缺点。 锚杆支护技术是集理念、理论、方法、软件、材料、机具、施工工艺、监测仪器和技术规范于一体的巷道支护成套技术创新体系。现在该技术已广泛应用于煤巷、岩巷、半煤岩巷、全煤巷道、冲击地压巷道、软岩巷道、深部动压巷道、无煤柱巷道、复合和松软破碎顶板等困难条件下的支护。 锚杆支护作为一种有效的采准巷道支护方式,由于对巷道围岩强 度的强化作用,可显著提高围岩的稳定性,加之具有支护成本较低、成巷速度快、劳动强度减轻、提高巷道断面利用率、简化回采面端头维护工艺、明显改善作业环境和安全生产条件等优点,

锚杆支护规范

矿区锚杆支护技术规范 .1 本规范是专门针对潞安矿区现有生产矿井所开采的3#煤层的地质与生产条件而编制的,旨在促进潞安矿区煤巷锚杆支护技术健康发展,为矿井实现安全高效创造良好条件。 1.2 根据《潞安矿区巷道围岩地质力学测试与分类研究报告》和《潞安矿区煤巷锚杆支护成套技术研究》的结论,在潞安矿区的煤巷中可以并应积极推广应用锚杆支护技术。 指导思想是:解放思想,实事求是,因地制宜,积极推广应用。 工作原则是:以科学的理论依据为指导,以严谨的态度抓好设计、施工和管理。 1.3 本规范适用于潞安矿区以锚杆支护作为主要手段的煤巷,包括: (1) 回采巷道(运输巷,回风巷,开切眼,瓦排巷等); (2) 采区集中巷; (3) 煤层大巷; (4) 各类煤巷交岔点和峒室。 1.4 在进行煤巷锚杆支护设计前,必须有全面、准确、可靠的巷道围岩地质力学参数,包括地应力的大小和方向、围岩强度、围岩结构等。否则,不能进行锚杆支护设计。 1.5 煤巷锚杆支护设计采用动态信息设计法。设计是一个动态过程,充分利用每个过程提供的信息。设计应严格按五个步骤进行,即巷道调查和地质力学评估、初始设计、井下施工与监测、信息反馈分析和修正设计、日常监测。 1.6 煤巷锚杆支护材料的尺寸规格、力学性能与产品质量必须满足锚杆支护设计的要求,并符合煤矿安全有关规定。否则,不能下井使用。 1.7 煤巷锚杆支护施工应严格按照设计和作业规程要求进行,确保施工质量。 1.8 与煤巷锚杆支护技术有关的各级管理和技术人员,以及操作工人,都应进行锚杆支护技术培训。 1.9 本规范未涉及的煤巷锚杆支护技术问题,应按煤炭行业有关规定执行。 第二章巷道围岩地质力学评估与现场调查 2.1 巷道围岩地质力学评估与现场调查是煤巷锚杆支护设计的基础依据和先决条件,必须在进行支护设计之前完成。 2.2 地质力学评估与现场调查首先应确定评估与调查的区域,考虑巷道服务期间影响支护系统的所有因素,随后的锚杆支护设计应该限定在这个区域内。 2.3 地质力学评估与现场调查主要包括以下内容 (1) 巷道围岩岩性与强度 煤层厚度、倾角和强度;顶、底板各岩层的岩性、厚度、倾角和强度。 (2) 围岩结构与地质构造 巷道围岩内节理、裂隙等不连续面的分布,对围岩完整性的影响;巷道附近较大断层、褶曲等地质构造与巷道的位置关系,以及对巷道围岩稳定性的影响程度。 (3) 地应力

锚杆支护技术规范(正式版本)

锚杆支护技术规范(正式) 第一章总则 1为贯彻安全第一得生产方针,严格执行《煤矿安全规程》与煤炭工业技术政策,确保正确地进行锚杆支护设计与施工质量,促进煤巷锚杆支护技术得健康发 展,特制定本规范。 2 锚杆支护巷道施工必须进行设计.锚杆支护设计要注重现场调查研究,吸取国内外锚 杆支护设计、施工与监测方面得先进经验,积极采用新技术、新工艺、新材 料,做到技术先进、经济合理、安全可靠。 新采区采用锚杆支护时,要进行基础数据收集并进行锚杆支护实验工作,锚杆支护设计要组织有关单位会审,并报集团公司备案. 3 对在煤巷应用锚杆支护得有关人员(管理人员、工程技术人员及操作人员),都必须 进行技术培训。 4 在应用锚杆支护得巷道中,必须有矿压及安全监测设计。在施工中必须按设计设置 矿压及安全监测装置,并有专人负责监测. 第二章巷道围岩得稳定性分类 5采用煤巷锚杆支护技术,必须对巷道围岩稳定性进行分类,为指导锚杆支护设计、施工与管理提供依据。 6巷道分类按原煤炭部颁发得《缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案》执行。 7煤层围岩分类指标以缓倾斜、倾斜薄煤层及中厚煤层回采巷道分类指标为基本分类指标。其它条件下得煤巷(如煤层上山)稳定性分类指标,可根据具体情 况对分类指标进行相应替代,详见表1与表2。 缓倾斜、倾斜薄及中厚煤层回采巷道分类指标

第三章锚杆支护设计 8 锚杆支护设计应贯彻地质力学评估-初始设计-监测与信息反馈—修改设计等四个步 骤。 锚杆支护设计参考以地应力为基础得煤巷锚杆支护设计方法,结合锚杆支护实践,可根据直接顶稳定情况,按悬吊理论、自然平衡拱理论、组合梁理论或锚杆楔固理 论进行设计计算;亦可采用工程类比法进行设计。无论采用哪种设计方法,都 必须对支护状况进行监测,包括锚杆受力、巷道围岩表面与深部位移及弱化 范围、顶板离层等内容。根据监测信息反馈结果对设计进行验证或修改。 第9条为进行科学得锚杆支护设计,必须具备表3所要求得原始资料。巷道施工后,根据实际揭露得围岩及地质构造等情况,对有关数据进行校核,为修改与完善锚 杆支护设计提供依据。

相关主题