搜档网
当前位置:搜档网 › 管道的热变形计算

管道的热变形计算

管道的热变形计算
管道的热变形计算

三.管道的热变形计算:

计算公式:X=a*L*△T

x 管道膨胀量

a为线膨胀系数,取0.0133mm/m

L补偿管线(所需补偿管道固定支座间的距离)长度

△T为温差(介质温度-安装时环境温度)

三.关于轴向型、横向型和角向型补偿器对管系及管架设计的要求

(一)轴向型补偿器

1、安装轴向型补偿器的管段,在管道的盲端、弯头、变截面处,装有截止阀或减压阀的部们及侧支管线进入主管线入口处,都要设置主固定管架。主固定管架要考虑波纹管静压推力及变形弹性力的作用。推力计算公式如下:

Fp=100*P*A

Fp-补偿器轴向压力推(N),

A-对应于波纹平均直径的有效面积(cm2),

P-此管段管道最高压力(MPa)。

轴向弹性力的计算公式如下:

Fx=f*Kx*X

FX-补偿器轴向弹性力(N),

KX-补偿器轴向刚度(N/mm);

f-系数,当“预变形”(包括预变形量△X=0)时,f=1/2,否则f=1。

管道除上述部位外,可设置中间固定管架。中间固定管架可不考虑压力推力的作用。

2、在管段的两个固定管架之间,仅能设置一个轴向型补偿器。

3、固定管架和导向管架的分布推荐按下图配置。

补偿器一端应靠近固定管架,若过长则要按第一导向架的设置要求设置导向架,其它导向架的最大间距可按下计算:

LGmax-最大导向间距(m);

E-管道材料弹性模量(N/cm2);

i-tp 管道断面惯性矩(cm4);

KX-补偿器轴向刚度(N/mm),

X0-补偿额定位移量(mm)。

当补偿器压缩变形时,符号“+”,拉伸变形时,符合为“-”。当管道壁厚按标准壁厚设计时,LGmax可按有关标准选取。

(二)横向型及角向型补偿器

1、装在管道弯头附近的横向型补偿器,两端各高一导向支座,其中一个宜是平面导向管座,其上、下活动间隙按下式计算:

ε-活动间隙(mm);

L-补偿器有效长度(mm);

△Y-管段热膨胀量(mm);

△X-不包括L长度在内的垂直管段的热膨胀量(mm);

2、角向型补偿器宜两个或三个为一组配套使用,用以吸收管道的横向位移,对Z形和L形管段两个固定管架之间,只允许安装一个横向型补偿器或一组角向型补偿器。此时平面铰链销的轴线必须垂直于弯曲管段形成的平面(万向铰链补偿器不受此限制)。

装有一组铰链补偿器的管段,其平面导向架的间隙ε亦可按上式计算。但是L长度应为两补偿器铰链轴之间的距离,△X是整个垂直管段的热膨胀量。

3、补偿器两侧的导向支座应接近补偿器,支座的型式应使补偿器能定向运动。

三.供热管道直埋式补偿器安装要求

(一)用途:

直埋式波纹补偿器主要用于直埋管线的轴向补偿,具有抗弯能力,所以可不考虑管道下沉的影响,产品具有补偿量大,寿命长的特点。

(二)使用说明:

直埋式波纹补偿器主要适用于轴向补偿,同时具有超强抗弯能力,所以不考虑管道下沉的影响。直埋式波纹补偿外壳及导向套筒保护下实现自由伸缩补偿,其它性能跟普通波纹补偿器相同。

(三)选用与安装:

3.1管道最大安装长度计算

有补偿直埋的管道应在二处高固定点,一是在直管段的端部,二是在管道的分支处。长的无分支的直线管道两补偿器之间可以不设固定点,靠管道自然形成的“驻点”即可发挥固定点的作用。驻点是两补偿器之间管道的那个不动点,在管径相同,埋深一致时,驻点与两补偿器间的距离相等。褡补偿器(包括转角处自然补偿器)至固定点之间的距离不得超过管道的最大安装长度Lmax,管道最大安装长度的定义是固定点至自由端(补偿器)的长度,在此长度下产生的摩擦力不得超过管道许用应力下相应的弹性力。

Lmax按下式计算:

常用管道的最大安装长度Lmax。应考虑16kgf/cm2内压力所产生的环向应力的综合影响。

3.2固定支座的设计计算

具有2个管道分支并在主干线上有一处转角管道平面,补偿器的布置应满足Ln<Lmax 的条件。驻点G1、G2的推力为零,所以,此点处不必设置固定支座,但为了防止回填土的不均匀,埋深的不一致和预制保温管外壳粗糙度的不规则等可能会造成驻点的漂移,所以,对处于驻点位置的管道分支处G1、G2需设置支座,以G1为例其轴向推力可按下式计算:F1=Pb2+L2f-0.8(Pb3+L2f)

式中F1-固定支座G1的水平推力,kgf;f-管道单位长度摩擦力,Kgf/m

Pb2-B2膨胀节的弹性力,Kg;Pb3-B3膨胀节的弹性力,Kgf

k2-B2膨胀节的刚度,Kgf/mm;

△L2-B2膨胀节的补偿量,mm;

L2-膨胀节至G1的距离,m;

假如某一分支如自G2接出的分支带有补偿器B。那么,G2还受到一侧向推力的作用,如图中的F2(y),当L5很短(实际布置时L5也应很短),那么,侧向力F2(y)的大小为:F2(y)=Pn*A5+Pb5

式中Pn-管道工作压力,Kgf/cm2

A5-B5膨胀节的有效面积,cm2;

Pb5-B5膨胀节的弹性力kgf。

固定支座G3也驻点位置,从管道和土壤的摩擦力来讲,该点也受到大小相等,方向相反的两个时作用,但应注意到该点同时又受到转角处的盲板力的作用,考虑驻点漂移的影响,固定支座G3的推力

F3=1.2Pn*A4

式中F3-作用在固定支座G3的水平推力,Kgf;

Pn-管道工作压力,Kgf/cm2;

A4-B4膨胀节的有效面积,cm2。

3.3补偿器的选用计算

直埋管道由于土壤摩擦力的影响,实际热伸长量要比架空和地沟敷设的管道热热伸长量要小。

架空和地沟敷设时的伸长量:α·△t·L

直埋敷设时,因土壤摩擦力影响的热伸长减少量:

实际热伸长量为:

式中E-钢管弹性模理,kgf/cm2;

α-钢管的线膨胀系数,取0.0133mm/m℃;

△t-管道温差;

A、f-同公式①;

L-两固定点之间的距离(最大安装长度)m。

在实际工作中,直埋管道的热伸长量,采用丹麦摩勒公司的简化算法。

式中符号同以上公式相同。

按②或③式计算出实际热伸长量后,按系列表选用相应的补偿器。

3.4安装

直埋式膨胀节(不包括一次性直埋式)安装时应有两个后年度护圈(如下图),且护圈的壁厚不应小于管道的壁厚,设置护圈1的目的是为管道受热膨胀时,A尺寸范围内有土、砂等进入,图中的各尺寸为:

直埋式波纹补偿器出厂时,所有外露表面已刷防锈漆两遍,直埋式波纹补偿器及其直埋管道的其它要求为:

(1)保温管埋于地下时,四周需用粒度小于20毫米的砂子填充,然后再覆盖原土,填充砂子的厚度不小于200毫米。

(2)保温管顶的埋深一般不超过1.2米,但也尽量不要小于0.7米,,保温管可直接埋在各种管道下面。

(3)如图,除A处外,其余均保温,因管道膨胀时A处不保温并不会造成显著的热损失。也是由于护圈的作用,直埋补偿器可以直埋处于车行道下面。

(4)直埋式补偿器安装不必冷紧,也不必按全线钢管接好后再割下和膨胀节等长管道之后再焊接的方法。使用直埋型膨胀节,不必设导向支架。

(5)安装时要注意保证导流套筒的方向与流动方向的一致。

(6)补偿器内介质应进行除游离氧和除氯离子处理,氯离子含量不得超过25PPm。

(7)补偿器允许不超过1.5倍公称压力的系统水压试验。

(8)补偿器安装完毕进行系统水压试验前,要将管道两端固定,防止内压推力拉伸补偿器。

四.补偿器安装和使用要求

1、补偿器在安装前应先检查其型号、规格及管道配置情况,必须符合设计要求。

2、对带内套筒的补偿器应注意使内套筒子的方向与介质流动方向一致,铰链型补偿器的铰链转动平面应与位移转动平面一致。

3、需要进行“冷紧”的补偿器,预变形所用的辅助构件应在管路安装完毕后方可拆除。

4、严禁用波纹补偿器变形的方法来调整管道的安装超差,以免影响补偿器的正常功能、降低使用寿命及增加管系、设备、支承构件的载荷。

5、安装过程中,不允许焊渣飞溅到波壳表面,不允许波壳受到其它机械损伤。

6、管系安装完毕后,应尽快拆除波纹补偿器上用作安装运输的黄色辅助定位构件及紧固件,并按设计要求将限位装置调到规定位置,使管系在环境条件下有充分的补偿能力。

7、补偿器所有活动元件不得被外部构件卡死或限制其活动范围,应保证各活动部位的正常动作。

8、水压试验时,应对装有补偿器管路端部的次固定管架进行加固,使管路不发生移动或转

动。对用于气体介质的补偿器及其连接管路,要注意充水时是否需要增设临时支架。水压试验用水清洗液的96氯离子含量不超过25PPM。

9、水压试验结束后,应尽快排波壳中的积水,并迅速将波壳内表面吹干。

10、与补偿器波纹管接触的保温材料应不含氯离子。

补偿器产品分类:QB型球补偿器,DSB-I、II型、单向自导式伸缩补偿器,JTW型通用软管,不锈钢减震波纹补偿器,直埋式波纹补偿器,FUB风道补偿器,轴向型外压式波纹补偿器JZW型,铰链横向型JJH、万向铰链JWJ型补偿器,轴向型内压式波纹补偿器JDZ型,三维补偿器。

[补偿器]浅析波纹管补偿器失效原因波纹管补偿器之所以能够在许多行业中得到广泛应用,除具有良好的补偿能力之外,高可靠性是主要原因。其可靠性是通过设计、制造、安装、运行管理等多个环节来保证的,任何一个环节的失控都会导致补偿器寿命的降低甚至失效。作者经过多年统计发现,造成波纹管补偿器失效的原因:设计占10%,制造厂家偷工减料占50%,安装不符合设备说明要求占20%,其余由运行管理不当引起。

2、波纹管补偿器的失效类型及原因分析

2.1 失效类型

波纹管的失效在管线试压和运行期间均有发生。管线试压时出现问题主要有三种类型:由于管系临时支撑不当,或管系固定支架设置不合理,导致支架破坏,波纹管过量变形而失效;由于波纹管设计所考虑的压力或位移安全富裕度不够,管线试压时波纹管产生失稳变形失效;补偿器制造质量问题,制造厂偷工减料,5层不锈钢私自改为3层或更少。

波纹管在运行期间的失效主要表现为腐蚀泄漏和失稳变形两种形式,其中以腐蚀失效居多。从腐蚀失效波纹管的解剖分析发现,腐蚀失效通常分点腐蚀穿孔和应力腐蚀开裂,其中氯离子应力腐蚀开裂约占整个腐蚀失效的95%。波纹管失稳有强度失稳和结构失稳两种类型,强度失稳包括内外压波纹管平面失稳和外压波纹管周向失稳;结构失稳是内压波纹管补偿器的柱失稳。

2.2 设计疲劳寿命与稳定性及应力腐蚀的关系

波纹管的设计主要考虑耐压强度、稳定性和疲劳性能等三个方面的因素。虽然国家标准和美国EJMA标准对这几方面的计算和评定都有明确的规定,但从多年的应用实践和波纹管失效分析中发现,标准中给出的关于稳定性的计算和评定方法不够全面,且疲劳寿命也仅给出了比较粗的界限范围(平均疲劳寿命在103~105适用)。有时一个完全符合标准要求的产品,在实际使用时也会出现一些问题。如内压轴向型补偿器预变位状态在压力试验时波纹管易产生平面失稳,大直径外压轴向型补偿器全位移工作状态波纹管易产生周向失稳,小直径复式拉杆型补偿器、铰链型补偿器全位移工作状态易产生柱失稳。波纹管过大的变形不仅对其稳定性造成影响,还会为应力腐蚀提供有利的环境条件。

2.2.1 波纹管疲劳寿命与其综合应力波纹管的补偿量取决于其疲劳寿命,疲劳寿命越高,波纹管单波补偿量越小。为了降低成本,提高单波补偿量,有些生产厂家将波纹管的许用疲劳寿命降得很低,这样会导致由位移引起的波纹管子午向弯曲应力很大,综合应力很高,大大降低了波纹管的稳定性。表1给出了无加强U形波纹管许用疲劳寿命与子午向综合应力及单波补偿量之间的关系。

2.2.2 波纹管的综合应力与其耐压强度由标准中给出的波纹管平面稳定性和周向稳定性的计算方法和评定标准可以看出,二者反映的均为强度问题。当波纹管设计的许用寿命较低时,不仅其子午向综合应力较高,环向应力也比较高,使波纹管局部很快进入塑性变形,导致波纹管失稳。

对于内压波纹管,位移应力在波纹管波峰和波谷处形成塑性铰,再加上压力应力,波纹管很快产生平面失稳。这就是低疲劳寿命波纹管在位移条件下平面失稳压力远低于高疲劳寿命的

波纹管的根本原因。例如在预变位状态下,即波纹管位移量为许用值的1/2时,一个许用疲劳寿命为200次的波纹管,尚未达到其允许设计压力时,已经产生平面失稳;许用疲劳寿命为1000次的波纹管,达到设计压力时,波纹管处于平面稳定状态,达到1.5倍设计压力时,波纹管处于临界失稳状态;许用疲劳寿命为2000次的波纹管达到设计压力1.5倍时,波纹管仍处于平面稳定状态。

从外压波纹管纵向剖面看,相当于一个受压力的拱梁,工作时波纹管处于拉伸状态,相当于拱梁降低了拱高,其抗失稳的能力自然降低。当波纹管单波位移过大时,波纹平直部分倾斜,使得波纹管波峰直径有缩小的趋势,但波峰圆环直径是确定的,为了协调变形,就会产生波峰塌陷,波纹管周向失稳。在国内外相应的标准中,关于位移对波纹管外压周向稳定性的影响均未涉及,有待于深入探讨。

综上所述,虽然至今为止在热力管网的应用过程中尚未发现由疲劳而引起的破坏,但波纹管过低的设计疲劳寿命,将会导致灾难性的后果。

2.2.3 补偿器位移与其柱稳定性对于复式拉杆型和铰链型补偿器,横向位移是由波纹管角变位引起中间管段倾斜实现的。当波纹管产生角变位时,波纹管凸出侧承压面积大于凹陷侧承压面积,导致补偿器附加了一个横向力,较之轴向型补偿器更易产生柱失稳。显然波纹管单波位移越大,补偿器横向位移越大,越易产生柱失稳。

3、波纹管补偿器的可靠性

波纹管补偿器的可靠性是由设计、制造、安装及运行管理等多个环节构成的。可靠性也应该从这几个方面进行考虑。

3.1 可靠性设计

3.1.1 材料选择对用于供热管网的波纹管的选材,除应考虑工作介质、工作温度和外部环境外,还应考虑应力腐蚀的可能性、水处理剂和管道清洗剂对材料的影响等,并在此基础上结合波纹管材料的焊接、成型以及材料的性能价格比,优选出经济实用的波纹管制作材料。一般情况下,选用波纹管的材料应满足下列条件:(1)良好的塑性,便于波纹管的加工成形,且能通过随后的处理工艺(冷作硬化、热处理等)获得足够的硬度和强度。(2)高弹性极限、抗拉强度和疲劳强度,保证波纹管正常工作。(3)良好的焊接性能,满足波纹管在制作过程中的焊接工艺要求。(4)较好的耐腐蚀性能,满足波纹管在不同环境下工作要求。大多数生产厂家都采用奥氏体不锈钢,如材料牌号为0Cr18Ni9(相当于304)、00Cr19Ni10(相当于304L)、0Cr17NiMo2(相当于316)、00Cr17Ni4Mo2(相当于316L)。为了提高波纹管的耐蚀性,现供热管网波纹管的用材多选用316或316L,这两种材料用于热力管网应该是性能价格比较为优良的材料。

对于地沟敷设的热力管网,当补偿器所处管道地势较低时,雨水或事故性污水会浸泡波纹管,应考虑选用耐蚀性更强的材料,如铁镍合金、高镍合金等。由于此类材料价格较高,在制造波纹管时,可以考虑仅在与腐蚀性介质接触的表面增加一层耐蚀合金。

3.1.2 疲劳寿命设计由波纹管补偿器的失效类型及原因分析可以看出,波纹管的平面稳定性、周向稳定性及耐腐蚀性能均与其位移量即疲劳寿命相关。过低的疲劳寿命将会导致波纹管稳定性及耐蚀性能下降。根据试验和使用经验,用于供热工程的波纹管疲劳寿命应不小于1000次。

大多数波纹管的失效是由外部环境腐蚀造成的,因此在进行补偿器的结构设计时,可考虑隔绝外部腐蚀介质与波纹管的接触。如对于外压轴向型补偿器可在出口端环与出口管之间增加填料密封装置,其作用相当于套筒补偿器,既可抵挡外部腐蚀介质的侵入,又给波纹管补偿器增加了一道安全屏障,即使波纹管破坏,补偿器还可以起到补偿作用并避免波纹管失效。

3.2 保证安装质量

波纹管不能承重,应单独吊装;除设计要求预拉伸或冷紧的预变形量外,严禁用使波纹管变

形的方法来调整管道的安装偏差;安装过程不允许焊渣飞溅到波纹管表面和受到其他机械性损伤;波纹管所有活动元件不得被外部构件卡死或限制其活动部位正常工作;水压试验用水须干净、无腐蚀性,对奥氏体不锈钢材质应严格控制水中氯离子含量不超过25×10-6,并应及时排尽波纹中的积水等。

4、结束语

补偿器存在的问题主要有波纹管的稳定性及腐蚀。通过合理的设计波纹管波形参数和疲劳寿命、安装正确及管系应力分析完善等措施,可以解决波纹管的稳定性问题。对于腐蚀问题,可以通过两种方式解决:

(1)合理的波纹管选材和补偿器结构设计,阻断腐蚀源。

(2)加强小室积水管理,从根本上解决腐蚀问题。

已投稿到:网商频道

管道培训材料3doc-管道应力

3 管道应力 3.1 石油化工管道应力分析常用规范、标准有哪些? 答:石油化工管道应力分析常用规范、标准有: (1)《工业金属管道设计规范》(国标报批稿); (2)《石油化工企业管道柔性设计规范》(SHJ41-91); (3)《石油化工企业非埋地管道抗震设计通则》(SHJ39-91); (4)《石油化工企业管道设计器材选用通则》(SH3059-94); (5)《石油化工企业管道支吊架设计规范》(SH3073-95); (6) 化工管道设计规范(HG20695-1987); (7) 化工部设计标准《管架标准图》(HG/T21629-1991)。 3.2 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 静力分析包括: (1) 压力荷载和持续荷载作用下的一次应力计算—防止塑性变形破坏; (2) 管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算—防止疲劳破坏; (3) 管道对设备作用力的计算—防止作用力太大,保证设备正常运行; (4) 管道支吊架的受力计算—为支吊架设计提供依据; (5) 管道上法兰的受力计算—防止法兰泄漏。 动力分析包括: (1) 管道自振频率分析—防止管道系统共振; (2) 管道强迫振动响应分析—控制管道振动及应力; (3) 往复压缩机(泵)气(液)柱频率分析—防止气柱共振; (4) 往复压缩机(泵)压力脉动分析—控制压力脉动值。 3.3 管道上可能承受的荷载有哪些? 答:管道上可能承受的荷载有: (1) 重力荷载,包括管道自重、保温重、介质重和积雪重等; (2) 压力荷载,压力荷载包括内压力和外压力; (3) 位移荷载,位移荷载包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4) 风荷载; (5) 地震荷载; (6) 瞬变流冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击; (7) 两相流脉动荷载; (8) 压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;

蒸汽管道温度损失计算及分析

蒸汽管道温度损失计算 及分析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο?/ p t —管内热媒的平均温度 C ? k t —环境温度C ? G —热媒质量流量s Kg / C —热水质量比热容 C Kg J ??/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο?2/ n d ,w d —分别为管道(含保温层)内外径m i λ—管道各层材料的导热系数 C m w ο?/(金属的导热系数很高,自身热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: t λ—管道埋设处的导热系数。

t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取t h = E.保温材料为:聚氨酯,取λ= C m w ο?/ F. 保温层外包皮材料是:PVC ,取λ= C m w ο?/ G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为: 管径为300mm 时,保温层厚度为:50mm ,保温外包皮厚度为:7mm ; 管径为400mm 时,保温层厚度为:51mm ,保温外包皮厚度为:; 管径为500mm 时,保温层厚度为:52mm ,保温外包皮厚度为:9mm ; 管径为600mm 时,保温层厚度为:54mm ,保温外包皮厚度为:12mm ; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量q 1是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析 总传热系数k 式中:h 1—蒸汽对工作钢管内壁的换热系数 λ1—蒸汽管道各层材料的导热系数 1 1 1 1 1 1 ln 2 1 1 1 ? ? ? ? ? ? ? n i i n i i d d d d h k ?? ?? ?

管道应力分析和计算

管道应力分析和计算

目次 1 概述 1.1 管道应力计算的主要工作 1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法 1.4 管道荷载 1.5 变形与应力 1.6 强度指标与塑性指标 1.7 强度理论 1.8 蠕变与应力松弛 1.9 应力分类 1.10 应力分析 2管道的柔性分析与计算 2.1管道的柔性 2.2管道的热膨胀补偿 2.3管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算 2.6 冷紧 2.7 柔性系数与应力增加系数 2.8 作用力和力矩计算的基本方法2.9 管道对设备的推力和力矩的计算

3 管道的应力验算 3.1管道的设计参数 3.2钢材的许用应力 3.3管道在内压下的应力验算 3.4 管道在持续荷载下的应力验算 3.5管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算 3.7力矩和截面抗弯矩的计算 3.8 应力增加系数 3.9 应力分析和计算软件

1 概述 1.1 管道应力计算的主要工作 火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。 管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。 1.2 管道应力计算常用的规范、标准 (1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程(2)ASME B 31.1-2004动力管道 在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或顾客有要求时,采用B 31.1进行管道应力验算。 1.3 管道应力分析方法 管道应力分析方法分为静力分析和动力分析。 对于静荷载,例如:管道内压、自重和其他外载以及热胀、冷缩和其他位移荷载作用的应力计算,采用静力分析法。DL/T 5366和B31.1规定的应力验算属于静力分析法。同时,它们也用简化方法计及了地震作用的影响,适用于火力发电厂管道和一般动力管道。 对于动载荷,例如:往复脉冲载荷、强迫振动载荷、流动瞬态冲击载荷和地震载荷作用的应力计算采用动力分析法。核电站管道和地震烈度在9度及以上地区的火力发电厂管道应力计算采用动力分析法。 1.4 管道荷载

蒸汽管道损失理论计算及分析

1.计算基本公式 温损计算公式为: 式中:—管道单位长度传热系数 —管内热媒的平均温度 —环境温度 —热媒质量流量 —热水质量比热容 ——管道长度由于计算结果为每米温降,所以L取1m .管道传热系数为 式中: ,—分别为管道内外表面的换了系数 ,—分别为管道(含保温层)内外径 —管道各层材料的导热系数(金属的导热系数很高,自身热阻很 i 小,可以忽略不计)。 —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算:

Pr为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: —管道埋设处的导热系数。 —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢() B. 查表得:碳钢在75和90摄氏度时的导热系数都趋近于 C.土壤的导热系数= D. 由于本文涉及到的最大管径为,所以取= E.保温材料为:聚氨酯,取= F. 保温层外包皮材料是:PVC,取= G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为:

管径为300mm时,保温层厚度为:50mm,保温外包皮厚度为:7mm; 管径为400mm时,保温层厚度为:51mm,保温外包皮厚度为:; 管径为500mm时,保温层厚度为:52mm,保温外包皮厚度为:9mm; 管径为600mm时,保温层厚度为:54mm,保温外包皮厚度为:12mm; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析

钢管应力计算

第一章总则 第1.0.1条管道应力计算的任务是:验算管道在内压、自重和其它外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力,以判明所计算的管道是否安全、经济、合理以及管道对设备的推力和力矩是否在设备所能安全承受的范围内。 第1.0.2条本规定适用于以低碳钢、低合金钢和高铬钢为管材的火力发电厂汽水管道的应力计算。 油、空气介质的管道应力计算,可参照本规定执行。 核电站常规岛部分管道应力计算,可参照本规定执行。 第1.0.3条管道的热胀应力按冷热态的应力范围验算。管道对设备的推力和力矩按在冷状态下和在工作状态下可能出现的最大值分别进行验算。 第1.0.4条恰当的冷紧可减少管道运行初期的热态应力和管道对端点的热态推力,并可减少管系的局部过应变。冷紧与验算的应力范围无关。 第1.0.5条进行管系的挠性分析时,可假定整个管系为弹性体。 第1.0.6条使用本规定进行计算的管道,其设计还应遵守《火力发电厂汽水管道设计技术规定》。管道零件和部件的结构、尺寸、加工等,应符合《火力发电厂汽水管道零件及部件典型设计》的要求。

第二章 钢材的许用应力 第2.0.1条 钢材的许用应力,应根据钢材的有关强度特性取下列三项中的最小值: σb 20/3,σs t /1.5或σ s t (0.2%) /1.5,σ D t /1.5 其中 σb 20——钢材在20℃时的抗拉强度最小值(MPa ); σs t ——钢材在设计温度下的屈服极限最小值(MPa ); σs t (0.2%) ——钢材在设计温度下残余变形为0.2%时的屈服极限最 小值(MPa ); σ D t ——钢材在设计温度下105h 持久强度平均值。 常用钢材的许用应力数据列于附录A 。 国产常用钢材和附表中所列的德国钢材的许用应力按本规定的安全系数确定。 美国钢材的许用应力摘自美国标准ASME B31.1。 对于未列入附录A 的钢材,如符合有关技术条件可作为汽水管道的管材时, 它的许用应力仍按本规定计算。

管道应力分析主要内容及要点

管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 ASME B31《压力管道规范》由几个单独出版的卷所组成,每卷均为美国国家标准。它们是子ASME B31 压力管道规范委员会领导下的编制的。 每一卷的规则表明了管道装置的类型,这些类型是在其发展过程中经考虑而确定下来的,如下所列: B31.1 压力管道:主要为发电站、工业设备和公共机构的电厂、地热系统以及集中和分区的供热和供冷系统中的管道。 B31.3 工艺管道:主要为炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的管道。 B31.4 液态烃和其他液体的输送管线系统:工厂与终端设备剑以及终端设备、泵站、调节站和计量站内输送主要为液体产品的管道。 B31.5 冷冻管道:冷冻和二次冷却器的管道 B31.8 气体输送和配气管道系统:生产厂与终端设备(包括压气机、调节站和计量器)间输送主要为气体产品的管道以及集汽管道。 B31.9 房屋建筑用户管道:主要为工业设备、公共结构、商业和市政建筑以及多单元住宅内的管道,但不包括B31.1 所覆盖的只寸、压力和温度范围。 B31.11 稀浆输送管道系统:工厂与终端设备间以及终端设备、泵站和调节站内输送含水稀浆的管道。 管道应力分析的主要内容 一、管道应力分析分为静力分析析 1.静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算一一防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据: 5)管道上法兰的受力计算一防止法兰汇漏。 2.动力分析包括: 1)管道自振频率分析一一防止管道系统共振: 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析一一防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 二、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等 (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载;

管道、平面热损失计算

A 简易热工设计 1 设计需要确定的工艺参数 1) 管道要求的维持温度,TV; 2) 当地最低环境温度(℃),TA; 3) 管道的外径,D; 4) 容器的表面积,S; 5) 管道的保温材料品种及厚度; 6) 管道是在室内或室外。 2 管道、平面热损失计算 2.1 管道 保温管道的热损失(加30%安全系数)按公式(1)计算: Qt={[2π(TV-TA) ]/〔( LnD0/D1)1/λ+2/( D0α)]}×1.3 (1) 2.2 平面 保温平面的热损失(加30%安全系数)按公式(2)计算: QP=[(TV-TA)/(δ/λ+1/α)] ×1.3 (2) 式(1)和式(2)中: Qt —单位长度管道的热损失,W/m; Qp —单位平面的热损失,W/㎡; TV —系统要求的维持温度,℃; TA —当地的最低环境温度℃; λ —保温材料的导热系数,W/(m℃),见表3; D1 —保温层内径,(管道外径) m; D0 —保温层外径,m; D0=D1+2δ; δ —保温层厚度,m; Ln —自然对数; α —保温层外表面向大气的散热系数,W/(㎡℃)与风速ω,(m/s)有关,α值按公式(3)计算: α=1.163(6+ω1/2) W/( ㎡℃) (3) 表3 常用保温材料导热系数 保温材料导热系数W/ (m. ℃)

玻璃纤维0.036 矿渣棉0.038 硅酸钙0.054 膨胀珍珠岩0.054 蛭石0.084 岩棉0.043 聚氨脂0.024 聚苯乙烯0.031 泡沫塑料0.042 石棉0.093 表4 管道材质修正系数 碳钢1 不锈钢1.25 a铜0.9 塑料1.5 B 电伴热设计 首先应知道管道的口径、保温层材料及厚度和所需维持温度之差△T,查管道散热量表,(乘以适当的保温系数),就能得到单位长管道的散热量,如果管子在室内则再乘以0.9。如果伴热的是塑料管道,因为塑料的导热性远低于碳钢(0.12:25),故可用0.6-0.7的系数对正常散热量加以修正。 例1:某厂有一管线,管径为1/2",保温材料是硅酸钙,厚度10mm,管道中流体为水,水温需保持10℃,冬季最低气温是-25℃,环境无腐蚀性,周围供电条件380V、220V均有,求管道每米热损失? 步骤一:△T = TA - TB =10℃-(-25℃)=35℃ 步骤二:查管道散热量表,管径1/2"。10mm保温层。 当△T =30℃热损失为11.0w/m,当△T =40℃热损失为14.9w/m,△T =35℃时,每米损失可采用中间插入法求得(因表中无QB值)。 QB=11.0w/m+(14.9w/m - 11.0w/m)[(35-30)÷ (40-30)]=12.95w/m 步骤三:保温层采用硅酸钙,查保温材料修正数表乘以保温系数f及综合系数1.4 Qr=1.4QB×f=1.4×12.95w/m×1.50=27.195w 答案:管道每米损失热量27.195W 保温材料修正数表 容器罐体耗散热量的计算

蒸汽管道损失理论计算及分析

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο ?/ p t —管内热媒的平均温度C ? k t —环境温度 C ? G —热媒质量流量 s Kg / C —热水质量比热容 C Kg J ? ?/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 ∑=++ += n i w w i i i n n g d a d d d a k 111 ln 2111 ππ λπ 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο ?2/ n d , w d —分别为管道(含保温层)内外径 m i λ—管道各层材料的导热系数C m w ο ?/(金属的导热系数很高,自身 热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m

内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: 42 .075 .0Pr )180(Re 037.0-≈= λ n n n d a N Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: ]1)2(2ln[22-+ = w t w t w t w d h d h d a λ 式中: t λ—管道埋设处的导热系数。 t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取 t h = E.保温材料为:聚氨酯,取λ= C m w ο?/

管道应力分析和计算

新生培训教材 管道应力分析和计算 (机务专业篇) 国核电规划设计研究院机械部 二零一零年十一月 北京

校核人: 编写人:

目次 1 概述 1.1 管道应力计算的主要工作 1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法 1.4 管道荷载 1.5 变形与应力 1.6 强度指标与塑性指标 1.7 强度理论 1.8 蠕变与应力松弛 1.9 应力分类 1.10 应力分析 2 管道的柔性分析与计算 2.1 管道的柔性 2.2 管道的热膨胀补偿 2.3 管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算 2.6 冷紧 2.7 柔性系数与应力增加系数 2.8 作用力和力矩计算的基本方法 2.9 管道对设备的推力和力矩的计算 3 管道的应力验算

3.1 管道的设计参数 3.2 钢材的许用应力 3.3 管道在内压下的应力验算 3.4 管道在持续荷载下的应力验算 3.5 管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算 3.7 力矩和截面抗弯矩的计算 3.8 应力增加系数 3.9 应力分析和计算软件

1 概述 1.1 管道应力计算的主要工作 火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。 管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。 1.2 管道应力计算常用的规范、标准 (1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程及其勘误 (2)ASME B 31.1-2007动力管道 (3 ) DL/T 5054-1996 火力发电厂汽水管道设计技术规定 在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或用户有要求时,可采用B 31.1进行管道应力验算。 1.5.3 应力 在外力作用下,构件发生变形,这说明构件材料内部在外力作用下变形时原子间的相对位置产生了改变,同时原子间的相互作用力(吸引力与排斥力)也发生了改变。这种力的改变量称为内力。 内力是沿整个断面连续分布的,单位面积上的内力强度,即应力,以“σ”表示。

应力计算规定

1 范围 本标准规定了: (1)管道在内压、持续外载作用下的一次应力和由于热胀、冷缩及其它位移受约束产生的热胀二次应力的验算方法,以判断所计算的管道是否安全、经济、合理; (2)管道由于热胀、冷缩及其它位移受约束和持续外载作用产生的对设备的推力和力矩核算方法,以判明是否在设备所能安全承受的范围内; (3)管道应力分析方法的选择依据; (4)支吊架的选用原则. 执行本规定时,尚应符合现行有关标准规范的要求。 本规定适用于石油化工企业承受静力载荷的碳素钢、合金钢及不锈钢管道的柔性设计 2 引用标准 《石油化工企业管道柔性设计规范》 SHJ41 《石油化工企业管道设计器材选用通则》 SH3059 《石油化工钢制压力容器》SH3074 《石油化工企业管道支吊架设计规范》SH3073 《化工厂和炼油厂管道》ANSI/ASME B31.3 《API-610/NEMA-SM23》 上述标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示标准均为有效。所有标准都会被修订,使用本标准的各方应探讨使用上述标准最新版本的可能性。 3 一般规定 3.1 管道柔性设计应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、端点附加位移和管道支撑设置不当等原因造成的下列问题: 一.管道应力过大或金属疲劳引起管道或支架破坏; 二.管道连接处产生泄漏; 三.管道推力和力矩过大,使与其相连接的设备产生过大的应力和变形,影响设备正常运行。 3.2 在管道柔性设计中,除考虑管道本身的热胀冷缩外,还应考虑下列管道端点的附加位移: 一.加热炉管对加热炉进出口管道施加的附加位移; 二.塔或其它立式设备产生热胀冷缩时对连接管道施加的附加位移; 三.管壳式换热器及其它卧式设备滑动支座移动造成连接管道的附加位移; 五.几台设备互为备用时,不操作管道对操作管道的影响; 六.不和主管一起分析的支管,应将分支点处主管的位移作为支管端点的附加位移; 七.根据需要,应考虑固定架和限位架的刚度影响。 3.3 对于复杂管道可用固定架将其划分成几个较为简单的管段,如L形管段,U形管段、Z形管段等再进行分析计算。 3.4 确定管道固定点位置时,宜使两固定点间的管段能自然补偿。 3.5 管道应首先利用改变走向获得必要的柔性,但由于布置空间的限制或其它原因也可采用波形补偿器其它类型或其它类型补偿器获得柔性。 3.6 在剧毒及易燃可燃介质管道中严禁采用填料函式补偿器。

管道受力分析计算

管道计算 第一章任务与职责 1. 管道柔性设计的任务 压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况; 1) 因应力过大或金属疲劳而引起管道破坏; 2) 管道接头处泄漏; 3) 管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行; 4) 管道的推力或力矩过大引起管道支架破坏; 2. 压力管道柔性设计常用标准和规范 1) GB 50316-2000《工业金属管道设计规范》 2) SH/T 3041-2002《石油化工管道柔性设计规范》 3) SH 3039-2003《石油化工非埋地管道抗震设计通则》 4) SH 3059-2001《石油化工管道设计器材选用通则》 5) SH 3073-95《石油化工企业管道支吊架设计规范》 6) JB/T 8130.1-1999《恒力弹簧支吊架》 7) JB/T 8130.2-1999《可变弹簧支吊架》 8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》 9) HG/T 20645-1998《化工装置管道机械设计规定》 10) GB 150-1998《钢制压力容器》 3. 专业职责 1) 应力分析(静力分析动力分析) 2) 对重要管线的壁厚进行计算 3) 对动设备管口受力进行校核计算 4) 特殊管架设计 4. 工作程序 1) 工程规定 2) 管道的基本情况 3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿 4) 用目测法判断管道是否进行柔性设计 5) L型U型管系可采用图表法进行应力分析 6) 立体管系可采用公式法进行应力分析 7) 宜采用计算机分析方法进行柔性设计的管道 8) 采用CAESAR II 进行应力分析 9) 调整设备布置和管道布置 10) 设置、调整支吊架 11) 设置、调整补偿器 12) 评定管道应力 13) 评定设备接口受力 14) 编制设计文件 15) 施工现场技术服务 5. 工程规定 1) 适用范围 2) 概述 3) 设计采用的标准、规范及版本 4) 温度、压力等计算条件的确定 5) 分析中需要考虑的荷载及计算方法 6) 应用的计算软件 7) 需要进行详细应力分析的管道类别

蒸汽管线热损失测试报告

蒸汽管道热损失测试报告 1 测试背景 郴州钻石钨制品有限责任公司蒸汽在输送过程中蒸汽热损失和压力 损失明显,导致因为蒸汽末端蒸汽品质严重下降,通过与现场工作人员交流和了解,厂区蒸汽管道管线保温层破损处较多,由于长期使用而未曾更换保温材料,因此,导致岩棉材料下沉,上薄下厚;局部管线有裸露在外的现象,从而导致其热损失比较大,此外有个别阀门未采取保温,也不同程度加大了散热损失。保温材料和保温结构单一,缺少防水,防渗透措施,长期遭受雨雪侵蚀,保温效果变差。因此有必要对其进行热损失测试,找出具体的热损失原因,从而为做好能源利用工作提供方向和科学依据。 2测试方法 热流计法 测试原理 用热阻式热流传感器(热流测头)和测量指示仪表直接测量保温结构的 散热热流密度。热流传感器的输出电势(E)与通过传感器的热流密度(q)成正比,q=cE值为测头系数。 热流传感器的标定按GB/T10295中的方法进行,必要时绘制q/E系数c与被测表面温度(视作热流传感器的温度)的标定曲线,该曲线还应表示出工作温度和热流密度的范围。 现场测定应满足下列条件 应满足一维稳态传热条件减少外部环境因素的影响读取测定数据应在达到准稳态条件时进行。

(1)现场风速不应超过s,不能满足时应设挡风装置。 (2)应避免传感器受阳光直接辐射的影响宜选择阴天或夜间进行测定或加装遮阳装置。 (3)应避免在雨雪天气时进行测定。 (4)环境温度湿度的测点应在距热流密度测定位置1m远处,避免有其他热源的影响;地温的测点应在距热流密度测定位置10m远处相同埋深的自然土壤中。 表面温度法 测试原理 对于地上地沟敷设的热力管道测定保温结构外表面温度环境温度风向和风速表面热发射率及保温结构外形尺寸按下面公式计算其散热热流密度 q=α(t W-t F) 式中: q:散热热流密度,W/m2; α:总放热系数,W/(m2·k); t W:保温结构外表面温度,K; t F:环境温度,K。 温差法 测试原理 通过测定保温结构各层厚度、各层分界面上的温度以及各层材料在使用温度下的导热系数,计算保温结构的散热热流密度。 供热管道单层保温结构的热流密度和单位长度线热流密度按下面公式求

105排空气、散热损失和管道标准总结

本文由snnanf贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第10章蒸汽分配 排空气、散热损失和管道标准总结 章节10.5 10.5 排空气、散热损失和管道标准总结 蒸汽和冷凝水系统手册 10.5.1 第10章蒸汽分配 排空气、散热损失和管道标准总结 章节10.5 排空气、散热损失和管道标准总结 排空气 管道关闭一段时间后,在蒸汽进入管道前,管道中充满了空气。空气和其它不凝性气体也会随蒸汽一起进入管道。和蒸汽相比,这些不凝性气体所占的比例很小。除非我们采取措施排除它们,否则当蒸汽冷凝后,这些不凝性气体会在蒸汽管道和换热空间中积聚。不排除空气的后果就是延长起机时间,降低设备效率和工艺制程的性能。蒸汽系统中存在空气也会影响系统的温度。空气在整个系统中有自己的压力,再加上蒸汽的压力就是系统的总压力。因此实际的蒸汽压力和温度要小于压力表读数显示的蒸汽/空气混合气体的压力和对应温度。更重要的是空气对传热效果的影响。仅有1μm厚的空气膜,其热阻与25μm的水膜相同,与2mm厚的铁板和15mm厚的铜墙相同。因此任何蒸汽系统的排空气都是很重要的。蒸汽系统的排空气阀(同热静力蒸汽疏水阀的工作原理)应布置在冷凝水液面之上,这样只有蒸汽/空气的混合气体到达排空气阀。最佳的安装位置是在蒸汽主管的末端,如图10.5.1所示。压力平衡式排空气阀 空气排至安全位置 蒸汽主管 排至安全位置 图10.5.1 蒸汽主管的末端疏水和排空气 冷凝水 排空气阀的排放气体口应连接至安全的地方。实际应用中,如果冷凝水水管能靠重力流向开口箱,则可以考虑将排气管接入冷凝水水管。除了在主管末端安装排空气阀,还应安装在以下地方:与倒吊桶疏水阀平行安装,或者在有些实例中,与热动力疏水阀并行安装。这些疏水阀在起机阶段的排空气性能较差。在很苛刻的蒸汽空间(例如蒸汽进入夹套锅的对面)。蒸汽/空气混合气体影响工艺制程品质的大型蒸汽空间(如高压杀菌锅)。 降低热损失 即使蒸汽主管的暖管过程结束,蒸汽也会由于辐射散热损失而继续冷凝。冷凝率取决于蒸汽温度、环境温度以及管道保温效率。要使蒸汽分配系统高效,应当采取适当的措施来确保热损失减小到最低程度。最经济的保温厚度根据以下几个因素:安装成本蒸汽携带的能量 10.5.2 蒸汽和冷凝水系统手册 第10章蒸汽分配 排空气、散热损失和管道标准总结

相关主题