搜档网
当前位置:搜档网 › 炼钢转炉的氧枪系统

炼钢转炉的氧枪系统

炼钢转炉的氧枪系统
炼钢转炉的氧枪系统

毕业论文

课题名称:炼钢转炉的氧枪系统系别:机电工程系

专业班级: 05级机电一体化技术学生姓名:

指导教师:

二OO 八年五月

毕业论文任务书

指导教师:教研室主任:系主任:

开题报告

目录

摘要 (1)

引言 (2)

1 炼钢转炉氧枪系统概述 (3)

1.1氧枪系统的组成 (3)

1.2氧枪系统的参数 (3)

2 氧枪的操作系统 (3)

3 氧枪升降的变频调速控制系统 (4)

4 炼钢转炉氧枪事故提升电源 (5)

4.1 工艺要求 (5)

4.2应急电源的配置 (5)

4.3应急电源的原理设计和参数计算 (5)

4.3.1 原理设计 (5)

4.3.2参数计算 (6)

4.3. 3 应急电源的设备组成 (8)

4.4 可变频应急电源的工作状态 (8)

4.4.1 交流电源正常时的运行 (8)

4.4.2 交流电源断电时的运行 (8)

4.4.3 交流电源恢复时的运行 (8)

5 维护与点检 (8)

5.1 设备维护与检修 (8)

5.2日常点检 (9)

结论 (10)

参考文献 (11)

致谢 ............................................... 错误!未定义书签。

摘要

氧枪系统由机械和介质供应系统两部分组成。氧枪升降采用双卷扬型升降机构,在升降过程中速度是可控制的有高速和低速。氧枪升降的变频调速控制系统,是转炉控制系统中变频技术应用的另一个重点和难点。氧枪的操作可以在主控室也可以在现场,在停电或者氧枪在炉中不能提出来时要用事故电机提枪,由EPS供电。炼钢转炉氧枪电机目前多采用交流电动机,交流电源正常时由变频器供电,实现氧枪的下降、吹氧、提升的调速运行;交流电源事故停电时必须由另一套应急电源供电,紧急提升氧枪,防止发生设备事故。要保证设备的稳定运行,在一定的周期要对设备进行检修。

关键词:介质 EPS 事故电源

引言

机电一体化是机械、微电子、控制、计算机、信息处理等多种学科的交叉融合,其发展和进步有赖于相关技术的进步与发展,其主要方向有数字化、智能化、模块化、网络化、微型化。尤其在钢铁行业中,机电一体化系统以微处理机为核心,把微机、工控机、数据通讯、显示装置结合在一起。

自2007年七月份到中厚板实习以来,在炼钢工序设备点检对设备的情况有了一定的了解。炼钢工序的工艺程序为铁水到以后加入转炉对其成分冶炼,过程中加氧、氮、辅原料、铁合金原料,然后到精炼继续冶炼使成分合格,再到连铸浇成钢坯,为成品。

在下面主要介绍氧枪。氧枪电机是交流电机,双卷扬型升降机构带动滚筒使氧枪小车上升和下降,氧枪本体采用三层套管式,喷头为四孔在冶炼过程中吹氧。厂区设备为自动控制、设备,使用电脑操作,应用了PLC技术,画面与设备之间进行编程,控制设备的运行。PLC 技术在各个行业中得到了广泛的应用,为生产提供了方便。

1炼钢转炉氧枪系统概述

1.1氧枪系统的组成

氧枪系统由机械和介质供应系统两部分组成。机械设备包括有:两台氧枪横移车和两台氧枪升降车(左右装配)。正常生产时,一台工作(位于转炉中心上方),一台备用(位于待机位),交替使用。介质供应系统包括:氧枪冷却水、氧气、氮气阀门站及管道。

氧枪升降采用双卷扬型升降机构,交流电机带动卷筒减速机为二级减速,钢丝绳装有张力传感器,在张力过高或过低时报警氧枪不能升降。氧枪在升降过程中速度是可控制的有高速和低速。氧枪电机连减速机两侧,使用液压推动制动器,工作时同时打开和抱死。还装有事故电机,在电源发生故障时备用EPS备用电源自动投入。进行事故提枪。氧枪横移车行走采用交流电机驱动,在工作位设有定位锁紧装置。

1.2氧枪系统的参数

采用双卷扬升降装置机构,卷扬能力:14.5t

卷筒直径:ф630mm

减速机:HH121B3-2

速比:34.6(正常)、99.2(事故)

氧枪横移车装置参数:

负载:30吨

行程:4000mm

定位装置由电液推杆使其定位,保证了冶炼过程中枪的准确位置。

2氧枪的操作系统

氧枪的操作系统为全自动操作,本系统的监控采用了西门子公司的S7系列PLC控制,每座转炉的氧枪倾动系统使用一套PLC控制。主操作室设在主控制室,设有S7-400PLC主站、多个远程I/O站以及HMI操作站。整个系统接入转炉自动化控制系统的100M光纤环网之中,实现与其他系统间的信息交换。

在程序中倾动有操作外部连锁条件:

1 升降烟罩位于下限时,转炉不能倾动;

2 氧枪位于待吹位以下时,转炉不能倾动;

3 倾动机构润滑站不正常时,转炉不能倾动。

倾动本身的条件还有变频器正常,按钮指示灯显示正常,这些在程序中都作为倾动的条件,与氧枪的连锁,在炉子垂直时才能下枪,钢丝绳张力没报警。

氧枪有四种控制方式:计算机、自动、手动、机旁手动。

计算机:由二级传送氧枪高度设定值,由PLC自动完成;

自动:操作工通过键盘给出氧枪位置设定值,PLC自动完成;

手动:操作工按画面的按钮;

机旁手动:用于紧急处理事故,有优先选择权。

因此在主控室就可以对氧枪下枪进行确认,对它的位置有准确的反馈信号显示在画面上,氧枪在整个行程有8个点分别为最低吹氧点、换枪点、上变速点、等待点、开闭氧点、下极限点、开闭氮点、最低吹氮点。这8个点使氧枪在下降和上升过程中对氧、氮的开闭进行控制,在氧枪的主电机卷筒一侧由凸轮控制器的限位进行控制由编码器进行定位反馈给主控室。氧枪也可以在现场进行控制,在程序出现问题时把选择开关打在现场就可以操作了,现场也可以对枪的进行快速和低速提升,在倒枪过程中要先把横移小车解锁,横移到位要进行锁紧。在停电或者氧枪在炉中不能提出来时要用事故电机提枪,它是由EPS供电,EPS是由交流电变直流电再由直流电变交流电使氧枪在停电时提枪。在正常生产的情况下事故电机是不工作的。

3氧枪升降的变频调速控制系统

氧枪升降的变频调速控制系统,是转炉控制系统中变频技术应用的另一个重点和难点。氧枪升降是典型的位能负载,靠钢丝绳牵引,按照炼钢工艺专业的要求,氧枪在升降过程中要实现慢速到快速以及快速到慢速的转换,在待吹点和吹炼点均要求准确停车。尤其是在吹炼点,氧枪的枪位直接影响到炼钢的质量。因此,应用变频器控制氧枪升降是氧枪调速控制系统的理想之选。下面以唐山中厚板材钢铁公司120吨转炉为例,说明ABB、ACS800系列变频器在氧枪升降设计中的应用:

唐山中厚板材钢铁公司120吨转炉设有2套氧枪,互为备用。每套氧枪升降系统由一台YZPFM315M-6 110KW交流电动机传动,在生产过程中当工作氧枪发生故障时,可快速通过横移换枪等操作,使用备用氧枪继续生产。当氧枪系统停电时,可自动切换到EPS将氧枪提起,并且还能使两台变频器实现对应和交换控制。实现氧枪升降系统联锁条件较多,是转炉控制系统中最重要的部分,其工作程序和联锁控制是通过计算机控制系统(PLC)实现的。

同样,为了抑制电源侧过电压以及变频器对其它设备的高频干扰,减少电流畸变,在变频器输入侧配有进线电抗器,在变频器输出侧配有输出电抗器。

变频器与计算机控制系统之间的信号与数据传输同样采用了国际开放式的DEVICE NET网络进行通讯,而不是采用以往常用的控制电缆硬线连接的方式,这样,节省了许多控制电缆,而且在以后的调试工作中也证明了这种通讯方式大大方便了变频器与计算机控制系统之间的信号采集与数据传输。

氧枪实际枪位的检测由脉冲编码器和计算机系统高速计数模块实现,在现场设一个氧枪上极限接近开关检测氧枪换枪位,以确定高速计数模块计数的起始点及枪位校验点。

交流变频技术在转炉调速控制系统中的应用越来越广泛,具有极大的应用潜力,经济效益非常客观。目前在我国许多中小型转炉的自动化控制水平还不是很高,如有条件对这些转

炉进行交流变频器与计算机(PLC)控制系统相配合的技术改造,其社会效益、经济效益都是十分巨大的。

4炼钢转炉氧枪事故提升电源

4.1 工艺要求

炼钢转炉氧枪电机目前多采用交流电动机,交流电源正常时由变频器供电,实现氧枪的下降、吹氧、提升的调速运行。交流电源事故停电时必须由另一套应急电源供电,紧急提升氧枪,防止发生设备事故。

根据中厚板厂炼钢转炉的工艺要求,在交流事故停电时应急电源需要供电的负载为:

1、氧枪电机1台,电压380V,容量55kW;

2、氧枪抱闸电机1台,电压380V,容量0.33kW;

3、转炉抱闸电机4台,电压380V,容量0.45kW×4=1.8kW;

4、事故控制电源,电压380V,容量2.4kW;

5、要求应急电源的备用时间为1小时。

应急电源的工作情况有以下2种情况:

当转炉正在炼钢吹氧时,交流电源突然停电,应急电源中的可变频逆变器应首先输出给氧枪电机使其处于堵转状态,同时应急电源中的工频逆变器输出事故控制电源,给氧枪抱闸电机供电,松开氧枪抱闸,然后紧急提升氧枪到最高位。因为炼钢时,转炉已经在零位,应急电源不需给转炉抱闸电机供电。

如转炉正在出钢时,交流电源突然停电,应急电源中的可变频逆变器应输出给转炉抱闸电机,松开转炉抱闸,转炉靠自重倾转回到零位。因为出钢时,氧枪已经在最高位,应急电源不需给氧枪电机供电。

4.2应急电源的配置

根据上述工艺要求,应急电源的配置应为:

1、75kW可变频逆变器1台(考虑氧枪最大负载情况,过载能力150%,60s);

2、3kVA工频正弦波逆变器1台

(按氧枪抱闸电机全压启动及交流接触器线圈最大吸合功率考虑);

3、充电模块2台(输出电流按电池容量的10%计算);

4、免维护铅酸蓄电池1组 (电池容量按负载电流和后备时间计算) 。

4.3应急电源的原理设计和参数计算

4.3.1 原理设计

因为在交流电源正常时,氧枪电机由一台变频器供电,控制电源、氧枪抱闸电机、转炉抱闸电机都是由交流电源供电,只有交流电源停电时,氧枪电机、控制电源、氧枪抱闸电机、转炉抱闸电机才由应急电源供电,所以应急电源设计成离线式。

氧枪电机变频器和应急电源的可变频逆变器分别通过两台输出交流接触器给氧枪电机供电,两台接触器由操作连锁系统控制,接触器线圈分别由交流电源和应急电源中的工频正弦波逆变器供电,交流电源正常时,氧枪电机由原控制系统控制工作,交流电源事故停电时在机旁箱操作事故氧枪提升按钮和事故松转炉抱闸按钮。氧枪提升到上极限自动停止,转炉倾转到零位停止。

4.3.2参数计算

1、可变频逆变器技术参数

可变频逆变器采用西门子矢量型逆变器,其电气参数为:

输入:DC510V(-15%)~650V(+10%)

输出:0~3AC380

额定频率

输入:直流

输出:0~50Hz

额定电流

输入:174A

输出:146A

过载电流:198A

过载时间:60S

2、工频正弦波逆变器技术参数

直流输入电压:180~300V

直流输入电流:13.6A

交流旁路输入电压:380V±15%

交流旁路输入电流:4.5A

切换时间:≤5ms

交流输出电压:380V±3%

交流输出电流:3.6A

过载能力:120% 1min;150% 10s;200% 1s

3、逆变器容量核算

a)可变频逆变器容量核算

氧枪电机容量为55KW,额定电流约110A,考虑氧枪刮渣过负荷情况,电流1.5倍为165A <198A(逆变器过载电流),故逆变器容量能够满足。

b) 工频正旋波逆变器容量核算

该逆变器负载是氧枪抱闸电机(直接启动)和控制电源,氧枪抱闸电机容量为0.33kW,额定电流约0.66A,直接启动电流按8倍计算为5.28A,逆变器额定输出电流为3.6A,过载1.5倍电流为5.4A>5.28A。

控制电源的负载为氧枪电机、氧枪抱闸电机、转炉抱闸电机输入接触器线圈,因为它们不是同时工作,所以可以按最大线圈的吸合功率考虑,氧枪电机输入接触器为250A,线圈

吸合功率为1430W,电流为1430W/220V=6.5A,吸合时间0.5s;而逆变器过载能力:200% 1s,既容许电流为3.6×2=7.2A>6.5A。

因为氧枪抱闸电机启动和接触器操作不是同时进行的,所以可以按最大负载考虑,由以上计算可以看出逆变器容量可以满足。

4、电池容量和串联只数的计算

a) 电池容量计算

电池组是当交流事故停电时,作为2台逆变器的输入电源为负载提供能量,电池组的容量由逆变器输出的最大负载电流和持续时间决定。

由西门子逆变器技术参数可知:额定交流输出电流为146A时,直流输入电流为174A,那么氧枪电机工作在额定电流110A时,直流输入电流为110A×174A/146A=131A。

由工频正弦波逆变器技术参数可知:在额定情况下,逆变器直流输入电流为13.6A。因此2台逆变器总的直流输入电流为144.6A。既电池组需要提供的最大持续电流为144.6A,而持续时间为60min。根据这两个数据就可以计算电池组的容量。

按恒流放电计算电池组容量,已知条件为:

单只电池额定电压:12V

单只电池放电后的截止电压:10.8V

恒流放电电流:144.6A

放电持续时间:1h

放电容量为144.6A×1.0h=144.6Ah

由电池放电曲线可以得出1h对应12×J20曲线,再由电池容量曲线可以得出容量60%;设所求电池容量为C,按下面公式计算:

60%×144.6=100%×C

C=100×144.6/60=241Ah 故选240Ah电池。

b) 电池串联只数计算

串联只数N取决于逆变器输入直流电压的最大和最小允许值。不间断电源在正常运行时,系统处于浮充电状态,电池只数应为:

N=Ue/6Uf(12V/单只电池)

式中:N为蓄电池组串联只数

Ue逆变器输入或变频器中间直流回路额定电压

Uf单体电池的浮充电电压

以12V/单只电池为例,单体电池的浮充电压Uf= 2.25V,单只电池的浮充电压Uf=13.5V。

西门子逆变器的输入电压为:

Ue=510~650V±10%, 即Ue(min)=510V﹡

650V和715V是逆变器能正常工作的电压上限和下限值,取平均值:Ue=(459V+715V)/2=587V。

则N=Ue/6Uf=587V/6×2.25V=43.48只。取N=42只。

浮充电时,电池组端电压Ud=42×2.25V×6=567V。电压在设备允许范围内。

4.3.3 应急电源的设备组成

应急电源的组成:

1、断路器:1QF:交流输入断路器;2QF:工频逆变器输入断路器;3QF:工频逆变器输出断

路器;QS:可变频逆变器输入开关;

2、接触器:1KM:交流输入接触器;2KM、4KM:可变频逆变器输出接触器;3KM:变频器输出

接触器(用户设备); 5KM:转炉抱闸电机输入接触器(用户设备);

3、 TR:隔离变压器;

4、 CM1、CM2:高频开关充电模块;

5、 DC1、DC2:免维护铅酸蓄电池组;

6、1NB:可变频逆变器;

7、 2NB:工频逆变器;

8、VF:变频器(用户设备)。

4.4 可变频应急电源的工作状态

4.4.1 交流电源正常时的运行

当交流电源正常供电时,充电模块对电池组进行浮充电,同时2NB逆变器由交流供电旁路输出(注:2NB输入电源以交流优先),为控制电源供电;1NB逆变器处于热备待启动状态,电机由用户变频器供电。

4.4.2 交流电源断电时的运行

当交流电源断电时,1KM接触器断开,充电模块停止工作;2NB逆变器输入电源由交流切换到电池组供电,保证外部控制电源不间断;同时外部连锁系统停电启动信号(用户提供)启动1NB逆变器,输出接触器3KM断开,2KM接通,用户电机由1NB供电。此时1NB,2NB的运行是靠电池组放电来维持的,电池组对逆变器提供一个稳定的直流电压,因时不会因交流电源断电而影响负载工作。

4.4.3 交流电源恢复时的运行

在交流电源恢复正常时,应急电源可不需人工操作便可自动重新启动,充电模块开始对电池组补充充电,这时电源恢复到正常运行状态,等待下次使用。

5维护与点检

5.1 设备维护与检修

要保证设备的稳定运行,在一定的周期要对设备进行检修,磨损的部件进行更换,阀门的检查与更换,以保证下一周期设备的稳定运行。在检修中要对倾动氧枪电机紧固,变频柜端子紧固,吹扫,对变频器开盖检查。摇炉主令控制器进行清洗,抱闸进行调节。

氧枪行程的8个点进行定位,根据炼钢的工艺要求对点的高度调整。电机编码器要进行检查,是否松动。在年修时要对老化的电缆进行更换,电机要进行摇测绝缘阻值,确认电机的正常使用。

在生产中出现问题而查不出来,可以通过PLC在程序中找到哪个条件没满足,比如说转

炉倾动没有动作了,电气检查正常,操作地点选择正确,指示正常电源也有,就是炉子不动,就可以把主电源先断开,在操作台上摇炉看模块的显示正常,配合程序检查哪个条件没有满足。

5.2日常点检

点检员的日常工作就是对设备进行检查,在设备出现问题之前检查出问题,排除隐患,保证正常的生产。每天对设备要看、听、闻、摸,准确了解运行情况。

电机要听有没有刺耳的声音,温度是否高,地脚螺栓有无松动,轴承的震动情况。对于倾动要看电机运转情况,抱闸的磨损,电机要保持清洁,防止杂质进入电机,用锤敲检查地脚有无松动,电机声音正常,温度小于65度。制动器动作灵活,可靠,制动轮磨损在控制范围内。主令控制器控制准确,旋钮动作灵活。

减速机润滑是否良好,油路畅通接头密封良好,运行平稳,无异常噪音和振动,各轴承油隙应在控制范围内。

氧枪抱闸检查最重要,防止溜枪,主副抱闸同时动作,检查限位的准确度,对刮坏的接近开关及时进行更换,尤其是在温度过高的地方限位容易烧坏。横移车有锁紧装置,在经过改造后锁紧信号准确,没有出现问题,经常的对不合适的设备进行改造,方便我们的维修,保护设备。

氧枪事故电机每个班都要试一次,防止停电时出现问题,对抱闸的松紧程度进行调节。

结论

机电一体化技术在钢铁行业中已经得到了广泛的应用,自动化技术的普及逐步的代替人力资源,节省了人力,为生产的稳定可靠运行提供了保障,电气系统的维修也方便了许多。机电一体化技术的发展在以后的企业中发展的会更快。

交流变频器在转炉炼钢转炉控制系统中,主要应用于转炉倾动、氧枪升降、一次除尘的风机运行、散状料给料机下料、运输车辆的行走等生产过程,近几年在炼钢车间大型吊车的行走控制中,也逐步使用了交流变频器。交流变频器的使用除了大量节约电能外,也极大地提高了转炉生产的安全可靠性。若交流变频器与基础级计算机(PLC)系统联网配合使用,效果会更好。

参考文献

[1] 乔世民主编.机械制造基础[M].北京:高等教育出版社,2006

[2] 童林毅主编.免维护变频型交流不停电电源.北京:中国电力出版社,2001

[3] 刘光源主编.电工技能训练.北京:中国劳动社会保障出版社,2001

[4] 李雅轩主编.模拟电子技术.西安:电子科技大学出版社,2003

[5] 芮延年主编.机电一体化系统设计.北京:机械工业出版社,2001

转炉氧枪装置设计

转炉氧枪装置设计 摘要:通过对转炉氧枪装置设计过程介绍,分析了氧枪横移车、升降小车以及氧枪刮渣器设计中的要点,提出了针对氧枪装置在保证转炉炼钢生产过程的连续性、可靠性以及安全性和维护便利性等方面的一套全新的设计方案,使氧枪装置使用维护性能得到较大提高,所提到的新型结构氧枪已在多个转炉炼钢生产现场得到验证。 关键词:事故提升系统;防坠枪装置;快速换枪;可控力矩刮渣器 氧枪装置用于向转炉内吹氧,使钢水脱碳;并加大冶炼强度,实现快速炼钢。 氧枪装置是转炉炼钢系统连续生产的重要在线设备,设置于转炉上方。氧枪工作时需插入转炉内吹氧,处于高温、液态渣包裹之中,因此,其对设备的运行安全性、可靠性、连续性设计提出了很高要求,因而设计中需要对这些需求提出切实可行的解决办法,以满足其复杂控制需求和适应其所处的恶劣工况。 氧枪装置设计依据来自于工艺专业的任务书,设备设计首先需要明确的是运行负荷,接下来进行方案设计、结构设计、施工图设计。 运行负荷:卷扬升降负荷应考虑升降小车、氧枪、金属软管、管内积水、枪体挂渣、刮渣器的刮渣力以及氮封塞、钢绳重量;横移车运行阻力按横移运行设备重量的0.025%计算[1];横移锁紧装置的锁紧能力按运行阻力的4倍考虑;刮渣力按2~3t考虑。 横移车为一钢结构小车,分为上下两层,上层设置有升降卷扬装置及钢绳平衡器,下层设置横移传动装置,上下层之间由活动导轨和钢结构相连。升降卷扬机设有主传动和事故传动两套传动系统,通过离合器实现转换;卷扬控制设有两台绝对型编码器(一用一备、互相比照)控制升降行程、主传动电动机尾部装有增量型编码器控制升降速度;另装有钢绳张力传感器、位置行程开关等电控元件。钢绳平衡器吊挂在上层平台下部,既可调钢绳安装误差,又可在小车升降过程中平衡两根钢绳变形差,使两根钢绳受力始终一样。 事故传动是独立于主传动之外的事故提升系统,当出现车间停电、主电机故障、制动器电液推杆失效等事故时,可利用事故提升系统安全地将氧枪提出炉外,避免更大的事故发生。我们设计的事故提升系统形式为:在卷扬减速机的高速轴上设置气动离合器,增加一级减速,事故电机传动,EPS电源供电,制动器设置开闸气缸,采用气、电结合方式控制。事故提升时,控制室操作人员按下事故提升按钮,离合器电磁阀由UPS电源给电,离合器合上,舌簧开关给出信号后,事故电机给电启动,电机力矩建立起来后,制动器气缸用电磁阀由UPS电源给电,气缸将制动器打开,开始提枪。将氧枪提出炉口一定高度(由2台事故提枪位接近开关判断)后,制动器电磁阀断电(制动器抱闸),然后事故电机停电。最后离合器电磁阀断电复位。整个过程一键自动完成。

转炉炼钢关键技术

4.3.2 炼钢关键技术 4.3.2.1 转炉炼钢关键技术 ——2006~2010年推广和开发的技术 ●转炉少渣、溅渣相结合的冶炼技术 主要是铁水三脱,脱磷转炉操作后,脱碳转炉渣量将减少到50kg/t以下时,仍进行溅渣护炉的技术。包括新条件下炉渣改质技术、喷枪结构优化技术、与喷补结合技术、全留渣技术等。 ●转炉内熔融还原合金化冶炼技术 脱磷炉加锰矿,脱碳炉加铬矿等矿物直接还原合金化低成本冶炼技术。 ● 转炉长寿复吹技术 改进底吹透气元件结构小材质,优化工艺,100%复吹,高炉龄技术。 ●转炉冶炼特钢技术 在优化炉料质量基础上,实现过程、终点和精炼精确控制的转炉一精炼结合冶炼各类中高合金钢的高效优质生产技术,其中转炉不锈钢冶炼系统技术为开发重点。 ●转炉全方位信息检测与控制技术 包括转炉钢水成分温度连续直接测定(如激光或红外光导测定、直接测定传感器等)与转炉闭环控制技术;转炉冶炼过程与终点智能精确控制技术(含终点静态、副枪和炉气分析动态控制);转炉声纳化渣检测技术;转炉下渣检测与控制技术 ● 转炉高强度供氧技术

供氧强度≥5 m3/min.t,供氧时间≤10min的系统工艺、装备技术。氧枪头结构优化与长寿是技术的关键,也要配合优化炉型。 ● 转炉煤气、蒸气大回收量技术 实现煤气回收≤100m3/t,蒸汽回收≥100kg/t,蒸汽完全满足钢厂各种需求(包括RH、VD的蒸汽)有余,供应其他厂。 ●转炉干法除尘技术 自主开发高效、易控、低成本的干法除尘技术 ● 转炉低排放控制技术 主要是水零排放、烟气全除尘(消灭无组织排放)、无渣与渣尘基本上全利用等系统技术。 其中转炉长寿复吹技术、转炉冶炼特钢技术、全方位信息检测与控制技术、转炉煤气与蒸汽大回收量技术、转炉干法除尘技术、转炉低排放控制技术是该阶段主导技术 ——2011~2020年开发技术 ●转炉高固体料(或全固体料)熔炼技术 适应废钢供应量充裕后,提高废钢比降低生产成本,比电炉更高效的系统技术。 ● 转炉"零排放"清洁生产技术 在低排放控制技术上,进一步做到气、水、固废完全无排放,高固体熔炼时,固废中可利用元素回收利用等系统技术。经济高效的厂房顶三级除尘装备与技术是研发的要点。 ●转炉全自动智能控制技术

氧气转炉炼钢工艺及设备

教学大纲 一说明 1、教学要求: 本教材根据氧气转炉炼钢生产操作的特点,力求理论联系实际,通俗易懂,使其具有先进性、实用性。 通过本书的学习,使学生掌握氧气转炉炼钢的一些基本知识。 2、教学内容的确定: 根据专业的需求,将全部讲解。 3、教学中应注意的问题: ⑴系统地、全面地、有重点地、难易适中地将本书的内容讲给学生; ⑵学习完每章节后,要通过习题练习、巩固和加强学生所学的内容。进行基础教育的同时,注重培养学生的素质,提高学生独立解决问题的能力; ⑶除了要通过作业了解学生对所学内容的掌握情况外,还要通过考试对学生进行考查与考核。 二教学内容 第一章氧气转炉炼钢用原材料 教学目标:通过本章学习,使学生掌握氧气转炉炼钢用金属材料、非金属材料。教学重点:氧气转炉炼钢用金属材料的性能、造渣材料、氧化剂、冷却剂、增碳剂的性能 教学难点:用金属材料、生产石灰常见的几种石灰煅烧窑 教学内容: 1.1 金属料 1.2非金属料 第二章氧气顶吹转炉炼钢工艺操作 教学目标:通过本章学习,使学生掌握吹炼一炉钢金属成分和炉渣成分的变化规律及吹炼过程的三个阶段、装入制度、供氧制度及主要参数和供 氧操作、氧气流股的运动规律、枪位对吹炼过程的影响、炉渣对炼 钢操作的影响、造渣方法、渣料加入量和加入时间的确定、炉渣的 形成、泡沫渣在炼钢过程中的作用、渣量计算、白云石造渣、转炉

炼钢温度控制及确定、转炉炼钢热量来源、冷却剂的种类及效应和 用量确定、物料平衡、热平衡、终点碳的控制方法和判断及温度判 断、脱氧方法及操作、影响合金吸收率的主要因素、铁合金加入量 计算、吹损与喷溅、操作事故与处理、开新炉前的准备工作及炉衬 烧结过程、烘炉法、出刚挡渣技术、某些钢种生产。熟悉钢与铁的 区别。 教学重点:吹炼一炉钢金属成分和炉渣成分的变化规律及锤炼过程的三个阶段、装入制度、喷嘴的类型和作用、氧气流股的运动规律、枪位对 吹炼过程的影响、供氧制度的主要参数和供氧操作、炉渣对炼钢操 作的影响、造渣方法、渣料加入量和加入时间的确定、成渣过程、 加速石灰熔化的途径、泡沫渣形成的基本因素、吹炼过程中泡沫渣 的控制、渣量计算、白云石造渣的目的、确定白云石的加入量、转 炉炼钢出钢温度的确定及过程温度和终点温度的控制、转炉炼钢热 量来源、冷却剂的种类及效应和用量确定、物料平衡、热平衡、终 点碳的控制方法和判断及温度判断、高拉补吹法、结晶定碳法、耗 氧量和供氧时间作参考、脱氧方法及操作、影响合金吸收率的主要 因素、铁合金加入量计算、吹损及其组成和喷溅及其控制与预防、 事故产生的原因和处理方法、炉衬烧结过程、烘炉法、出刚挡渣的 目的和方法、挡渣球法挡渣操作、碳素钢、16Mn、硬线钢、H08、 硅钢生产 教学难点:金属和炉渣的成分变化规律、喷嘴的类型与作用、流股的运动规律、供氧操作、渣料加入量和加入时间的确定、成渣过程、吹炼过程中 泡沫渣的控制、渣量计算、确定白云石的加入量、出钢温度确定、 过程和终点温度确定、冷却剂用量确定、热平衡和物料平衡计算、 终点碳和温度的判断、脱氧操作、铁合金加入量计算、吹损的组成、 常见事故的处理方法、挡渣球法挡渣操作、碳素钢、16Mn、硬线钢、 H08、硅钢生产 教学内容: 2.1一炉钢的吹炼过程 2.2装入制度 2.3供氧制度 2.4造渣制度 2.5温度制度 2.6终点控制 2.7脱氧合金化

转炉炼钢厂设计中的先进工艺及节能环保措施

转炉炼钢厂设计中的先进工艺及节能环保措施 发表时间:2018-12-13T10:01:27.253Z 来源:《红地产》2017年2月作者:罗圣[导读] 结合国内120t转炉炼钢厂的设计,简单介绍了转炉炼钢设计中“一罐制”铁水供应、副枪技术、干法除尘等国产化的先进工艺和流程。从而使得转炉炼钢厂工艺流程更加合理,技术更加先进,经济效益更加明显,使得转炉炼钢厂成为一个安全、环保、低能耗的绿色工厂。 引言 国内某钢厂为了响应国家钢铁产业发展的政策,确保钢铁工业升级和实现可持续发展,防止低水平重复建设,决定淘汰原来落后的小转炉炼钢车间,新建120t转炉炼钢车间。新建120t转炉以“先进、合理、安全、经济”为设计原则,立足于国内设计、制造,采用国内外大、中型转炉的成熟、先进的技术和合理工艺流程。 1 工艺流程及主要设备 1.1 工艺流程 本工程设计中采用的工艺流程为:铁水炉外脱硫→顶底复吹转炉→钢包吹氩→LF精炼炉→大矩形坯连铸机,转炉炼钢车间采用全连铸的生产工艺,连铸坯通过辊道热送至轧钢厂,使该车间达到国内外同行业的先进水平。 1.2 主要设备 本工程设计的主要工艺设备有:1座铁水倒罐站、1座单吹颗粒镁铁水脱硫站、1座120t顶底复吹转炉、1座吹氩站、1座LF精炼炉、一台R12m五机五流大矩形坯连铸机。主要设备采用国内外先进的技术和工艺,设计、制造全部在国内完成,有效的降低了工程造价。 2 设计特点 2.1 “一罐制”铁水供应制度铁水运输和供应有采用鱼雷罐车的,有在转炉炼钢厂设置混铁炉的、也有铁水罐配合倒罐站的。本次设计中采用铁水罐方式对转炉进行铁水供应,且高炉、转炉采用同一种铁水罐,即“一罐制”铁水供应工艺。这种铁水罐在140t标准铁水罐的基础上将出铁口适当加长,以便于铁水能兑入转炉。采用铁水供应“一罐制”及铁水倒罐站而取消了混铁炉由如下几个有点:(1)有效的简化了工艺流程,紧凑了总图布置;(2)降低了能耗、减少了铁损、减小了烟尘污染;(3)大大降低了工程投资;(4)高炉炼铁车间和转炉炼钢车间采用同一种铁水罐,有利于生产操作和生产管理。 2.2 转炉系统 转炉是转炉炼钢车间的主体设备,设计的好坏直接影响整个炼钢工序的流畅。 2.2.1转炉的特点 (1)采用顶底复吹的工艺,氧枪顶吹氧气,炉底透气元件吹入N2和Ar,促进转炉内冶金反应,抑制吹炼过程中的喷溅,缩短吹炼时间。 (2)设计中转炉的炉型采用锥球型,冶炼中有较好的动力学特性。 (3)转炉倾动机构按照全正力矩设计,抱闸松闸后转炉可以依靠其自重自行复位。 (4)转炉炉口、炉帽、托圈、耳轴均采用水冷结构,以便于提高这些关键部位的寿命,减少维修工作量。 (5)炉体采用整体结构,转炉修炉采用简易上修方式。新炉炉衬的重量不到350t,专业筑炉人员3~4天就能完成筑炉工作。较上修方式由如下几点优点:①省去1台修炉塔,减少了设备费用;②平台上不需要布置修炉塔的存放位置,简化了平台,减小了平台荷载,从而降低了工程造价;③汽化冷却烟道可以不设置移动段,省去了一台移动台车,减少了设备费用;④整个修炉工艺变得简单、快捷。 (6)采用炉腹风冷。设计中通过非传动侧旋转接头引一路空气进入托圈,通过托圈上设置环管及喷嘴对转炉本体和托圈之间的炉体本身进行强制风冷,以改善炉体的热变形,延长炉体的寿命。 2.3 副枪系统 为了进一步提高转炉冶炼终点目标命中率,实现自动化炼钢,同时减轻工人的劳动强度,缩短冶炼周期,提高转炉生产能力。我们在设计中配备了副枪装置,这套装置全部为我设计院在以往引进副枪的经验基础之上设计开发的。 2.3.1设备组成 副枪的主要组成部分:副枪本体、副枪提升系统、升降小车、导轨、旋转框架、副枪导向装置、探头自动安装装置、探头拆卸装置、探头收集槽、刮渣器及密封帽等。 2.3.2结构型式 本次设计的副枪为结构型式采用旋转式,副枪系统布置在氧枪对侧。有两个旋转支点,1点布置在散状原料高位料仓平台边缘,1点布置在平台梁侧面。 这种布置型式的优点:(1)采用旋转式,故探头装卸位和测试位分别布置在两个不同的位置,从而有效降低了副枪的设备高度。同时,副枪上支撑点在散状原料高位料仓平台上,也没有增加高跨厂房的高度。(2)副枪可以从探头装卸位旋转到测试位,当副枪在探头装卸位时给氧枪的运输留了足够的空间。(3)副枪旋转增加二次定位销,使副枪的定位更精确。 2.4 除尘系统 2.4.1一次除尘 一次除尘采用干法除尘。以前,国内转炉一次除尘主要以湿法除尘(OG法)为主,但随着对环境和能耗要求的越来越高,许多厂逐步采用干法除尘。干法除尘的主要由蒸发冷却器、静电除尘器、ID风机、切换站和放散烟囱、煤气冷却器和输灰系统等设备组成。干法除尘的流程如下:

转炉氧枪设计方案

广青金属有限公司 65T转炉φ180氧枪及氧枪喷头设计方案 山东崇盛冶金氧枪有限公司 2012年2月 65T转炉φ180氧枪及氧枪喷头设计方案

简介 山东崇盛冶金氧枪有限公司,系冶金氧枪及喷头的专业研究生产单位。位于中国潍坊高新技术产业开发区。技术力量雄厚,技术装备先进,检测手段齐全。我公司在转炉用氧枪设计方面有丰富的设计和制造经验,例如:宝钢300吨转炉炼钢φ406氧枪喷头,武钢三炼钢250吨转炉用φ355锥度氧枪及喷头,马钢300吨转炉用φ355锥度氧枪及喷头,济钢210吨转炉用φ355氧枪及喷头,新余三期210T 转炉炼钢φ325氧枪及喷头,上海罗泾150吨转炉炼钢φ299氧枪及喷头,河北承德钢铁、普阳钢铁、宁波钢铁、天铁、安阳钢铁、通化钢铁等150吨转炉炼钢φ299氧枪及喷头,目前均正常使用,效果良好。现国内120吨以上转炉用氧枪80%由我公司设计制造。 公司秉承“以人为本,科技领先”的发展战略,技术力量雄厚,拥有世界先进水平的科研机构、精良的机械加工设备及国内一流的检测设施,最大程度上保证产品最佳的使用性能。 65T转炉φ180×1孔喷头设计方案

一、设计工况参数: 1、出钢量:~65吨/炉 2、现场操作氧流量:~4200Nm3/hr 3、现场操作供氧压力:0.85~1.0Mpa (阀后压力) 4、纯吹氧吹炼时间:13~15min 5、冷却水压力:≥1.2MPa 6、进出水温差≤27℃(水温差根据现场实际情况要有所差异) 7、氧枪喷头形式:1孔拉瓦尔孔喷头 二、喷头参数设计 2.1马赫数的选择 流体力学中表征流体可压缩程度的一个重要的无量纲参数,记为,定义为流场中某点的速度v同该点的当地声速c之比,即=v/c, 在可压缩流中,气体流速相对变化dv/v同密度相对变化之间的关系是dρ/ρ=-2dv/v,即在流动过程中,马赫数愈大,气体表现出的可压缩性就愈大。另外,马赫数大于或小于1时,扰动在气流中的传播情况也大不相同。因此,从空气动力学的观点来看,马赫数比流速能更好地表示流动的特点。按照马赫数的大小,气体流动可分为低速流动、亚声速流动、跨声速流动、超声速流动和高超声速流动等不同类型。 马赫数就是气流速度与当地温度条件下的音速之比: M=U/a 式中:U为气流速度m/s a为在当地温度下的音速,单位m/s 氧枪的供氧压力的大小是由喷头的出口马赫数确定的,氧气的压力能转化成

炼钢厂转炉氧枪UPS方案

目录 一、转炉应急提枪装置供电系统的重要性 (1) 二、UPS电源系统 (1) 三、转炉应急提枪装置供电系统采用UPS是最佳选择 (1) (一) 可靠性: (1) (二) 设计思想: (1) 四、方案一:UPS系统直接为事故提枪电机供电 (2) (一) 技术方案 (2) (二) 配置及外形尺寸 (1) 五、方案二:UPS通过变频器为提枪电机供电 (1) (一) 技术方案 (1) (二) 配置及外形尺寸 (2) 六、艾默生Hipulse系列UPS的技术性能 (3) (二) 艾默生Hipulse系列UPS技术特点 (3) (三) 艾默生Hipulse系列UPS主要功能 (4) (四) 艾默生Hipulse系列UPS性能指标 (4) 七、Hipulse系列UPS的报价 (5) (一) 方案一:600KVA UPS系统直接为事故提枪电机供电 (5) (二) 方案二:UPS通过变频器为提枪电机供电 (5) 附图:UPS盘柜布置图

一、转炉应急提枪装置供电系统的重要性 转炉应急提枪装置的供电系统极其重要,一旦应急提枪装置的供电系统出了故障而停电,氧枪无法从转炉中提取出来,那么所造成的损失将不堪设想,其责任也是谁都承担不起的。 二、UPS 电源系统 图 1 UPS 的电原理框图 中大功率UPS 的电原理框图如图 1所示,一般均采用在线式双变换结构: ? 不管有无市电,负载的全部功率都由逆变器提供,保证高质量的电能输出。 ? 市电中断时,输出电压不受任何影响,没有转换时间。 三、转炉应急提枪装置供电系统采用UPS 是最佳选择 (一)可靠性: UPS 是经过几十年实践证明的最可靠的供电装置。可靠性极高,大功率UPS 的平均无故障时间大于30万小时,也就是说UPS 运行34.2年中只有发生出一次故障的可能。 (二)设计思想: 1、 UPS 用于保护重要负载,绝对不能停电,因此电路设计、器件选用、技术指标各方面都留有足够的安全系数。 2、 不间断供电:UPS 的负载受到三重保护,如果主电源停电,它可由电池供电,如果电池电放完了,或者UPS 发生故障,它还有旁路电源供电。 在操作过程中,发生市电停电或UPS 故障,UPS 切换到电池供电或切换到旁路供电,但是UPS 输出电源始终是连续的、不间断的。对于电机而言,UPS 系统所提供的电源始终是连续的、不间断的。因此,绝对不会造成电机和相关设备损坏。 负载 )

氧枪设计

氧枪设计 顶底复吹转炉是在氧气射流对熔池的冲击作用下进行的,依靠氧气射流向熔池供氧并搅动熔池,以保证转炉炼钢的高速度。因此氧气射流的特性及其对熔池作用对转炉炼钢过程产生重大影响,氧枪设计就是要保证提供适合于转炉炼钢过程得氧气射流。 转炉氧枪由喷头、枪身和尾部结构三部分组成,喷头一般由锻造紫铜加工而成,也可用铸造方法制造,枪身由无缝钢管制作得三层套管组成。尾部结构是保证氧气管路、进水和出水软管便于同氧枪相连接,同时保证三层管之间密封。需要特别指出的是当外层管受热膨胀时,尾部结构必须保证氧管能随外层管伸缩移动,氧管和外层管之间的中层管时冷却水进出的隔水套管,隔水套管必须保证在喷头冷却水拐弯处有适当间隙,当外层管受热膨胀向下延伸时,为保证这一间隙大小不变,隔水套管也应随外层管向下移动。 (1)喷头设计:喷头是氧枪的核心部分,其基本功能可以说是个能量转换器,将氧管中氧气的高压能转化为动能,并通过氧气射流完成对熔池的作用。 1)设计主要要求为: A 正确设计工况氧压和喷孔的形状、尺寸,并要求氧气射流沿轴线的衰减应尽可能的慢。 B 氧气射流在熔池面上有合适的冲击半径。 C 喷头寿命要长,结构合理简单,氧气射流沿氧枪轴线不出现负压区和强的湍流运动。 2)喷头参数的选择: A 原始条件: 类别\成分(%) C Si Mn P S 铁水预处理后设定值 3.60 0.10 0.60 0.004 0.005 冶炼Q235A,终点钢水C=0.10%根据铁水成分和所炼钢种进行的物料平衡计算,取每吨钢铁料耗氧量为50.4m3(物料平衡为吨钢耗氧52m3),吹氧时间为20min 。转炉炉子参数为:内径6.532m ,熔池深度为1.601m ,炉容比0.92m3/t 。转炉公称容量270t ,采用阶段定量装入法。 B 计算氧流量 每吨钢耗氧量取 52m3,吹氧时间取20min min /70220270523m Q =? = C 选用喷孔出口马赫数为2.0、采用5孔喷头(如下图3-3所示),喷头夹角为14°喷孔为拉瓦尔型。 图3-3 五孔喷头

冶炼Q235B钢种氧枪枪位操作探索研究

冶炼Q235B钢种氧枪枪位操作探索研究 摘要:为了保证产品的质量,要在氧枪进炉的时候计算好炉内铁水的液面。在不吹氧时,要将氧枪提出炉外,并切断氧气供给。在吹炼结束后,要迅速提枪,将转炉炼钢氧枪提高到原点,等待下一炉次的开始。 关键词:炼钢;喷嘴;枪位 0. 前言 转炉炼钢(converter steelmaking)是以铁水、废钢、铁合金为主要原料,不借助外加能源,靠铁液本身的物理热和铁液组分间化学反应产生热量而在转炉中完成炼钢过程,而氧枪枪位更是整个转炉炼钢过程中的重要程序之一,良好的氧枪操作能够提高转炉炼钢生产效率的目的。 1 .氧枪介绍 氧枪是将高压高纯度氧气以超音速速度吹入转炉内金属熔池上方,并带有高压水冷却保护系统的管状设备。又叫喷枪。它是氧气顶吹炼钢的重要设备。它由枪头(喷头)、枪体(枪身)和枪尾组成。喷头必须要使高压高纯度氧气对熔池产生一定的冲击力和冲击面积,从而快速而顺利的进行熔池中的各种反应。 1.1.喷头的类型及特点 1.1.1.单孔拉瓦尔喷嘴 单孔拉瓦尔喷嘴结构如图1a所示。拉瓦尔管喷嘴内型分为两段,即收缩段和扩张段。两段相交处为最小断面,其直径为临界直径又叫喉口,如图1b所示。

图1 单孔拉瓦尔喷嘴结构 1.1.2多孔拉瓦尔喷嘴 使用单孔拉瓦尔喷嘴时,氧射流对熔池的冲击能力强,冲击面积小,所以化渣速度较慢,喷溅较大。为了进一步提高供氧强度,提高转炉的生产能力,满足大吨位转炉生产的需要,出现了多孔喷嘴。 多孔喷嘴的优点是:提高了供氧强度和冶炼强度;增大了冲击面积,利于成渣,操作平稳不易喷溅。但是,多孔喷嘴端面的中心区域(俗称“鼻子尖”部位)冷却效果较差,吹炼过程中该区域气压较低,钢液和熔渣易被吸入并黏附到喷嘴上而被烧坏。为了加强这个区域的冷却,采用中心水冷喷嘴,可延长其使用寿命。 目前多使用四孔、五孔喷嘴。四孔、 五孔喷嘴的结构有两种形式,种是中心一孔,其余孔平均分布周围,中心孔与周围孔的孔径尺寸可以相同,也可以不同。另一种结构是各个孔平均分布在周围,中心无孔。五孔喷嘴的使用效果是令人满意的。五孔以上的喷嘴由于加工不便,应用较少。 为了便于加工,可将喷嘴分为几部分锻压加工后,焊接组合而成,能有效地改善喷孔之间的冷却效果,提高喷嘴寿命,见图2。

转炉吹氧相关计算

转炉吹氧相关计算 一、120t转炉熔池深度的计算:(以1#转炉为例) 1、熔池体积: V池=G/式中,G-公称容量,取125t; -钢水密度,取7.8t/m3。 V池=G/=125/7.8=16.03 m3 2、熔池深度h: 根据测厚仪测出1#转炉的熔池直径D=6570mm, 熔池体积V池和熔池直径D及熔池深度h有如下关系: V池=0.665hD2-0.033D3 所以 h=池= =884mm 二、氧枪氧气射流冲击深度L的计算: 通常冲击深度L与熔池深度h之比选取L/h≈0.4~0.6为宜。操作实际证明,当L/h<0.3时,即冲击深度过浅,则脱碳速度和氧的利用率会大大降低,还会导致出现终点成分及温度不均匀的现象;当L/h

>0.7时,即冲击深度过深,有可能损害炉底并喷溅严重。 1、枪位不变H0(基本枪位1.6m),选取1#转炉氧气压力0.43Mpa,0.60Mpa,计算冲击深度L。 当氧压p0=0.43Mpa时,氧气流量Q=13868m3/h,根据冲击深度L 的经验公式: L=34×p0×D喉/+3.8 式中,D喉—氧枪喷头喉口直径,取35.6mm; P0-氧气喷嘴压力,取0.43Mpa; H0—枪位,取基本枪位160cm; 则L=34×0.43×35.6/+3.8 =44.95cm 对于五孔喷头取修正系数0.85,则修正后的冲击深度 L=44.95×0.85=38.20cm,冲击深度L与熔池深度h的笔直L修 /h=382/884=0.43。 当氧气压力位0.6Mpa时,氧气流量Q=19085 m3/h

冲深度L=34×0.6×35.6/+3.8=61.21cm,修正后的冲击深度为61.21×0.85=52.03cm,冲击深度L与熔池深度h的比值L修/h=0.59。 2、氧气流量不变,即控制在14000m3/h,枪位变。当枪位H0=1.2m 时,冲击深度L=34×0.43×35.6/+3.8=51.31cm,修正后冲击深度为51.31×0.85=43.62cm。冲击深度L与熔池深度h的比值L修/h=0.49。当枪位H0=1.0m时,冲击深度L=34×0.43×35.6/+3.8=55.85cm,修正之后的冲击深度L修=55.85×0.85=47.47cm,冲击深度与熔池深度的比值L修/h=47.47/88.4=0.54。 综上所述,由于炼钢转炉使用干法除尘,需要控制氧气流量14000 m3/h,枪位在1.2~1.6m之间。

交流变频器在120吨转炉炼钢氧枪控制中的应用

交流变频器在120吨转炉炼钢氧枪控制中的应用 摘要:近年来,随着变频技术和控制技术的不断发展,变频技术以精度高、通用性强、工艺先进、操作方便以及公认的显著节能效果,被认为是企业技术改造和产品更新换代的理想调速装置。随着电力电子和微型计算机价格的下降,变频控制应用更加普及,因此发展十分迅速,在工业领域尤其在冶金行业的应用日益广泛。氧枪升降的变频调速控制系统,是转炉炼钢控制系统中变频技术应用的技术含量最高的控制系统。氧枪升降是典型的位能负载,靠钢丝绳牵引,按照炼钢工艺专业的要求,氧枪在升降过程中要实现慢速到快速以及快速到慢速的转换,且其停经的工艺检测点较多,在各工艺点要求准确停车。尤其是在吹炼点,氧枪的枪位直接影响到炼钢的质量。因此,应用变频器控制氧枪升降是氧枪调速控制系统的理想之选。下面以本溪北营钢铁(集团)股份有限公司(下称北营公司)120吨转炉为例,设计以西门子6SE70系列变频器在氧枪升降设计中的应用以及在实际应用中出现的一些问题并提出改进措施。 关键词:交流变频器、控制、应用、改进 1.1工作原理 北营公司120吨转炉设备氧枪控制设计2套变频控制氧枪,在固定导轨升降,每台变频器都可以通过切换驱动两根氧枪,实现两套氧枪的灵活备用。每套氧枪升降系统由一台110kW交流电动机传动,在生产过程中当工作氧枪发生故障时,可快速通过横移换枪等操作,使用备用氧枪继续生产。氧枪系统有一套事故提升装置,不接入电网,由事故电池作为电源驱动事故电机升降,当氧枪系统停电时,可切换到事故电机将氧枪提起,氧枪停车时有抱闸系统实现。由于1台变频器通过切换可以分别驱动1#、2#氧枪,变频器需定义2套电机参数组MDS,通过P578、P579来选择。当变频器和氧枪对应时,B16(DigIn 4)=0选择第一套MDS,采用速度闭环控制;当变频器和氧枪交叉对应时,B16=1选择第二套MDS。通过P590来选择2套BICO参数组。[1] [1] 1.2通信及连锁 氧枪控制驱动系统选用2台6SE70矢量型变频器来分别驱动每套氧枪升降装置电动机。采用2种方法联系控制。一种是硬线控制,就是变频器本身的端子

转炉副枪测量与成分预报技术_左康林

作者简介:左康林(1973-),男,梅山钢铁股份有限公司炼钢厂,工程师,硕士,从事钢铁冶金工作。 转炉副枪测量与成分预报技术 左康林1,邹俊苏1,孙晓辉1,吴建中2,Marrten Spanjers 2 (1.梅山钢铁股份有限公司炼钢厂,江苏南京210039;2.上海贺利氏电测骑士有限公司,上海201900) 摘 要:梅钢炼钢厂采用贺利氏副枪新技术和自主开发成分预报模型相结合的办法,对转炉冶炼过程进行控制。结果表明,过程碳、终点碳含量的预测精度提高,误差分别降低到0.023%和0.006%,同时也使转炉模型预测终点磷含量精度的准确性提高到96.47%。关键词:副枪;测温;取样;碳;磷 中图分类号:TF 345.01 文献标识码:A 文章编号:100221043(2009)022******* Sub 2lance measuration and Composition Prediction in BOF Steelmaking ZUO Kang 2lin 1,ZOU J un 2su 1,SUN Xiao 2hui 1,WU Jian 2zhong 2,Marrten Spanjers 2(1.Steel 2making Plant ,Shanghai Meishan Iron &Steel CO.,Lt d.,Nangjing 210039, China ;2.Shanghai Heraeus Elect ro 2nite CO.Lt d.,Shanghai 201900,China )Abstract :In Meishan Steel 2making Plant t he newly developed Heraeus sub 2lance tech 2nology is used in connection wit h t he self developed compositions prediction model to control t he overall p rocess of t he converter refining.Result s show t hat t he prediction accuracy of t he p rocessing carbon content and end 2point carbon content has been im 2p roved and t heir p rediction deviation rates lowered down to 0.023%and 0.006%re 2spectively. K ey w ords :sub 2lance ;temperat ure measuring ;sample taking ;carbon ;p hosp horus 在转炉冶炼过程中,炉渣[1,2]的控制是非常重要的,及时了解炉渣的温度、氧含量及炉渣厚度是冶金工作者所希望的。但由于条件所限,传统方法无法及时地获得这些数据,一般只能通过倒炉取极少部分试样进行分析。随着对转炉生产能力和钢水质量要求的提高,需要转炉冶炼操作更加精确和高效。梅钢目前有两座公称容量为150t 转炉,入炉铁水成分(质量分数)C 为4.0%~ 4.5%、Si 为0.3%~0.7%、Mn 为0.3%、P 约0.19%,主要产品以低碳钢为主。梅钢利用自主 开发的成分预测技术和贺利氏公司开发的在线检测炉渣技术相结合,对转炉末期炉内状态进行测量,达到有效地调控转炉终点的效果。 1 系统组成 在转炉副枪系统上并联一台带有专用程序的MUL TI 2L AB III 仪表,将副枪枪位信号通过BCD 码接入副枪仪表,同时将仪表同二级计算机 (L EV EL 2)相连接,以获取冶炼试样的分析成分,测量数据也将输出到L EV EL 2系统中各种炼钢模型上,进行数据处理与反馈。系统组成结构见图1 。 图1 系统组成结构图 2 副枪测量与预测 传统副枪[3]在测量过程中,使用两种探头[4], ? 95?2009年 4月第25卷第2期炼 钢Steelmaking Ap r.2009 Vol.25 No.2

转炉与氧枪

四.炉型与氧枪的设计计算 4.1炉型的设计计算 4.1.1原始数据 ⑴ 炉子平均出钢量220 t 钢水的收得率91.05% 新炉的金属装入量G =220 t/0.9105=242 T ⑵ 吨钢耗氧量=7.18/91.05×1000×22.4/32=55.20 Nm 3/T 供氧强度3.68m 3/(T·min) 供养时间t =15min ,4.1.2熔池尺寸计算 ⑴熔池的直径 D =K t G / K (1.5~1.75) 取K =1.53 所以D =1.5315/242=6141 mm ⑵熔池深度计算 选用筒球型 熔池深度为 h =V 金属+0.046D 3/0.079D 2=(35.5+0.046×6.1413)/(0.79×6.1412) =1550mm ⑶熔池其他尺寸的确定 炉底球冠的曲率半径R =0.91D =5588 mm 球冠的弓形高度h 1=0.15D =921 mm ⑷ 炉帽尺寸的确定 ① 取炉口直径与炉膛直径之比d/D =0.51 d =0.51×6141=3132 mm ② 取炉帽的倾角为64° ③ 炉帽高度的计算 H 帽=1/2(D-d)tanθ+400=3485 mm H 锥=H 帽-400=3085 mm ④ 炉帽容积计算 V 帽=0.257×3.14×(6.1412+3.1322+6.141×3.132)+0.785×3.1322×0.4 =56.954m 3 ⑸ 出钢口尺寸计算 d 出钢=T 75.163+=22075.163?+=210 mm

取水平倾角为18° 出钢口衬砖外径dST =6×210=1270mm 出钢口长度=7×210=1480mm ⑹炉子内型高度的计算 取炉容比V/T =1.0 新炉炉膛有效容积: V =G ×V/T =1.0×220=220 m 3 V 身=V -(V 金+V 帽)=220-(35.5+56.954)=127.513 m 3 炉身高度: H =141 .66.141×4/513.127?π=4.308 m=4038 mm 炉型内高: H =h +H 身+H 帽=1550+4308+3485=9343 mm ⑺炉衬的选择 工作层选用镁碳砖 炉身永久层选115 mm ,工作层选700 mm ,填充层100mm 炉帽永久层选150 mm ,工作层选600 mm 炉底永久层选425 mm ,工作层选600 mm D 壳内=6.141+0.915×2=7.971m H 壳内=9.343+1.025=10.368m ⑻炉壳钢板 炉身选75mm ,炉底炉帽选用65 mm H 总=10.368+0.065=10.433m D 壳=7.971+0.075×2=8.121m ⑼炉子高宽比 壳总D H =121 .8433.10=1.28 因为顶底复吹转炉的高宽比一般为1.25~1.45,所以炉子尺寸基本是合理地,能保证炉子的操作正常进行。 4.2低吹喷嘴设计 本次设计采用管式喷嘴结构 一般说来,喷嘴多而直径小些好。生产中喷嘴数量常为2~4个,具体视炉子容量和布置形式而定。本炉喷嘴取4个。 合理的布置应使底吹和顶吹产生的熔

炼钢转炉氧枪工艺参数设计

摘要 2005年,我国钢产量是3.49亿吨,为世界上最大的生产国。2011年我国钢产量为6.83亿吨。是发展较为迅速的国家之一。在我国转炉炼钢厂众多,而且从90年代溅渣护炉技术兴起后迅速在全国得以普遍采用。而我国在转炉氧枪系统方面基本没有大的改进,现在使用的氧枪参数基本上是采用溅渣护炉技术以前确定的氧枪喷头参数,目前炼钢厂所使用的氧枪既要满足冶炼需要又要保证溅渣要求更要注重环境的保护。随时时代的进步我国对工业发展的要求也越来越严格,其中就包括了最大可能的保护生态环境。选这个题目最重要的意义就在于发现工业生产中最佳的转炉氧枪,以提高生产效率,较低消耗[1]。 本文针对150t转炉设计一种新型的6孔氧枪,型号为637型。 关键词转炉氧枪喷头参数

000本科毕业论文ABSTRACT ABSTRACT In 2005, China's steel output of 3.49tons, is the world's largest producer. In 2011China's steel production6.83tons. Is one of the relatively rapid development. In China's converter steelmaking plant of many, but from 90 time of slag splashing technology rise quickly in the country to commonly used. But our country in converter oxygen lance system basically no big improvement, now use the oxygen gun parameters basically is the use of slag splashing technology previously determined oxygen lance nozzle parameters, the current steelmaking plant the use of oxygen gun should not only meet the needs and requirements of smelting slag splashing to pay more attention to the protection of the environment. At any time the progress of the times on China's industrial development requirements more stringent, which includes the largest possible protection of the ecological environment. Select this topic the most important significance lies in the discovery of industrial production in the optimal oxygen gun of converter, to improve production efficiency, lower consumption [1]. In this paper 150t converter design a new 6Hole oxygen lance, models for type 637 diabetes. Key words Oxygen lance 、Nozzle parameters Parameter

转炉炼钢副枪技术

转炉副枪简介 转炉自动炼钢技术是在转炉兑铁前,根据铁水的温度、重量以及计划钢种由二级计算机计算出炼钢过程需要的吹氧量、氧枪吹炼高度、底吹量以及熔剂加入量等静态炼钢模型数据,在吹炼后期,通过副枪或其它检测手段获得钢水温度、成分等信息,再由二级计算机做出动态炼钢模型调整数据,以确保炼钢终点达到由二级计算机设定的命中区,从而实现炼钢实时动态自动控制。该技术是集自动控制、冶金机理、生产工艺、数学模型、人工智能、数字仿真、计算机等多种技术于一体的高难度复杂技术。因为转炉炼钢是一个非常复杂的多元、多相、高温状态下进行的非特性的物理、化学反应过程,存在着许多不确定的因素,且难以用准确连续的在线检测仪表检测转炉吹炼过程中钢水的工艺参数,因此采用数学模型,而控制模型是全自动炼钢关键技术的基础,全自动炼钢技术应用主要分为两大类,一是采用副枪设备技术的自动炼钢;另一类是采用炉气分析技术的自动炼钢。目前国内应用的大部分采用副枪技术,一部分钢厂由于转炉炉口限制,无法使用副枪而采用后者,一般新建炼钢多采用副枪的自动炼钢技术。它的实现过程包括静态、动态数学模型的二级计算机控制系统及副枪数据处理系统,是理论计算、专家经验和先进检测手段相结合的采用计算机以及PLC进行控制的科学炼钢方法,是伴随着计算机网络技术和计算机信息技术,以及工业控制技术和工业控制网络的发展而逐步发展起来的,是目前转炉炼钢逐步走向成熟的一项关键技术。 转炉副枪自动化炼钢是现代炼钢厂先进性的重要标志之一和

发展趋势,国外先进的炼钢厂称量系转炉副枪自动化炼钢是现代炼钢厂先进性的重要标志之一和发展趋势,国外先进的炼钢厂在转炉上都配有副枪,可保持极高的碳含量及温度命中率,从而使90%-95%的炉次都能在停吹后立即出钢,无需检验化学成分,也无需补吹、核正,大大提高了转炉产量,实现了全自动化炼钢,同时炉衬浸蚀也明显降低。目前,国内新上的大中型转炉都直接配备了副枪系统,很多已建成炼钢厂也都在进行(或计划改造)增加副枪系统,向着全自动化炼钢的方向发展。 为实现科学炼钢,达到稳定操作、降低消耗、提高产品质量的目标,首钢国在首钢第一炼钢厂1号-3号210t转炉增上了副枪设施及SDM控制模型,实现了对转炉生产过程进行自动化控制;随后,在第二炼钢厂4号、5号210t转炉的设计中直接配备了2套副枪设施及SDM控制模型,实现了炼钢过程全自动化控制,开创了国内“一键式”炼钢的先河。首钢转炉副枪自动化炼钢系统完全自主开发的硬件和软件系统,是我国首家完全自主研发、自主设计的自动化炼钢技术,标志着我国转炉炼钢核心技术进入世界先进行列。 1 副枪组成及基本功能 1.1 副枪组成 副枪系统包括副枪本体设备和副枪自动化控制系统两部分。 副枪本体设备包括副枪枪体、副枪升降小车、副枪导向小车、副枪升降传动装置、副枪旋转传动装置、顶滑轮、副枪探头、副枪探头存贮装卸机构(APC)、副枪密封刮渣装置等。

转炉氧枪设计方案

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 1 广青金属有限公司 65T转炉φ180氧枪及氧枪喷头设计方案 山东崇盛冶金氧枪有限公司 2012年2月

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 2 65T转炉φ180氧枪及氧枪喷头设计方案 简介 山东崇盛冶金氧枪有限公司,系冶金氧枪及喷头的专业研究生产单位。位于中国潍坊高新技术产业开发区。技术力量雄厚,技术装备先进,检测手段齐全。我公司在转炉用氧枪设计方面有丰富的设计和制造经验,例如:宝钢300吨转炉炼钢φ406氧枪喷头,武钢三炼钢250吨转炉用φ355锥度氧枪及喷头,马钢300吨转炉用φ355锥度氧枪及喷头,济钢210吨转炉用φ355氧枪及喷头,新余三期210T 转炉炼钢φ325氧枪及喷头,上海罗泾150吨转炉炼钢φ299氧枪及喷头,河北承德钢铁、普阳钢铁、宁波钢铁、天铁、安阳钢铁、通化钢铁等150吨转炉炼钢φ299氧枪及喷头,目前均正常使用,效果良好。现国内120吨以上转炉用氧枪80%由我公司设计制造。 公司秉承“以人为本,科技领先”的发展战略,技术力量雄厚,拥有世界先进水平的科研机构、精良的机械加工设备及国内一流的检测设施,最大程度上保证产品最佳的使用性能。

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 3 65T转炉φ180×1孔喷头设计方案 一、设计工况参数: 1、出钢量:~65吨/炉 2、现场操作氧流量:~4200Nm3/hr 3、现场操作供氧压力:0.85~1.0Mpa (阀后压力) 4、纯吹氧吹炼时间:13~15min 5、冷却水压力:≥1.2MPa 6、进出水温差≤27℃(水温差根据现场实际情况要有所差异) 7、氧枪喷头形式:1孔拉瓦尔孔喷头 二、喷头参数设计 2.1马赫数的选择 流体力学中表征流体可压缩程度的一个重要的无量纲参数,记为,定义为流场中某点的速度v同该点的当地声速c之比,即=v/c, 在可压缩流中,气体流速相对变化dv/v同密度相对变化之间的关系是dρ/ρ=-2dv/v,即在流动过程中,马赫数愈大,气体表现出的可压缩性就愈大。另外,马赫数大于或小于1时,扰动在气流中的传播情况也大不相同。因此,从空气动力学的观点来看,马赫数比流速能更好地表示流动的特点。按照马赫数的大小,气体流动可分为低速流动、亚声速流动、跨声速流动、超声速流动和高超声速流动等不同类型。 马赫数就是气流速度与当地温度条件下的音速之比:

相关主题