搜档网
当前位置:搜档网 › 基于振动分析的内燃机故障诊断分析(新版)

基于振动分析的内燃机故障诊断分析(新版)

基于振动分析的内燃机故障诊断分析(新版)
基于振动分析的内燃机故障诊断分析(新版)

基于振动分析的内燃机故障诊

断分析(新版)

Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management.

( 安全管理 )

单位:______________________

姓名:______________________

日期:______________________

编号:AQ-SN-0191

基于振动分析的内燃机故障诊断分析(新

版)

鉴于内燃机在结构和工作原理上比较的复杂,而且激励源和零部件也非常的多,因此,当内燃机出现了故障的时候,一般症状都比较复杂,故障信号也比较难检测,在进行诊断的时候便非常的困难。本文主要是从振动的角度对内燃机的故障进行了分析,首先,分析了内燃机的振动结构和振动特性,然后从振动分析的角度,探讨了如何对内燃机发生的故障进行诊断的问题。

内燃机在工业、农业等所需的机械设备中,属于比较重要的机械之一,尤其是在船舶、石油钻井、铁路、汽车以及农业等方面得到了广泛的应用。从某种意义上来说,内燃机运行状态的优劣,直接的关系着整个机组的运行状态。所以,提高对内燃机运行状态的检测水平和故障诊断率,对于系统的安全、稳定运行来说,意义重

大。下面就从振动分析的角度,对内燃机的结构和振动特性以及故障的诊断问题等进行分析。

内燃机的振动结构和振动特性

由于内燃机在运行的时候,在各种力的激励下,很容易产生振动的现象,再经过不同的传递路径传递到内燃机的表面。因此,当内燃机的零件产生变化的时候,内燃机的表面振动现象也会呈现出不同的振动特性。在此基础上,专家们研究出了在从内燃机的振动特性进行内燃机故障的诊断。

内燃机属于热能动力机械范畴,在人们长期的实践和创新中,内燃机的主运动系统已经形成了由连杆、活塞和曲轴组成的结构可靠、生命力强的曲柄连杆结构为主的系统。再加上其他的辅助系统,便组成了内燃机的结构。按照气缸的排列形式,内燃机主要有V型内燃机和直列式内燃机两种。通常情况下,内燃机的结构一般由八大系统、四大结构组成。八大系统指的是启动系统、控制系统、燃气系统、点火系统、冷却系统、报警系统润滑系统和增压系统。四大结构指的是曲柄连杆机构、调速机构、配气机构和链条链轮的传

动机构等。

在内燃机里,由曲柄、连杆、活塞所组成的主动力结构,是内燃机的主要结构,在这个结构中,其作用力的来源主要有两方面,一方面是汽缸里气体的压力,另一方面是曲柄连杆的主要动力系统结构在运动过程中产生的惯性力。惯性力主要包括离心的惯性力、往复的惯性力和连杆的惯性力等三个方面。从动力学来看,内燃机的激振源非常的多,主要有燃烧激振源、活塞敲击激振、气门落座冲击、进排气阀在开启和节流时的冲击等。研究表明,内燃机的表面振动的时候,其特征首先表现在具有时域性和频域性的特征,其次,具有循环的周期性和循环间具有波动性,再次,在振动的时候还表现出非平稳时变的特征。

基于振动分析,进行内燃机故障的诊断

从振动特性的角度来看,在进行内燃机故障诊断的时候,具体的信号分析的方法主要有时域分析法、频域分析法以及人工神经网络法等。

首先,时域分析法指的是通过对检测到的时间历程上的信号,

在进行运算的基础上,其运算的结果仍在时域的范畴。一般来说,时域分析法主要包括时域的统计分析法、相关分析法以及包络分析法等。在对信号进行时域统计的时候,可以得到振动信号在时域上的统计参数,该参数获得的方法主要有方差标准差法、均值法、最小值和最大值法、偏斜度法以及峰-峰值法等。通过这种方法,我们可以总结出内燃机在整个循环中的正常信号,当点火过早和失火的时候发出的故障信号以及进气阀发生泄漏时的故障信号等。通过对各时域参数进行调查发现,正常时候的均方值较故障的时候大,正常时候的最大值较失火故障或点火过早的故障时较大,但是会比进气阀泄漏时候的最大值偏小,正常时候的最小值会比失火故障或点火过早的故障时偏小,但是会比进气阀泄漏的时候的最小值偏大。

其次,频域分析法指的是将时间定义为横坐标,当横坐标上的时域信号经过傅立叶转换成可以分解的频率信号的时候,我们可以从中得到关于原时域的信号频率的幅值以及相位信息等的一种分析法。对内燃机来说,通过对内燃机振动信号中的每个频率成分分析的基础上,总结出内燃机的零件在正常运行时候的频率特征,然后

浅谈内燃机振动问题

浅谈内燃机振动问题 内燃机是一种广泛应用的热能动力机械,在汽车、船舶等领域中,均作为主要原动力。随着内燃机向高速、轻型、大功率方向发展,其振动问题也日益受到关注。内燃机在工作过程中因受到多种激励的作用而产生复杂的振动,为更好地了解内燃机的振动,从而掌握内燃机的工作状况,针对内燃机部件振动、结构振动、轴系振动和整机振动的振动测试系统、信号处理技术和振动控制技术在不断地发展,其目的是能更精确地反映内燃机振动的真实情况,为内燃机的完善提供明确的指导方向。 本文旨在系统地阐述和内燃机振动相关的现有成果,分析现有方法的特点,以及展望内燃机振动问题的研究前景。 1 内燃机振动产生的机理及振动类型 1.1 振动产生的机理 由于内燃机的工作过程中存在着多种激振力,导致了内燃机的振动。这些激振力可分为由于燃烧发生的直接激振力和由于发动机机械工作发生的间接激振力。只要内燃机运动,本身就存在的激振力,称之为直接激振力,它包括:气缸内的气体压力(燃烧力)、曲柄连杆机构的重力及其惯性力。在直接激振力作用下,而再次激发的力,称之为间接激振力,通常有活塞敲击、正时齿轮、气门系及燃油喷射系振动。由于激振力的耦合,导致内燃机的振动具有频带宽、形态复杂、非平稳等特点。 1.2 振动类型 内燃机的振动类型通常按照研究重点的不同划分为结构振动、部件振动、轴系扭转振动和整机振动。 1.2.1 结构振动和部件振动 结构振动主要是指实际上具有弹性的内部结构部件,如活塞、连杆、曲轴、机体等,在燃烧气体力和惯性力作用下所激起的多种形式的弹性振动,它是诱发内燃机燃烧噪声和活塞敲击噪声的根源。内燃机的部件很多,它们的振动形式更是多种多样,最常见的是配气系统振动和缸套振动。前者会破坏气门的正常工作,后者将引起缸套的穴蚀。就进排气管的气流震荡是部件振动的另一种形式,它对进排气过程乃至内燃机的整个工作性能都有较大的影响。 郭智威[1]对比了不同缸套表面处理对柴油机机体振动的影响,指出缸套表面规则凹坑处理有利于降低机体振动。郭文勇[2]研究了柴油机缸套磨损故障的机体振动监测,得到结论,当缸套间隙正常或中等磨损时,机体振动的增长速度较慢;严重磨损时,振动特征参数值明显增大;如果缸套处于破坏性磨损程度时还继续工作,机体振动则呈指数式增长。上官文斌[3]以汽车排气系统吊耳的垂向动态载荷最小和其静变形量在一定范围内为优化目

内燃机设计复试题目

1.10年笔试部分: 第一题是判断与选择混合的题目,即二选一。与往年差不多,但又加上了几个新题型。大体是以下内容。 (1)发动机气缸盖在什么时候受力最大? (2)为避免发生共振,应提高机体频率还是减低机体频率? 不好意思,记不起来了,呵呵。 第二题名词解释:系统误差和压电效应。 第三题是综合体:全新内容。 (1)测量发动机上止点位置时,通常使用哪几种方法,各有什么特点? (2)发动机和测功机的匹配问题,就是给出发动机的转速和功率(比如1000min/s,2000kw),再给出测功机的转速和功率(比如1000min/s,1800kw,也即测功机的各项数据都小于发动机的),问是否满足上述条件的任何测功机都适用于上述发动机。 (3)二缸,三缸,四缸,六缸发动机再曲轴上安装平衡重的作用是否相同,为什么。 (4)给出进排气门提前角和迟闭角四个数据,以及配气相位图,问同缸异门的凸轮轴中心线夹角是多少?(也不难,好好看看) 现代内燃机设计的流程是什么? 天津大学2009年硕士研究生复试面试题 一、专业题 1.汽油机在各种典型负荷下的过量空气系数为多少 2.柴油机的油耗为什么比汽油机低 3.发动机进、排气为何要早开晚闭 4.柴油机排放后处理的措施 5.提高充量系数的措施 6.汽油机为什么要精确控制过量空气系数 7.EGR是如何降低NOx的 8.增压中冷的作用 9.泵气损失包括哪些 10.柴油燃烧的两个必要因素:浓度和温度 11.作用在曲轴上的有害力矩 12.提高曲轴强度的措施 13.热力学三大定律

14.汽油机、柴油机的温熵图(一般问热能或热物理专业跨过来考的学生) 15.发动机的负荷、速度特性实验 16.雷诺数是用来干什么的 二、实践能力 1.做过哪些实验及某个实验的相关问题 2.拆装发动机的过程 3.去过什么工厂实习及其相关问题 4.金工实习相关问题 三、英语口语 1. 为何选择天津大学 2.毕业论文的课题是什么,你将如何展开进行 3.你对内燃机国家重点燃烧实验室有哪些了解 4.你来自哪个学校 5.你的兴趣爱好 6.与工作过的同学相比,你有哪些优势 08年的笔试题 一:填空: 1.内燃机滑动轴承的承载油膜是由油楔油膜和挤压油膜两种油膜组成。 2.内燃机常规实验中需要监控冷却水温度、机油温度、机油压力。 3.内燃机的耐久性通常用大修期来表示,一般取决于缸套以及曲轴轴颈的磨损速率。 4.内燃机启动方式有手启动和电启动以及空气启动。

基于振动分析的内燃机故障诊断分析示范文本

基于振动分析的内燃机故障诊断分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

基于振动分析的内燃机故障诊断分析示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 鉴于内燃机在结构和工作原理上比较的复杂,而且激 励源和零部件也非常的多,因此,当内燃机出现了故障的 时候,一般症状都比较复杂,故障信号也比较难检测,在 进行诊断的时候便非常的困难。本文主要是从振动的角度 对内燃机的故障进行了分析,首先,分析了内燃机的振动 结构和振动特性,然后从振动分析的角度,探讨了如何对 内燃机发生的故障进行诊断的问题。 内燃机在工业、农业等所需的机械设备中,属于比较 重要的机械之一,尤其是在船舶、石油钻井、铁路、汽车 以及农业等方面得到了广泛的应用。从某种意义上来说, 内燃机运行状态的优劣,直接的关系着整个机组的运行状

态。所以,提高对内燃机运行状态的检测水平和故障诊断率,对于系统的安全、稳定运行来说,意义重大。下面就从振动分析的角度,对内燃机的结构和振动特性以及故障的诊断问题等进行分析。 内燃机的振动结构和振动特性 由于内燃机在运行的时候,在各种力的激励下,很容易产生振动的现象,再经过不同的传递路径传递到内燃机的表面。因此,当内燃机的零件产生变化的时候,内燃机的表面振动现象也会呈现出不同的振动特性。在此基础上,专家们研究出了在从内燃机的振动特性进行内燃机故障的诊断。 内燃机属于热能动力机械范畴,在人们长期的实践和创新中,内燃机的主运动系统已经形成了由连杆、活塞和曲轴组成的结构可靠、生命力强的曲柄连杆结构为主的系统。再加上其他的辅助系统,便组成了内燃机的结构。按

有限元与机械振动及故障诊断的关系

有限单元法与机械振动及故障诊断的关系 随着机械向轻量化方向发展,构件的柔度加大;随着机械向高速化方向发展,惯性力急剧增大。在这种情况下,构件的弹性变形可能给机械的运动输出带来误差。在高速、精密机械设计中,为了保证机械的精确度和稳定性,就必须计入这种弹性变形对精度的影响。机械系统柔度加大,系统固有频率下降;而机械运转速度提高,激振频率上升,这种变化使许多机械出现较强振动现象的危险增加了,而振动既破坏机械的运动精度,又影响构件的的疲劳强度,并加剧运动副中的磨损,因此,出现了计入构件弹性的动力分析方法,即弹性动力分析,很多大型机械系统的振动也被分析研究,并为机械故障诊断奠定了理论基础。构件产生振动时,其变形和受力状况非常复杂,弹性动力学给出的微分方程导不出解析解,有限单元法是一种非常有效的数值分析方法,所得的解可以足够逼近于精确值,它使弹性动力学获得了新的、巨大的生命力。 有限单元法的基本思想是将一个连续弹性体看成是由若干个基本单元在节点彼此相连接的组合体,从而使一个无限自由度的连续问题变成一个有限自由度的离散系统问题。有限元求解问题的基本步骤通常为: 第一步:待求解域离散化:将求解域或连续体近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。 第二步:选择插值函数:选择适当的插值函数以表达单元内的场变量的变化规律。场变量可以是标量、向量或者高阶张量。常数多项式为场变量的近似表达式,多项式的阶数取决于单元的节点数、节点的自由度数,以及单元间边界的变量协调性等。场变量及其导数都可以作为节点的未知量。 第三步:形成单元性质的矩阵方程:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成刚度矩阵。 第四步:形成整体系统的矩阵方程:将单元总装形成离散域的总矩阵方程,反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数连续性建立在结点处。 第五步:约束处理求解系统方程:利用系统矩阵方程建立求解方程组,引入边界条件,即约束处理,求解出结点上的未知场变量。 运用有限单元法可获得足够逼近于精确值的解,从而可获得反映设备实际运行状况的振动信号,其时域、频域和幅值域分析结果对于机器故障的准确判断具有重要意义。因此,在机械日益轻量化、高速化的趋势下,有限单元法显得极为重要,而准确的机械振动分析及故障诊断,更需要以有限单元法为支撑。

机械故障诊断案例分析

六、诊断实例 例1:圆筒瓦油膜振荡故障的诊断 某气体压缩机运行期间,状态一直不稳定,大部分时间振值较小,但蒸汽透平时常有短时强振发生,有时透平前后两端测点在一周内发生了20余次振动报警现象,时间长者达半小时,短者仅1min左右。图1-7是透平1#轴承的频谱趋势,图1-8、图1-9分别是该测点振值较小时和强振时的时域波形和频谱图。经现场测试、数据分析,发现透平振动具有如下特点。 图1-7 1*轴承的测点频谱变化趋势 图1-8 测点振值较小时的波形与频谱

图1-9 测点强振时的波形和频谱 (1)正常时,机组各测点振动均以工频成分)幅值最大,同时存在着丰富的低次谐波成分,并有幅值较小但不稳定的(相当于×)成分存在,时域波形存在单边削顶现象,呈现动静件碰磨的特征。 (2)振动异常时,工频及其他低次谐波的幅值基本保持不变,但透平前后两端测点出现很大的×成分,其幅度大大超过了工频幅值,其能量占到通频能量的75%左右。 (3)分频成分随转速的改变而改变,与转速频率保持×左右的比例关系。 (4)将同一轴承两个方向的振动进行合成,得到提纯轴心轨迹。正常时,轴心轨迹稳定,强振时,轴心轨迹的重复性明显变差,说明机组在某些随机干扰因素的激励下,运行开始失稳。 (5)随着强振的发生,机组声响明显异常,有时油温也明显升高。 诊断意见:根据现场了解到,压缩机第一临界转速为3362r/min,透平的第一临界转速为8243r/min,根据上述振动特点,判断故障原因为油膜涡动。根据机组运行情况,建议降低负荷和转速,在加强监测的情况下,维持运行等待检修机会处理。 生产验证:机组一直平稳运行至当年大检修。检修中将轴瓦形式由原先的圆筒瓦更改为椭圆瓦后,以后运行一直正常。 例2:催化气压机油膜振荡 某压缩机组配置为汽轮机十齿轮箱+压缩机,压缩机技术参数如下: 工作转速:7500r/min出口压力:轴功率:1700kW 进口流量:220m3 /min 进口压力:转子第一临界转速:2960r/min 1986年7月,气压机在运行过程中轴振动突然报警,Bently 7200系列指示仪表打满量程,轴振动值和轴承座振动值明显增大,为确保安全,决定停机检查。

振动检测与故障诊断技术

振动检测是状态检测的手段之一,任何机械在输入能量转化为有用功的过程中,均会产生振动;振动的强弱与变化和故障有关,非正常的震动感增强表明故障趋于严重;不同的故障引起的振动特征各异,相同的振动可能是不同的故障;振动信号是在机器运转过程中产生的,就可以在不用停机的情况下检测和分析故障;因此识别和确定故障的内在原因需要专门的一起设备和专门的技术人才。 1、机械振动检测技术 机械运动消耗的能量除了做有用功外,其他的能量消耗在机械传动的各种摩擦损耗之中并产生正常振动,其他的能量消耗在机械传动的各种摩擦损耗之中并产生正常振动,如果出现非正常的振动,说明机械发生故障。这些振动信号包含了机械内部运动部件各种变化信息。分辨正常振动和非正常振动,采集振动参数,运用信号处理技术,提取特征信息,判断机械运行的技术状态,这就是振动检测。 所以由此看来,任何机械在输入能量转化为有用功的过程中,均会产生振动;振动的强弱与变化和故障有关,非正常的震动感增强表明故障趋于严重;不同的故障引起的振动特征各异,相同的振动可能是不同的故障;振动信号是在机器运转过程中产生的,就可以在不用停机的情况下检测和分析故障;因此识别和确定故障的内在原因需要专门的一起设备和专门的技术人才。 2、振动监测参数与标准 振动测量的方位选择 a、测量位置(测点)。 测量的位置选择在振动的敏感点,传感器安装方便,对振动信号干扰小的位置,如轴承的附近部位。 b、测量方向。 由于不同的故障引起的振动方向不同,一般测量互相垂直的三个方向的振动,即轴向(A向)、径向(H 向、水平方向)和垂直方向(v向)。例如对中不良引起轴向振动;转子不平衡引起径向振动;机座松动引起垂直方向振动。高频或随机振动测量径向,而低频振动要测量三个方向。总之测量方向和数量应全面描述设备的振动状态。 测量参数的选择 测量振动可用位移、速度和加速度三个参数表述。这三个参量代表了不同类型振动的特点,对不同类型振动的敏感性也不同。 a、振动位移 选择使用在低频段的振动测量(<10HZ),振动位移传感器对低频段的振动灵敏。在低频段的振动,振动速度较小,可能振动位移很大,如果振动产生的应力超过材料的许用应力,就可能发生破坏性的故障。b、振动速度 选择使用在中频段的振动测量(10~1000hz)。在大多数情况下转动机械零件所承受的附加载荷是循环载荷,零件的主要失效形式是疲劳破坏,疲劳强度的寿命取决于受力变形和循环速度,既和振动位移与频率有关,振动速度又是这两个参数的函数,振动能量与振动速度的平方成正比。所以将振动速度作为衡量振动严重程度的主要指标。 c、振动加速度 选择使用在高频段的振动测量(>1000hz)。当振动频率大于1000hz时,动载荷表现为冲击载荷,冲击动能转化为应变能,使材料发生脆性破坏。多用于滚动轴承的检测。 以上三这三个参量可以互为辅助性的补充和参考。 振动判定标准 a、绝对判断标准。此类标准是对某机器长期使用、维修、测试的经验总结,由行业协会或国家制订图表形式的标准。使用时测出的振动值与相同部位的判断标准的数值相比较来做出判断。一般这类标准是针对某些类型重要回转机械而制订的。例如国际通用标准ISO02372和ISO3945。 b、相对判断标准。对于同一设备的同一部位定期进行检测,按时间先后作出比较,以初始的正常值为标准,以实测振动值超过正常值的多少来判断。

现代控制理论在内燃机振动主动控制中的应用_王宝林

第37卷 第6期2008年12月 小型内燃机与摩托车 S MALL I N TERNAL COMBUSTI O N ENGI N E AND MOT ORCYCLE Vol.37No.6 Dec.2008 现代控制理论在内燃机振动主动控制中的应用 王宝林1 于镒隆2 王 爽3 (1-天津大学内燃机研究所 天津 300072 2-天津大学内燃机燃烧学国家重点实验室 3-天津朝霞摩托车技术开发有限公司) 摘 要:内燃机的振动是有害的,为了克服这类有害的振动,人们已经开始研究主动控制振动的途径。本文简述了现代控制理论在内燃机振动主动控制领域的应用现状,阐述了各种控制理论与内燃机振动系统的关系。本文以现代控制理论中有代表性的最优控制、自适应控制、鲁棒控制为重点分析了现代智能控制理论在振动系统控制中应用的可能性与发展,指出了内燃机振动主动控制领域今后一段时间内的研究重点与方向。 关键词:内燃机振动 主动控制 现代控制理论 现状与发展 中图分类号:TK411.6 文献标识码:A 文章编号:1671-0630(2008)06-0092-05 The Appli ca ti on of M odern Con trol Theory on Acti ve Con trol of Eng i n e V i bra ti on W ang Baoli n1,Y u Y ilong2,W ang Shuang3 1-Tianjin I nternal Co mbusti on Engine Research I nstitute,Tianjin University(Tianjin,300072) 2-State Key Laborat ory of Engines,Tianjin University 3-Tianjin Zhaoxia Mot orcycle Technol ogy Devel opment Co.,L td. Abstract:Engine vibrati on is har mful.To avoid this kind of vibrati on,peop le are l ooking f or the way t o con2 tr ol the vibrati on actively.This paper intr oduces the app licati on status of modern contr ol theory on active con2 tr ol of engine vibrati on,and expounds the relati onshi p bet w een vari ous contr ol theories and the engine vibra2 ti on syste m.Taking op ti m al contr ol,adap tive contr ol and r obust contr ol as rep resentatives of modern contr ol theory,the p r obability and devel opment of modern contr ol theory’s app licati on on vibrati on syste m contr ol are analyzed,and the research e mphasis and directi on of active contr ol of engine vibrati on are put f or ward. Keywords:Engine vibrati on,Active contr ol,Modern contr ol theory,Status and devel opment 引言 内燃机的振动是有害的。对于有害的振动,人们总是在想方设法将其消减甚至消除。消减振动一般从两个方面着眼:一是耗散振动能,二是抑制激振力。耗能的方法有加装阻尼摩擦片、附带质量冲击块;抑制激振力的方法有提高系统刚度、加装动力减振器或是主动对振动系统施加同频反向的抑振力。通过控制系统对振动主体主动施加抑振力即振动的动态控制(也称有源控制、主动控制)。该控制系统一般由振动体(内燃机振动系统如曲轴)、振动信息采集器(对于旋转振动系统多用涡流传感器和光电传感器,对于整机多用弹簧质量加速度传感器)、变送器、处理器、控制器、执 作者简介:王宝林(1953-),男,工程师,主要从事摩托车检测与控制技术研究。

发动机噪声与振动

发动机运转时,燃烧噪声,机械噪声和空气动力噪声是主要噪声源。 通常把燃烧时气缸压力通过活塞、连杆、曲轴、主轴承传至机体,以及通过气缸盖等引起发动机结构表面振动而辐射出来的这部分噪声,称为燃烧噪声。发动机的燃烧噪声,是在气缸中产生的。燃烧过程中,气缸内的压力波冲击燃烧室壁,气体自身产生的振动,这种振动及辐射噪声呈高频特性。气缸内压力在一个工作循环内呈周期变化,激起气缸内部机件的振动,其频率与发动机转速有关,通过发动机机体向外辐射噪声,这种振动及辐射噪声呈低频特性。其强弱程度,取决于压力增长率及最高压力增长率的持续时间。 发动机的机械噪声,是指在气体压力和惯性力的作用下,使运动部件产生冲击和振动而激发的噪声。主要有活塞敲击噪声、供油系噪声、配气机构噪声、正时系统噪声、辅机系统噪声、轴承噪声、不平衡惯性力引起的机体振动和噪声等。发动机工作时,由于冲击、摩擦、旋转不均匀和不平衡力作用等原因,激起零部件的机械振动而产生噪声。特别是当激振力频率与零部件的固有频率相一致时,会引起激烈的共振和噪声。发动机的机械噪声随转速的提高而迅速增加。 空气动力噪声,是气体流动(如周期性进气、排气)或物体在空气中运动,空气与物体撞击,引起空气产生的涡流,或者由于空气发生压力突变,形成空气扰动与膨胀(如高压气体向空气中喷射)等而产生的噪声。一般说来,空气动力噪声是直接向大气辐射的。主要分成进气噪声、排气噪声和风扇噪声。 汽车噪音改善材料和方法: 1、发动机噪,路噪,胎噪都属于结构噪音,它的主要产生是震动,最合理的解决办法就是制震。加入减振板配合吸音垫,能很好解决路噪和胎噪。弓I擎噪这个问题我们应理性去看待,引擎声的大小随发动机转速的不同而产生程度不同的噪音,它没有一个恒定的标准,但是,引擎的转速是由车辆行驶状态和驾驶人员操控的。对引擎的声音除了驾驶人员的控制外,汽车隔音工程还能再进一步的改善,具体施工部分如下:(1)引 擎盖的施工能延缓前盖板因温度过高而掉漆,并能减少发动机噪音通过上盖传出的噪音。(2)挡火墙内外部分施工可改善引擎发动后低频音的传入。施工后引擎声变得更加纯净,驾驶人员会有更好的操纵感。如果要引擎声有较明显的改善,施工部分是比较复杂的,具有一定高难度的作业,具体施工部分与步骤有以下几点:①拆开仪表台,完全处理挡火墙内部②卸下发动机,完全处理档火墙外部这个施工对引擎噪音的减少 效果是比较明显的,但是施工过程可能会对车体原有设备造成改变和影响,笔者一般不建议对此部分进行施工操作,对于引擎声应理性善待,不应过分追求引擎声的控制,让引擎发挥它应有的动力感。 2、路噪和胎噪是因为轮胎和路面摩擦产生震动和噪音,所以减震是最好的方法,用减振板或专用减振板和吸音垫及车门密封条对叶子板和车地板及车门进行全面施工可以从减震、吸音、隔音三个源头改善胎噪和路噪。 3、风噪是因为风的压力超过车门的密封抗阻力而形成,所以加强密封阻力是最直接最根本的解决方法,车门密封条和内心密封条就能很好解决这一问题。

振动检测与故障诊断分析

概述 对旋转设备而言,绝大多数故障都 是与机械运动或振动相密切联系的,振 动检测具有直接、实时和故障类型覆盖 范围广的特点。因此,振动检测是针对 旋转设备的各种预测性维修技术中的核 心部分,其它预测性维修技术:如红外 热像、油液分析、电气诊断等则是振动 检测技术的有效补充。 相关仪器-----测振仪 VIB05 来自中国祺迈KMPDM的VIB05多功能振动检测仪是 基于微处理器最新设计的机器状态监测仪器,具备有振动 检测,轴承状态分析和红外线温度测量功能。其操作简单, 自动指示状态报警,非常适合现场设备运行和维护人员监 测设备状态,及时发现问题,保证设备正常可靠运行。 振动测量 VIB05可测量振动速度,加速度和位移值。当保持振 动速度读数时,仪器立即比较内置的ISO10816-3振动标准,自动指示机器报警状态。 轴承状态检测 VIB05可测量轴承状态BG值和BV值,它们分别代表高频振动的加速度和振动速度有效值。当保持轴承状态读数时,仪器按内置的经验法则自动指示轴承报警状态。 振动检测仪是测量物体振动量大小的仪器,在桥梁、建筑、地震等领域有广泛的 应用。振动检测仪还可以和加速度传感器组成振动测量系统对物体加速度、速度和位 移进行测量。

VIB07 来自中国祺迈KMPDM的VIB07多功能振动检测仪是基 于微处理器最新设计的机器状态监测仪器,具备有振动检测, 轴承状态分析和红外线温度测量功能。其操作简单,自动指 示状态报警,非常适合现场设备运行和维护人员监测设备状 态,及时发现问题,保证设备正常可靠运行。 主要特点 1、测振仪设计先进,具有功耗低、性能可靠、造型美 观、使用携带极为方便的特点。 2、按国标制造,测量值与国际振动烈度标准(ISO2372)比对可直接判断设备运行状态。 3、高可靠性的环形剪切加速度传感器,性能远远优于压缩式传感器。 4、具有高低频分档功能,在振动测量时,便于识别设备故障类型。 5、备有信号输入功能,配接温度传感器,即可测量温度。 6、备有信号输出功能,选配专用耳机,兼具设备听诊器功能;配接示波器、可用来监测、记录振动信息。 7、按振动传感器与主机的连接方式分为一体式和分体式供您选择。 8、适用于各类机械的振动、温度测量。 动平衡仪-----KMBalancer现场动平衡仪 现场动平衡分析仪KMBALancer是KMPDM 祺迈公司的产品。它嵌入式计算机技术和动平衡技 术,兼备现场振动数据测量、振动分析和单双面动 平衡等诸多功能,简捷易用。是工矿企业预知保养 维修,尤其是风机、电动机等设备制造厂和振动技 术服务机构最为理想之工具。它是美国尖端科技产 品。

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

振动分析仪之设备状态监测与故障诊断的三个阶段

振动分析仪之设备状态监测与故障诊断的三个阶段 与故障诊断技术的实质是了解和掌握设备在运行过程中的状态,评价、预测设备的可靠性, 早期发现故障,并对其原因、部位、危险程度等进行识别,预报故障的发展趋势,并针对具 体情况作出决策。由此可见,设备状态监测与故障诊断技术包括识别设备状态监测和预测发 展趋势两方面的内容。具体过程分为状态监测、分析诊断和治理预防三个基本环节。 1.状态监测 状态监测是在设备运行中,对特定的特征信号进行检测、变换、记录、分析处理并显示、记录,是对设备进行的基础工作。检测的信号主要是机组或零部件在运行中的各种信息(振动、噪声、转速、温度压力、流量等),通过利用如机械状态分析仪VIB07这种类型仪器的把这 些信息转换为电信号或其他物理信号,送入信号处理系统中进行处理,以便得到能反映设备 运行状态的特征参数,从而实现对设备运行状态的监测和下一步诊断工作。 2.分析诊断 分析诊断实际上包括两方面的内容:信号分析处理、故障诊断。 信号分析处理的目的是把获得的信息通过一定的方法进行变换处理,从不同的角度提取 最直观、最敏感、最有用的特征信息。分析处理可用专门的振动分析仪器,如VIB07或计算 机进行,一般情况下要从多重分析域、多个角度来分析观察这些信息。分析处理方法的选择、处理过程的准确性以及表达的直观性都会对诊断结果产生较大影响。 故障诊断是在状态监测与信号分析处理的基础上进行的。进行故障诊断需要根据状态监 测与信号分析处理所提供的能反映设备运行状态的征兆或特征参数的变化情况,有时还需要 进一步与某些故障特征参数进行比较,以识别设备是在运转正常还是存在故障。如果存在故障,要诊断故障的性质和程度、产生原因或发生部位,并预测设备的性能和故障发展趋势。 这是设备诊断的第二阶段。 如VIB07振动分析仪,兼备振动分析软件CM-Trend,可软件形成具有机器振动状态数据采集,数据管理,状态报警,故障诊断和趋势分析功能的基本预测维修系统。软件为使用者 提供一个方便灵活的工作平台,使其能够管理机器状态数据,进行日程数据采集,评价机 器状态,分析机器故障并提出预测维修报告。 3.治理预防 治理预防措施是在分析诊断出设备存在异常状态,即存在故障时,就其原因、部位和危 险程度进行研究并采取治理措施和预防的办法。通常包括调整、更换、检修、改善等方面的 工作。如果经过分析认为设备在短时间内尚可继续维持运行时,那就要对故障的发展加强监测,以保证设备运行的可靠性。根据设备故障情况,治理预防措施有巡回监测、监护运行、 立即停机检修三种。 与故障诊断技术的实质是了解和掌握设备在运行过程中的状态,评价、预测设备的可靠性, 早期发现故障,并对其原因、部位、危险程度等进行识别,预报故障的发展趋势,并针对具 体情况作出决策。由此可见,设备状态监测与故障诊断技术包括识别设备状态监测和预测发 展趋势两方面的内容。具体过程分为状态监测、分析诊断和治理预防三个基本环节。 1.状态监测

内燃机发动机噪声文献综述

内燃机燃烧噪声与机械噪声对整机噪声影响综述在整车噪声中,发动机运行产生的噪声比例最大,尤其是在卡车或柴油机车上,发动机噪声占整车噪声的75%以上。2002年7月阎效东[12]综述了车用内燃机噪声控制技术的发展历程、现状和最新发展趋势,指出我国内燃机噪声控制技术在保护环境中的地位,也提到内燃机由很多零部件组成,它们刚性地连接在一起,相互作用产生噪声,所以识别内燃机噪声就变得很困难。 内燃机噪声一般可以分为机械噪声、燃烧噪声和空气动力性噪声,空气动力性噪声又包括进气噪声和排气噪声,它们可以通过消声器来控制,其中机械噪声和燃烧噪声合称为内燃机表面噪声[1]。由于不同噪声产生的机理不同,控制的方法也有所不同,所以正确识别和分离内燃机噪声源是开展发动机噪声控制的基础。其中燃烧噪声是从机体表面辐射出的噪声,它是由于气缸内压力突然增大,发动机各机械零部件相互碰撞产生振动进而引发出的噪声。空气动力性噪声主要是指进气噪声、排气噪声,由于这些声辐射源空间位置分隔较远,容易进行识别。但机械噪声和燃烧噪声都发生于内燃机内部并经内燃机结构表面向外辐射,两者在发生的时间、空间、传播的途径和信号的基本频域特征等方面都重叠交织在一起,如何识别和分离这两类噪声并计算其对整机噪声的贡献度是柴油机噪声控制领域的重要任务之一[6]。 传统的识别方法多是用来识别发动机的主要辐射噪声部件,但不能识别辐射噪声的类型。新型方法可以分离柴油机的燃烧噪声与机械噪声,并识别出了柴油机在不同的运行工况下燃烧噪声与机械噪声对整机噪声声功率的贡献度。除了进排气噪声,柴油机的主要噪声是燃烧噪声和机械噪声。当我们测量整机声功率和燃烧噪声声功率时,机械噪声声功率就可以通过整机声功率减去燃烧噪声声功率得到,进而燃烧噪声和机械噪声占整机噪声的比例就可以通过燃烧噪声声功率或者机械噪声声功率求得。有文献研究表明,在高辐射噪声运行工况时,机械噪声是发动机噪声的主要成份,因此,针对柴油机的噪声控制首先要控制柴油机的机械噪声。 国内外学者对内燃机噪声源识别做了一些研究[2-5],目前国内采用较多的是分别运行法[3]和盲源分离技术[5]等。 文献[3]魏凯等通过研究摩托车发动机的振动发现,发动机转速不变时,随

大型动力系统轴系低频振动及其主动控制的研究

第24卷第4期 2004年8月 动力工程 POW ER EN G I N EER I N G V o l .24N o.4  A ug .2004  收稿日期:2003210214 修订日期:2004203221 作者简介:张俊红(19622),女,博士,天津大学机械工程学院副教授,硕士生导师。目前,主要从事动力系统现代设计、动力系统振动与噪声及其主动控制等方面的研究工作。 文章编号:100026761(2004)0420457204 大型动力系统轴系低频振动及其主动控制的研究 张俊红, 于镒隆 (天津大学,天津300072) 摘 要:从国内外现状、技术水平与特点等方面综述大型动力系统轴系低频振动的研究情况。总结了前人在轴系振动方面的研究成果,探讨未来的发展方向,指出了轴系低频振动研究上存在的问题以及轴系低频振动研究在动力学分析、测试技术、控制技术方面的发展趋势。参12关键词:动力机械工程;低频振动;主动控制;发展趋势;旋转轴系;动力系统中图分类号:T K 263.2 文献标识码:A Re s e a rch on Low F re que ncy V ib ra tion a nd Ac tive C ontro l of S ha fts in the La rge P ow e r S ys tem ZH A N G J un 2hong , YU Y i 2long (T ian jin U n iv .,T ian jin 300072,Ch ina ) Abs tra c t :T h is p ap er gives the general exp atiati on of the developm en t of the low frequency vib rati on of shafts in the large pow er system from the p u rpo se and sign ificance of the study ,the p resen t conditi on of dom estic and in ternati onal research ,and techn ique characteristics and levels ,and so on .It m akes a sum 2m ary of the research resu lts of the vib rati on of shafts attained by fo rm ers ,and discu sses the directi on of developm en t in the fu tu re ,and po in tes ou t the cu rren t p rob lem s and the developm en t trend of shafts the study on low frequency vib rati on of shafts in dynam ical analysis ,test techn ique and con tro l techn ique .R efs 12. Ke y w o rds :pow er and m echan ical engineering ;low frequency vib rati on ;active con tro l ;developm en t trend ;ro tating shafts ;pow er system 本文所指大型动力系统低频振动是(诸如汽轮机、水轮机、燃气轮机、工程车用柴油机、船舶用内燃机、直升机旋翼系统等)大型动力机械的振动幅值较强、振动频率较低(不超过150H z ,一般为0.1~50H z ,系统固有频率较低或者振动频率低于系统固有频率)、破坏性较大的振动。目前,认识到产生低频 振动的原因来自两个方面:①振动固有频率较低、幅值较大的柔弹性体因素,即随着动力机械向大型化、 轻量化方向的发展,其组成零部件的柔度不断加大, 系统的固有频率逐渐降低;同时,随着动力机械向高速化方向的发展,转动件惯性力急剧加大,激振频率上升。在这种情形下,原本按刚性件设计的动力系统实际运转时表现出弹性体特征,引用弹性动力学分析(E lasto 2D ynam ic A nalysis )理论进行分析研究时发现存在低频振动;②柔性激励因素,即某些非稳定的柔性激励(比如燃气轮机的蒸汽激励、水轮机的水流冲刷激励、内燃机的进排气波动、直升机螺旋桨空气扰动、大型鼓风机空气扰动、轴承油膜参数激励等)引起的与负荷变动有关而与运转速度无关的、频率低于系统固有频率的振动。

振动监测与故障诊断

压电式:必须使所测信号最高频率位于幅频特性曲线水平段,有足够高的共振频率 内置IC的集成加速度传感器,恒流供电阻抗变换方式,对电缆铺设要求不高 非集成式:电压干扰进入通道,要求该电容不随机壳振动而变化。因而必须紧贴机壳固定,使耦合电容值最小且不变。 应变式:粘贴式:加电桥线路,温度补偿。 非粘贴式:不粘贴于弹性元件,直接贴在活动。质量块与基座之间。电阻变化反应灵敏度高,低频特性好,稳定,易受温度湿度影响。 安装方式:绝缘:1钢螺栓安装(绝缘螺栓,钢螺栓)2双面胶(AB 胶,502胶,不耐高温,可用丙酮、酒精清洗)3石蜡(薄螺母)不耐高温 2·瞬时转速诊断内燃机故障原理 柴油机的瞬时转速是所有缸做功及负载共同作用的结果。 负载(包括轴带系,摩擦损失扭矩等)的扭矩TL为常数,即柴油机输出扭矩。 简化后,柴油机运动方程: 某缸做功能力↓,该缸转速波动峰值↓↓ 某缸做功能力↓,各缸之间转速波动率↑ 由波动率作功峰值变化+波动率峰值之间差值变化可检测单缸失火与功率不足故障,定位故障缸 转速波动原因:气体压力,往复惯性力 3·振动信号按频率范围分类,各振动考察什么物理量。 机械振动:1、低频振动(<10HZ)2、中频振动(10~100)3高频振动(>1000HZ) 低频:主要测量位移量-与应力相关 中频:主要测速度量-疲劳进程,振动能量正比于速度平方 高频:主要测量振幅是加速度。表征冲击力的强度 4·频谱分析 时间长度:T=N*△t,分析频率:fs=1/△t, 时间分辨率:△f=1/T,采样频率:fs=1/△t 频率分辨率:fc=Nf*△f,谱线数目参数:fs=2.5bfc,采样总数点:Nf=N/2或N/2.56 5·正常示功图的特征

基于振动分析的内燃机故障诊断分析(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 基于振动分析的内燃机故障诊 断分析(通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

基于振动分析的内燃机故障诊断分析(通 用版) 鉴于内燃机在结构和工作原理上比较的复杂,而且激励源和零部件也非常的多,因此,当内燃机出现了故障的时候,一般症状都比较复杂,故障信号也比较难检测,在进行诊断的时候便非常的困难。本文主要是从振动的角度对内燃机的故障进行了分析,首先,分析了内燃机的振动结构和振动特性,然后从振动分析的角度,探讨了如何对内燃机发生的故障进行诊断的问题。 内燃机在工业、农业等所需的机械设备中,属于比较重要的机械之一,尤其是在船舶、石油钻井、铁路、汽车以及农业等方面得到了广泛的应用。从某种意义上来说,内燃机运行状态的优劣,直接的关系着整个机组的运行状态。所以,提高对内燃机运行状态的检测水平和故障诊断率,对于系统的安全、稳定运行来说,意义重

大。下面就从振动分析的角度,对内燃机的结构和振动特性以及故障的诊断问题等进行分析。 内燃机的振动结构和振动特性 由于内燃机在运行的时候,在各种力的激励下,很容易产生振动的现象,再经过不同的传递路径传递到内燃机的表面。因此,当内燃机的零件产生变化的时候,内燃机的表面振动现象也会呈现出不同的振动特性。在此基础上,专家们研究出了在从内燃机的振动特性进行内燃机故障的诊断。 内燃机属于热能动力机械范畴,在人们长期的实践和创新中,内燃机的主运动系统已经形成了由连杆、活塞和曲轴组成的结构可靠、生命力强的曲柄连杆结构为主的系统。再加上其他的辅助系统,便组成了内燃机的结构。按照气缸的排列形式,内燃机主要有V型内燃机和直列式内燃机两种。通常情况下,内燃机的结构一般由八大系统、四大结构组成。八大系统指的是启动系统、控制系统、燃气系统、点火系统、冷却系统、报警系统润滑系统和增压系统。四大结构指的是曲柄连杆机构、调速机构、配气机构和链条链轮的传

内燃机整机振动及隔离

内燃机整机振动及隔离 第一节 悬置软垫简介 动力总成是通过悬置软垫安装在汽车底盘上的,它承受着动力总成的质量,在受各种干扰力(如制动、加速等)作用的情况下,悬置软垫应能有效地限制其最大位移,以避免发生与邻近件的干涉,同时,它应具有良好的隔振作用,既要降低来自发动机的振动与冲击,也要降低来自路面的振动与冲击。总的来说,悬置软垫具有三大功能:支承、限位、隔振。  悬置软垫的弹性元件大多用天然橡胶或氯丁橡胶制成,天然橡胶要比其它合成橡胶疲劳寿命高,但氯丁橡胶对各种使用环境的兼容性好。此外,只有在遇到特别不利的场合,如工作环境温度过高,受油的污染严重等情况下,才应考虑使用腈橡胶、异丁橡胶和硅橡胶。  橡胶悬置的结构型式可做成压缩型、剪切型和复合型,如图3-1示,一般来说,压缩型的结构最为简单,复合型的结构制作复杂,成本较高,但其各向间的刚度可以任意确定。   移,态。成的质心,因此动力总成的垂直静负荷主要由后悬置承担,而前悬置主要承受扭

转负荷,因此一般后悬置的垂直刚度较大。 二十世纪八十年代开始,美国、日本等国 家的一些高级汽车、轿车上开始采用具有液力 阻尼的橡胶悬置,结构如图3-3示。柔性橡胶 悬置内有两个单独的油腔,并有一个可控制阻 尼的节流孔,油腔中封有一定粘性的液体,发 动机怠速旋转时,发动机振幅不大,液体可以 通过一阀门自由来回流动,汽车行驶中,如发 动机被激发产生大振幅的晃动,此时外界压力 把阀门关闭,迫使液体经节流孔流入低压油 腔,液流阻尼增加,从而抑制了发动机的大振 幅运动。这样,发动机在怠速和行驶中都很平 稳。 图3-3 液压悬置 第二节 整机振动的运动分析 一、 自由振动模态分析 研究内燃机整机振动的目 的是为了了解它的振动规律和 大小;考察悬置软垫或隔振器的 性能;研究环境对内燃机振动的 影响。 动力总成通常安装在隔 振装置(悬置软垫)上,即使是 刚性安装的动力总成,其支架、 地脚螺栓、乃至基础本身等都不 是绝对刚性,而具有一定的弹 性。因此在分析动力总成整机振 动时,通常将其简化为六自由度 的刚体运动模型,如图3-4示。 在对动力总成的质量、质心位置 及转动惯量、悬置主刚度已测定的基础上,可导出悬置系统的惯量阵与刚度阵,建立系统六自由度整机自由振动微分方程: 图3-4 整机振动模型 K 与悬置的安装坐标及角度、三个方向的弹性主刚度有关。 0.. M K Q Q +=x xy xz xy y yz xz yz z m m m M J J J J J J J J J ????????=??????????????????

相关主题