搜档网
当前位置:搜档网 › 图像识别方法及系统与相关技术

图像识别方法及系统与相关技术

图像识别方法及系统与相关技术
图像识别方法及系统与相关技术

本技术公开了一种图像识别方法及系统,包括获取目标图像;对输入的目标图像进行预处理;在预设的卷积神经网络结构中加入特征提取层增强卷积神经网络对于图像特征的提取能力,并将特征放大,将放大后的特征进行融合,获取特征融合后的特征表达;采用分类器对融合后的特征进行图像分类;对分类后的图像特征进行卷积操作学习辨认,得到卷积神经网络的输出。通过添加特征提取层,将图像特征放大并融合,有利于某些特征不明显的图像的提取,从而能够有效的提升图像识别率。

技术要求

1.一种图像识别方法,其特征在于,包括如下步骤:

步骤1,获取目标图像,所述目标图像为待识别的图像;

步骤2,对输入的目标图像进行预处理;

步骤3,在预设的卷积神经网络结构中加入特征提取层增强卷积神经网络对于图像特征的

提取能力,并将特征放大;

步骤4,将放大后的特征进行融合,获取特征融合后的特征表达;

步骤5,采用分类器对融合后的特征进行图像分类;

步骤6,对分类后的图像特征进行卷积操作学习辨认,得到卷积神经网络的输出。

2.根据权利要求1所述的图像识别方法,其特征在于,所述对目标图像进行预处理包括将目标图像转化为灰度图像,采取图像调整和直方图均衡化操作来增强图像对比度。

3.根据权利要求1所述的图像识别方法,其特征在于,所述步骤3的特征放大采用将特征点在RGB空间变换到HLS色彩空间,变换公式如下:

Vmax=max(R,G,B)

Vmin=min(R,G,B)

L = V

m a x + V min 2

S =

V max -

V min V max + V min

L < 0.5

V max -

V min 2 -

( V max +

V min ) L ≥ 0.5

H = 60 ( G - B ) / S

V max = R

120 + 60 (

B - R ) / S

V max = G 240 +

60 ( B - R )

/ S V

max = B

.

4.根据权利要求1所述的图像识别方法,其特征在于,所述分类器采用支持向量机。

5.一种基于权利要求1所述的图像识别方法的图像识别系统,其特征在于,包括图像获取模块、特征提取模块和结果输出模块,其中:

所述图像获取模块,用于获取目标图像,所述目标图像为待识别的图像,并对输入的目标图像进行预处理;

所述特征提取模块,用于通过在预设的卷积神经网络结构中加入特征提取层增强卷积神经网络对于图像特征的提取能力,将特征放大,并将放大后的特征进行融合,获取特征融合后的特征表达,采用分类器对融合后的特征进行图像分类;

所述结果输出模块,用于将对分类后的图像特征进行卷积操作学习辨认,得到卷积神经网络的输出。

6.根据权利要求5所述的图像识别系统,其特征在于,所述图像获取模块可以为手机或平板电脑。

技术说明书

一种图像识别方法及系统

技术领域

本技术属于图像识别技术领域,具体涉及一种图像识别方法及系统。

背景技术

图像识别就是用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。识别过程包括图像预处理、图像分割、特征提取和判断匹配。简单来说,图像识别就是计算机如何像人一样读懂图片的内容。借助图像识别技术,我们可以通过图片搜索更快的获取信息。

常规的图像识别技术主要是利用图像分类模型识别出图像中的物体,进而按照该物体的类别对该图片进行描述,具体的说就是从图像中提取出特征点,然后利用该特征来对图像进行识别。目前,被用于图像识别的主要方法有小波分析,支持向量机(SVM),遗传算法,神经网络算法等。

卷积神经网络(Constitutional Neural Networks,CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。卷积神经网络使用了针对图像识别的特殊结构,可以快速训练。但传统的卷积神经网络是把图像逐层映射,映射到最后一层提取特征结果,导致识别图像的效率和正确率不够。

技术内容

1、本技术的目的。

本技术提供了一种图像识别方法及系统,通过在卷积神经网络中加入特征提取层,将图像特征放大并融合,增强其特征提取能力,有利于某些特征不明显的图像的提取,从而能够有效的提升图像识别率。

2、本技术所采用的技术方案。

一种图像识别方法,包括如下步骤:

步骤1,获取目标图像,所述目标图像为待识别的图像;

步骤2,对输入的目标图像进行预处理;

步骤3,在预设的卷积神经网络结构中加入特征提取层增强卷积神经网络对于图像特征的提取能力,并将特征放大;

步骤4,将放大后的特征进行融合,获取特征融合后的特征表达;

步骤5,采用分类器对融合后的特征进行图像分类;

步骤6,对分类后的图像特征进行卷积操作学习辨认,得到卷积神经网络的输出。

进一步地,所述对目标图像进行预处理包括将目标图像转化为灰度图像,采取图像调整和直方图均衡化操作来增强图像对比度。

进一步地,所述分类器采用支持向量机;

基于以上图像识别方法的图像识别系统,包括图像获取模块、特征提取模块和结果输出模块。

所述图像获取模块,用于获取目标图像,所述目标图像为待识别的图像,并对输入的目标图像进行预处理。

所述特征提取模块,用于通过在预设的卷积神经网络结构中加入特征提取层增强卷积神经网络对于图像特征的提取能力,将特征放大,并将放大后的特征进行融合,获取特征融合后的特征表达,采用分类器对融合后的特征进行图像分类。

所述结果输出模块,用于将对分类后的图像特征进行卷积操作学习辨认,得到卷积神经网络的输出。

进一步地,所述图像获取模块可以为手机或平板电脑。

3、本技术的有益效果。

本技术与现有技术相比,其显著优点:

1)通过增加特征提取层,能够对于卷积神经网络的特征提取过程进行指导,增强了特征提取能力,提高识别效率;

2)对于输入的图像不需要过多的人工预处理。

附图说明

图1是图像识别方法的流程图;

图2是图像识别系统的框图。

具体实施方式

实施例

下面结合附图,对本技术的具体实施方式进行描述,图1为图像识别方法的流程图,包括以下步骤:

在步骤101中,获取目标图像,所述目标图像为待识别的图像。

在步骤102中,对输入的目标图像数据进行预处理,所述对目标图像进行预处理包括将目标图像转化为灰度图像,采取图像调整和直方图均衡化操作来增强图像对比度。

在步骤103中,在预设的卷积神经网络结构中加入特征提取层增强卷积神经网络对于图像特征的提取能力,并将特征放大;在本实施例中,特征点在RGB空间内不是特别的明显,通过变换色彩空间的方法对其特征进行放大,将原来的RGB数据变换到HLS色彩空间;

变换公式如下所示:

Vmax=max(R,G,B)

Vmin=min(R,G,B)

在步骤104中,将放大后的特征进行融合,获取特征融合后的特征表达。

在步骤105中,采用分类器对融合后的特征进行图像分类,该分类器采用支持向量机。

在步骤106中,对分类后的图像特征进行卷积操作学习辨认,得到卷积神经网络的输出。

基于以上识别方法的图像识别系统,如图2所示,包括图像获取模块201、特征提取模块202和结果输出模块203。

图像获取模块201,用于获取目标图像,所述目标图像为待识别的图像,并对输入的目标图像进行预处理。

特征提取模块202,用于通过在预设的卷积神经网络结构中加入特征提取层增强卷积神经网络对于图像特征的提取能力,将特征放大,并将放大后的特征进行融合,获取特征融合后的特征表达,采用分类器对融合后的特征进行图像分类。

结果输出模块203,用于将对分类后的图像特征进行卷积操作学习辨认,得到卷积神经网络的输出。

所述图像获取模块可以为手机或平板电脑。

上述实施例不以任何方式限制本技术,凡是采用等同替换或等效变换的方式获得的技术方案均落在本技术的保护范围内。

机器视觉与图像处理方法

图像处理及识别技术在机器人路径规划中的一种应用 摘要:目前,随着计算机和通讯技术的发展,在智能机器人系统中,环境感知与定位、路径规划和运动控制等功能模块趋向于分布式的解决方案。机器人路径规划问题是智能机器人研究中的重要组成部分,路径规划系统可以分为环境信息的感知与识别、路径规划以及机器人的运动控制三部分,这三部分可以并行执行,提高机器人路径规划系统的稳定性和实时性。在感知环节,视觉处理是关键。本文主要对机器人的路径规划研究基于图像识别技术,研究了图像处理及识别技术在路径规划中是如何应用的,机器人将采集到的环境地图信息发送给计算机终端,计算机对图像进行分析处理与识别,将结果反馈给机器人,并给机器人发送任务信息,机器人根据接收到的信息做出相应的操作。 关键词:图像识别;图像处理;机器人;路径规划 ABSTRACT:At present, with the development of computer and communication technology, each module, such as environment sensing, direction deciding, route planning and movement controlling moduel in the system of intelligent robot, is resolved respectively. Robot path planning is an part of intelligent robot study. The path planning system can be divided into three parts: environmental information perception and recognition, path planning and motion controlling. The three parts can be executed in parallel to improve the stability of the robot path planning system. As for environment sensing, vision Proeessing is key faetor. The robot path planning of this paper is based on image recognition technology. The image processing and recognition technology is studied in the path planning is how to apply, Robots will sent collected environment map information to the computer terminal, then computer analysis and recognize those image information. After that computer will feedback the result to the robot and send the task information. The robot will act according to the received information. Keywords: image recognition,image processing, robot,path planning

浅析人工智能中的图像识别技术

浅析人工智能中的图像识别技术 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1 图像识别技术的引入 图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对图像做出各种处理、分析,最终识别我们所要研究的

目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。 图像识别技术原理 其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有

简单介绍图像识别技术在各类行业的应用

简单介绍图像识别技术在各类行业的应用 图像识别作为计算视觉技术体系中的重要一环,一直备受重视。微软在两年前就公布了一项里程碑式的成果:它的图像系统识别图片的错误率比人类还要低。如今,图像识别技术又发展到一个新高度。这有赖于更多数据的开放、更多基础工具的开源、产业链的更新迭代,以及高性能的AI计算芯片、深度摄像头和优秀的深度学习算法等的进步,这些都为图像识别技术向更深处发展提供了源源不断的动力。 其实对于图像识别技术,大家已经不陌生,人脸识别、虹膜识别、指纹识别等都属于这个范畴,但是图像识别远不只如此,它涵盖了生物识别、物体与场景识别、视频识别三大类。发展至今,尽管与理想还相距甚远,但日渐成熟的图像识别技术已开始探索在各类行业的应用。 01 网络搜索 以Facebook和谷歌为例,近日,Facebook专门为图像和视频理解打造了一个专业计算机视觉平台Lumos,该平台可以为整个社交网络提供视觉搜索功能,它将从两个方面改善社交网络上的用户体验:基于图片本身(而不是图片标签和拍照时间)的搜索;升级的自动图片描述系统(可向视觉障碍者描述图片内容)。而对于谷歌而言,图片识别已经攻克,它的下一个挑战是视频识别,目标是提升图像识别技术,最终能够识别和搜索视频本身的原内容,从而改善视频推荐服务。除此以外,Snap和Twitter等也都在致力于此。 02 智能家居 在智能家居领域,通过摄像头获取到图像,然后通过图像识别技术识别出图像的内容,从而做出不同的响应。举个例子,我们在门口安装了摄像头,当有物体出现在摄像头范围内的时候,摄像头自动拍摄下图像进行识别,如果发现是可疑的人或物体,就可以及时报警给户主。如果图像和主人的面部匹配,则会主动为主人开门。还有家庭用的智能机器人,

完整版机器视觉思考题及其答案

什么是机器视觉技术?试论述其基本概念和目的。答:机器视觉技术是是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。机器视觉主要用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。机器视觉技术最大的特点是速度快、信息量大、功能多。机器视觉是用机器代替人眼来完成观测和判断,常用于大批量生产过程汇总的产品质量检测,不适合人的危险环境和人眼视觉难以满足的场合。机器视觉可以大大提高检测精度和速度,从而提高生产效率,并且可以避免人眼视觉检测所带来的偏差和误差。机器视觉系统一般由哪几部分组成?试详细论述之。答:机器视觉系统主要包括三大部分:图像获取、图像处理和识别、输出显示或控制。图像获取:是将被检测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据。 该部分主要包括,照明系统、图像聚焦光学系统、图像敏感元件(主要是CCD和CMOS采 集物体影像。 图像处理和识别:视觉信息的处理主要包括滤波去噪、图像增强、平滑、边缘锐化、分割、图像识别与理解等内容。经过图像处理后,图像的质量得到提高,既改善了图像的视觉效果又便于计算机对图像进行分析、处理和识别。 输出显示或控制:主要是将分析结果输出到显示器或控制机构等输出设备。试论述机器视觉技术的现状和发展前景。 答:。机器视觉技术的现状:机器视觉是近20?30年出现的新技术,由于其固有的柔性好、 非接触、快速等特点,在各个领域得到很广泛的应用,如航空航天、工业、军事、民用等等领域。 发展前景:随着光学传感器、信息技术、信号处理、人工智能、模式识别研究的不断深入和计算机性价比的不断提高,机器视觉技术越来越成熟,特别是市面上已经有针对机器视觉系统开发的企业提供配套的软硬件服务,相信越来越多的客户会选择机器视觉系统代替人力进行工作,既便于管理又节省了成本。价格持续下降、功能逐渐增多、成品小型化、集成产品增多。 机器视觉技术在很多领域已得到广泛的应用。请给出机器视觉技术应用的三个实例并叙述之。答:一、在激光焊接中的应用。通过机器视觉系统,实时跟踪焊缝位置,实现实时控制,防止偏离焊缝,造成产品报废。 二、在火车轮对检测中的应用,通过机器视觉系统抓拍轮对图像,找出轮对中有缺陷的轮对,提高检测精度和速度,提高效率。 三、大批量生产过程中的质量检查,通过机器视觉系统,对生产过程中的产品进行质量检查 跟踪,提高生产效率和准确度。 什么是傅里叶变换,分别绘出一维和二维的连续及离散傅里叶变换的数学表达式。论述图像傅立叶变换的基本概念、作用和目的。 答:傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。一维连续函数的傅里叶变换为:一维离散傅里叶变换为:二维连续函数的傅里叶变换为:二维离散傅里叶变换为: 图像傅立叶变换的基本概念:傅立叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图像信息的第二种语言,广泛应用于图像变换,图像编码与压缩,图像分割,图像重建等。作用和目的:图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。图像灰度变换主要有哪几种形式?各自的特点和作用是什么? 答:灰度变换:基于点操作,将每一个像素的灰度值按照一定的数学变换公式转换为一个新的灰度值。灰度变换是图像增强的一种重要手段,它可以使图像动态范围加大,使图像的对比度扩展,

(人工智能)关于图像识别与人工智能的就业情况

(人工智能)关于图像识别与人工智能的就业情况

关于图像识别和人工智能的就业情况(2008-10-0216:06:10) 最近遇到壹些朋友问我考研方向,我告诉他们叫图像识别和人工智能。主要是图形图像处理这个领域。他们又问这个方向将来主要从事什么职业,进入什么样的公司?呀!这个我仍真没怎么关注,所以就上网查了查,来了解壹下。下面是转载的壹篇文章: 就我见来,个人觉得图像处理的就业仍是不错的。首先能够把图像见成二维、三维或者更高维的信号,从这个意义上来说,图像处理是整个信号处理里面就业形势最好的,因为你不仅要掌握(壹维)信号处理的基本知识,也要掌握图像处理(二维或者高维信号处理)的知识。其次,图像处理是计算机视觉和视频处理的基础,掌握好了图像处理的基本知识,就业时就能够向这些方向发展。目前的模式识别,大部分也均是图像模式识别。于实际应用场合,采集的信息很多均是图像信息,比如指纹、条码、人脸、虹膜、车辆等等。说到应用场合,千万不能忘了医学图像这壹块,如果有医学图像处理的背景,去壹些医疗器械公司或者医疗软件公司也是不错的选择。图像处理对编程的要求比较高,如果编程很厉害,当然就业也多了壹个选择方向,且不壹定要局限于图像方向。 下面谈谈我所知道的壹些公司信息,不全,仅仅是我所了解到的或者我所感兴趣的,实际远远不止这么多。 搜索方向 基于内容的图像或视频搜索是很多搜索公司研究的热点。要想进入这个领域,必须有很强的编程能力,很好的图像处理和模式识别的背景。要求高待遇自然就不错,目前这方面的代表公司有微软、google、yahoo和百度,个个鼎鼎大名。

医学图像方向 目前于医疗器械方向主要是几个大企业于竞争,来头均不小,其中包括Simens、GE、飞利浦和柯达,主要生产CT和MRI等医疗器材。由于医疗器械的主要功能是成像,必然涉及到对图像的处理,做图像处理的很有机会进入这些公司。它们于国内均设有研发中心,simens的于上海和深圳,GE和柯达均于上海,飞利浦的于沈阳。由于医疗市场是壹个没有完全开发的市场,而壹套医疗设备的价格是非常昂贵的,所以于这些地方的待遇均仍能够,前景也见好。国内也有壹些这样的企业比如深圳安科和迈瑞 计算机视觉和模式识别方向 我没去调研过有哪些公司于做,但肯定不少,比如指纹识别、人脸识别、虹膜识别。仍有壹个很大的方向是车牌识别,这个我倒是知道有壹个公司高德威智能交通似乎做的很不错的样子。目前视频监控是壹个热点问题,做跟踪和识别的能够于这个方向找到壹席之地。 上海法视特位于上海张江高科技园区,于视觉和识别方面做的不错。北京的我也知道俩个公司:大恒和凌云,均是以图像作为研发的主体。 视频方向 壹般的高校或者研究所侧重于标准的制定和修改以及技术创新方面,而公司则侧重于编码解码的硬件实现方面。壹般这些公司要求是熟悉或者精通MPEG、H.264或者AVS,选择了这个方向,只要做的仍不错,基本就不愁饭碗。由于这不是我所感兴趣的方向,所以这方面的公司的信息我没有收集,但平常于各个bbs或者各种招聘网站经常见到。 我所知道的俩个公司:诺基亚和pixelworks

人工智能与模式识别

人工智能与模式识别 摘要:信息技术的飞速发展使得人工智能的应用围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。模式识别是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;数字识别;人脸识别中图分类号; Abstract: The rapid development of information technology makes the application of artificial intelligence become more and more widely. Pattern recognition, as one of the important aspects, has always been an important direction of artificial intelligence research. In the introduction of artificial intelligence and pattern recognition related knowledge at the same time, artificial intelligence in pattern recognition applications were discussed.Pattern recognition is a basic human intelligence, the emergence of the 20th century, 40 years of computer and the rise of artificial intelligence in the 1950s, pattern recognition technology has made great progress. Pattern recognition and statistics, psychology,

图像识别技术发展状况及前景

医学图像配准技术 罗述谦综述 首都医科大学生物医学工程系(100054) 吕维雪审 浙江大学生物医学工程研究所(310027) 摘要医学图像配准是医学图像分析的基本课题,具有重要理论研究和临床应用价 值。本文较全面地介绍了医学图像配准的概念、分类、配准原理、主要的配准技术及评 估方法。 关键词医学图像配准多模 1 医学图像配准的概念 在做医学图像分析时,经常要将同一患者的几幅图像放在一起分析,从而得到该患者的多方面的综合信息,提高医学诊断和治疗的水平。对几幅不同的图像作定量分析,首先要解决这几幅图像的严格对齐问题,这就是我们所说的图像的配准。 医学图像配准是指对于一幅医学图像寻求一种(或一系列)空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两张匹配图像上有相的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。 医学图像配准技术是90年代才发展起来的医学图像处理的一个重要分支。涉及“配准”的技术名词除registration外,mapping、matching、co-registration、integration、align-ment和fusion 等说法也经常使用。从多数文章的内容看,mapping偏重于空间映射;fu-sion指图像融合,即不仅包括配准,而且包括数据集成后的图像显示。虽然在成像过程之前也可以采取一些措施减小由身体移动等因素引起的空间位置误差,提高配准精度(称作数据获取前的配准preacquisition),但医学图像配准技术主要讨论的是数据获取后的(post-acquisition)配准,也称作回顾式配准(retrospective registration)。当前,国际上关于医学图像配准的研究集中在断层扫描图像( tomographic images,例如CT、MRI、SPECT、PET等)及时序图像(time seriesimages,例如fMRI及4D心动图像)的配准问题。 2 医学图像基本变换 对于在不同时间或/和不同条件下获取的两幅图像I1(x1,y1,z1)和I2(x2,y2,z2)配准,就是寻找一个映射关系P:(x1,y1,z1) (x2,y2,z2),使I1的每一个点在I2上都有唯一的点与之相对应。并且这两点应对应同一解剖位置。映射关系P表现为一组连续的空间变换。常用的空间几何变换有刚体变换(Rigid body transformation)、仿射变换(Affine transformation)、投影变换(Projec-tive transformation)和非线性变换(Nonlin-ear transformation)。 (1)刚体变换: 所谓刚体,是指物体内部任意两点间的距离保持不变。例如,可将人脑看作是一个刚体。 处理人脑图像,对不同方向成像的图像配准常使用刚体变换。刚体变换可以分解为旋转和平移:P(x)=Ax+b(1) x=(x,y,z)是像素的空间位置;A是3×3的旋转矩阵,b是3×1的平移向量。

图像识别与人工智能研究所发展规划报告

图像所学科建设与发展规划 根据学校建设世界知名高水平大学的发展目标,特制定图像所相应的学科建设与发展规划,以推动本学科的跨越式发展。 一、学科建设总体目标 (一)学科基础 图像识别与人工智能研究所(简称图像所)将继续以跻身于我国的国防科技的发展为切入点,从事发展巡航导弹中制导、末制导关键技术,承担相关预先研究和攻关科研任务为学科建设的主攻方向。 (1)目前本学科点共有五个研究方向: “计算机视觉与应用”、 “成像自动目标识别与精确制导技术”、 “多谱成像与遥感图像处理”、 “人工智能与思维科学” “面向模式识别的专用处理机与IC芯片设计”。 (2)本学科点现有科研人员26人,其中教授(含博士生导师)7人,副教授7人。科研教学梯队层次高,年龄、专业结构合理。现有教学科研用房4000 平方米。实验设备固定资产5000余万元,已初步形成先进、配套的教学、科研、开发环境和雄厚的技术储备。 (3)学科特点 模式识别与智能系统是信息科学技术领域中发展最迅速的前沿领域之一。

来自不同成像传感器的不同谱段的图像信号能全面揭示客观世界的各种特性,智能控制是人工智能与自动控制相结合的现代控制理论和技术,图像模式处理、识别与智能控制的结合构成了智能信息系统和智能自动化系统发展的基础,不仅科学意义深远而且有十分广阔的应用前景。本学科点的主要特色是紧密结合航天、航空和信息技术领域的国家目标,进行应用基础和应用技术的研究和开发,重点研究多谱段图像模式信息的获取、表示、处理、分析与智能系统领域的基础理论与关键技术,同时培养和造就本领域高层次、高质量的科技人才。本学科点具有特色和优势的研究方向是: ·计算机视觉与应用 在基于信息融合的信号处理、基于视觉、力觉和超声波接近觉的多传感器机器人系统和飞行器三维航迹规划技术方面具有特色,承担了国家重大型号XY-20末制导航迹规划攻关项目并进入型号研制。 ·成像自动目标识别与精确制导技术 开展面向复杂背景和随机环境下成像自动目标检测、识别、跟踪的新理论、新方法、新算法和新系统的研究,其特色是瞄准有关国家安全的国家目标,紧密结合航天航空高技术发展,在基于图象和图象序列的自动目标识别,景象匹配定位等精确制导领域开展应用基础和高技术的研究,并将一系列高水平成果应用于国防高技术武器系统中。 ·多谱成像与遥感图像处理 研究微波辐射特性及成像技术、激光雷达成像信号处理和遥感图像处理与

图像识别技术

伴随着通信技术与信息处理技术的迅猛发展,越来越多的纸质文档通过数字采集设备转换成文本图像,从而使文本图像数据能够快捷的在网络、卫星、传真通信信道中传输,因此,文本图像已逐渐成一个重要的信息来源。但是,现有的文本图像处理系统自动化程度低,且通用性不高,无法满足文本图像处理广泛性与实时性的要求。因此,研究如何对文本图像进行分析与处理,以便高效、快捷的获取文本图像的信息,是一项十分有意义的研究课题。本文在总结已有研究成果的基础上对文本图像的识别检索、预处理、版面分析和表格图像识别展开研究。所做的主要工作如下:1.依据图像的灰度分布和结构特征差异,对基于图像信息度量的文本图像识别检索算法进行改进,构造一种基于信息度量与Radon变换的文本图像识别检索算法。该算法综合利用文本图像与连续色调】图像的灰度分布与结构特征差异进行文本图像的识别检索。实验结果表明,所构造算法可有效降低文本图像识别检索的误识率。2.对基于Hough变换的文本图像倾斜检 图像识别,是利用计算机对图像进行处理、分析和理解,以识别各种不同模 式的目标和对像的技术。 图像识别可能是以图像的主要特征为基础的。每个图像都有它的特征,如字 母A有个尖,P有个圈、而Y的中心有个锐角等。对图像识别时眼动的研究表明, 视线总是集中在图像的主要特征上,也就是集中在图像轮廓曲度最大或轮廓方向 突然改变的地方,这些地方的信息量最大。由此可见,在图像识别过程中,知觉 机制必须排除输入的多余信息,抽出关键的信息。 图像识别的目的在于用计算机自动处理图像信息,以代替人去完成图像分类 及辨识的任务。数字图像处理与识别技术是模式识别领域一个重要的研究方向, 近几十年来,图像识别技术取得了深入和迅速的发展,并广泛应用于图像遥感、机 器人视觉、生物医学、地质勘探等多个领域。 随着图像识别技术在多领域的发展,由其在计算机视觉和图像处理研究中,已经取得了一定的研究成果。Mallat在小波变换中滤波器的设计、Belhumeur在Fisher变换中的识别模型和Largrange优化方式建立支持向量机。本文在总结上述研究成果的基础上,首先对摄像头采集的数据进行了处理,完成JPEG的编码,详细讨论了JPEG图像解码的过程并实现了其算法。

人工智能YOLO V2 图像识别实验报告材料

第一章前言部分 1.1课程项目背景与意义 1.1.1课程项目背景 视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。 科学技术的发展是推动人类社会进步的主要原因之一,未来社会进一步地朝着科技化、信息化、智能化的方向前进。在信息大爆炸的今天,充分利用这些信息将有助于社会的现代化建设,这其中图像信息是目前人们生活中最常见的信息。利用这些图像信息的一种重要方法就是图像目标定位识别技术。不管是视频监控领域还是虚拟现实技术等都对图像的识别有着极大的需求。一般的图像目标定位识别系统包括图像分割、目标关键特征提取、目标类别分类三个步骤。 深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出。基于深度置信网络提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

仪器仪表数字图像的识别及其应用

摘要:本文针对仪器仪表应用环境的实际情况,设计了数字图像识别硬件平台,采用STC12LE5A60S2单片机驱动图像传感器OV7670采集图像,可减少由人为因素或传感器干扰引起的数据错误,省去采集卡,节省了成本。通过无线通信,成功地将数字图像识别技术应用到了检测环境中。经过试验,证明了系统的稳定性。 关键词:图像采集;无线通信;STC12LE5A60S2;OV7670引言 目前,仪器仪表被广泛地应用于各行各业的测量系统中。但是,由于某些仪器仪表只是通过LCD、LED数码管或者表盘来显示数值,并没有提供数据传送的接口,因此很难实现数据的自动采集以及保证数据的实时性和准确性,难以满足对测量系统工作自动化的要求[1]。现如今,随着科学技术的不断进步,对测量系统的管理也从人工监管方式逐步向自动管理方式转变[2]。为了提高系统的工作效率,需要对测量系统所采集的数据进行实时监控,控制中心要快速、准确、自动获取所需数值,这是急需解决的问题。 为了使系统能够很好地实现控制功能,笔者设计出基于数字图像的仪器仪表读数识别系统。该系统利用单片机控制图像传感器自动读取仪器仪表的数字图像,经过图像处理和图像识别技术,将识别结果通过无线网络传输,传送至控制中心,由控制中心对采集数据进行综合管理,从而真正实现数据的统一管理和对系统控制的自动化。 数字图像识别系统 仪器仪表数字图像采集系统主要组成部分有单片机、图像传感器、LCD显示器、无线收发模块以及数据存储器,系统功能框图如图1所示。单片机作为系统的控制核心,

控制图像传感器采集仪器仪表数字图像,将仪器仪表图像数据存储在扩展的外部数据存储器中,利用数字图像处理和模式识别技术读取仪器仪表数字,通过无线收发模块将仪器仪表数字发送到控制中心,控制中心可以直观地显示所采集的数据并对数据进行统一管理。 图像采集电路 本设计中,仪器仪表图像数据采集模块选用的图像传感器是美国OmniVision公司的彩色/黑白CMOS图像传感器OV7670,该传感器可以通过I2C总线进行对其内部寄存器进行配置,使得输出数据速率、格式都可以得到改变,且输出数据已经做完分离,处理起来相对也比较容易[3~4]。基于功能的实现和价格两方面的考虑,本设计最终决定选取该型号图像传感器作为图像数据采集的核心器件。 由于OV7670图像传感器的工作电压为2.45V到3V,对外部工作时钟频率在 10MHz到48MHz,因此控制芯片选用宏晶科技的单时钟/机器周期的 STC12LE5A60S2单片机。该单片机工作电压在2.2V到3.6V,能够和OV7670图像传感器理想匹配;工作频率在0~35MHz,且内部含有波特率发生器,最大可以产生12MHz的方波[5~6],该信号可以作为OV7670图像传感器的外部工作时钟,也满足了OV7670图像传感器对工作时钟频率的要求。图像采集硬件电路图如图2所示。 图像传感器的SDA和SCL分别为内部寄存器配置数据线和时钟线,单片机通过 P1.2、P1.3模拟I2C总线对图像传感器内部寄存器进行配置,使得图像数据输出为QVGA格式,在QVGA的基础之上再次对输出数据进行水平、垂直方向分别8抽样,使得最终输出为像素为60×80;帧同步输出信号VSYNC引脚接入单片机P3.2口,由P3.2引脚捕捉该信号,当捕捉到帧同步输出信号时,开始采集仪表图像数据,图像有效数据是通过单片机对有效像素信号捕捉获取的,有效像素信号是指图像传感器像素时钟信号PCLK接74HC74二分频后与行同步信号HREF经过与非门的信号;主函数中对像素时钟信号PCLK进行捕捉,在该信号有效时,选通图像采集数据控制线,将图像保存在缓存,然后使图像数据线无效,将缓存数据存储到62LV256存储器中,这样就得到了一个像素点的灰度值;行同步信号HREF接入单片机定时器T0中断,当单片机捕

机器视觉检测.

机器视觉检测 一、概念 视觉检测是指通过机器视觉产品(即图像摄取装置,分 CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉检测的特点是提高生产的柔性和自动化程度。 2、典型结构 五大块:照明、镜头、相机、图像采集卡、软件 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。目前没有通用的照明设备,具体应用场景选择相应的照明装置。照射方法可分为: 分类具体说明优点 背向照明被测物放在光源和摄像机之 间能获得高对比度的图像 前向照明光源和摄像机位于被测物的 同侧 便于安装 结构光将光栅或线光源等投射到被 测物上,根据它们产生的畸 变,解调出被测物的三维信 息 频闪光照明将高频率的光脉冲照射到物

体上,摄像机拍摄要求与光 源同步 2.镜头 镜头的选择应注意以下几点:焦距、目标高度、影像高度、放大倍数、影响至目标的距离、中心点/节点、畸变。 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。 要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD 和面阵CCD;单色相机和彩色相机。 为优化捕捉到的图像,需要对光圈、对比度和快门速度进行调整。 4.图像采集卡 图像采集卡是图像采集部分和图像处理部分的接口。将图像信号采集到电脑中,以数据文件的形式保存在硬盘上。通过它,可以把摄像机拍摄的视频信号从摄像带上转存到计算机中。 5.软件 视觉检测系统使用软件处理图像。软件采用算法工具帮助分析图像。视觉检测解决方案使用此类工具组合来完成所需要的检测。是视觉检测的核心部分,最终形成缺陷的判断并能向后续执行机构发出指令。常用的包括,搜索工具,边界工具,特征分析工具,过程工具,视觉打印工具等。 3、关键——光源的选择 1.光源选型基本要素: 对比度机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特

基于.人工智能算法的图像识别及生成

基于人工智能算法的图像识别与生成 摘要:本次报告的工作是利用PCA,SVM以及人工神经网络(ANN)实现对人脸的特征提取、分类和预测。然后利用GAN(生成对抗网络)实现对手写数字的生成,并用SVM 做预测,验证生成效果。 本次报告采用的数据源自剑桥大学的ORL 人脸数据库,其中包含40个人共400张人脸图像。 关键词:人工智能;图像识别;数据 中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2018)13-0173-02 1 PCA降维 PCA(principal components analysis)即主成分分析,又称主分量分析。旨在利用降维的思想,把多指标转化为少数几个综合指标。 首先我们给出了数据库的平均脸的图像,并利用PCA对人脸降维,通过改变降低到的维度研究了保留维度的多少带来的影响。最后给出了每一个维度的特征脸图像,讨论了每一个维度所能够代表的人脸信息。 1.1 平均脸 首先,我们将数据库中400张人脸按行存储到一个矩阵

中,即每一行为一张人脸(10304像素),每张人脸共10304维特征。我们对每一个维度去平均,构成一个新的行向量,这就是平均脸。 平均脸反映了数据库中400张人脸的平均特征,可以看清人脸的轮廓,但无法识别人脸的局部细节。 1.2 降低至不同维度时还原脸的情况 从左到右从上到下依次是同一张脸降低至10,30,50,100,200,250,300,350,400的图像。可以看到,随着保留维数的增多,图像越清晰,与原图的差异越小。 1.3 提取单一维度的特征做还原 为了研究不同维度所代表的人脸的信息,我们把PCA之后的每一个特征向量单独提取出来对人脸做还原,还原的时候不加入平均脸并且做直方图均衡化。 结果如下: 每一张图像下方的数字代表了PCA之后按特征值从大到小排序的顺序,比如第一张图代表PCA之后最大特征值所对应的特征向量还原出的人脸。 特征累积图的纵坐标代表了所保留的特征占总特征的 比例。它是这样计算出来的,假设保留k维信息,则纵坐标值为这k个特征值的和除以总的400(400*10304的矩阵,最多有400个非零特征值)个特征值的和。 从图4可以看出,当保留维数为100维时,即能保留人

机器视觉与视觉检测知识点归纳

一总介 使用机器视觉系统五个主要原因: 1.精确性(无人眼限制) 2.重复性(相同方法检测无疲惫) 3.速度(更快检测) 4.客观性(无情绪主观性) 5.成本(一台机器可承担好几人工作) 机器视觉系统构成: 光学:1.相机与镜头;2.光源; 过渡:3.传感器(判断被测对象位置及状态);4.图像采集卡(把相机图像传到电脑主机); 电学(计算机):5.PC平台;6.视觉处理软件;7.控制单元。 机器视觉系统一般工作过程:1.图像采集;2.图像处理;3.特征提取;4.判决和控制。 机器视觉系统的特点:1.非接触测量;2.具有较宽的光谱响应围;3.连续性;4.成本较低; 5.机器视觉易于实现信息集成; 6.精度高; 7.灵活性。 机器视觉应用领域两大类:科学研究和工业应用 科学研究主要对运动和变化的规律作分析; 工业方面主要是在线检测产品,机器视觉所能提供的标准检测功能主要有:有/无判断、面积检测、方向检测、角度测量、尺寸测量、位置检测、数量检测、图形匹配、条形码识别、字符识别、颜色识别等。 二机器视觉系统的构成 相机的主要特性参数: 分辨率:衡量相机对物象中明暗细节的分辨能力。 最大帧率:相机采集传输图像的速率。 曝光方式和快门速度;o(* ̄) ̄*)o? 像素深度:每一个像素数据的位数。 固定图像噪声:不随像素点的空间坐标改变的噪声。 动态围等 CCD相机和CMOS相机的区别: 1.设计:CCD是单一感光器,CMOS是感光器连接放大器。 2.灵敏度:同样面积下,CCD灵敏度高;CMOS由于感光开口小,灵敏度低。 3.成本:CCD线路品质影响程度高,成本高;CMOS由整合集成,成本低。 4.解析度:CCD连接复杂度低,解析度高;CMOS新技术解析度高。 5.噪点比:CCD信号单一放大,噪点低;CMOS百万放大(每个像素都有各自的 放大器),噪点高。

图像识别技术在安全防范系统中的应用

图像识别技术在安全防范系统中的应用 摘要:本文通过对图像识别技术在安全防范系统中的应用现状分析,提出在不增加硬件成本的基础上融入图像识别技术及软件支持,能够提高安全防范系统的智能程度和自动化控制能力,为智能建筑的使用者提供更为安全、快捷、舒适的工作生活环境。abstract: this paper analyzed the application of image recognition technology in security & protection system,proposed to introduce the image recognition technology and software support on the basis of without additional hardware cost, to improve the intelligent degree and automatic control ability of security & protection system and provide more safe,fast, comfortable working and living environment for users of intelligent building. 关键词:安全防范系统;图像识别技术;门禁控制;车辆管理key words: security & protection system;image recognition technology;access control;vehicle management 中图分类号:tp391 文献标识码:a 文章编号:1006-4311(2013)23-0218-02 0 引言 安全防范系统(sps,security & protection system),是以维护社会公共安全为目的,运用现代电子技术、视频采集技术、传感器技术、计算机技术和网络技术构建的集散型控制系统或网络,具

图像识别技术报告

图像识别技术 课程教师:桑爱军老师 报告组成员: 五里雾

一、图像识别简介 图像识别是指图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。 人的图像识别能力是很强的。图像距离的改变或图像在感觉器官上作用位置的改变,都会造成图像在视网膜上的大小和形状的改变。即使在这种情况下,人们仍然可以认出他们过去知觉过的图像。甚至图像识别可以不受感觉通道的限制。例如,人可以用眼看字,当别人在他背上写字时,他也可认出这个字来。 图像识别技术可能是以图像的主要特征为基础的。每个图像都有它的特征,如字母A有个尖,P有个圈、而Y的中心有个锐角等。对图像识别时眼动的研究表明,视线总是集中在图像的主要特征上,也就是集中在图像轮廓曲度最大或轮廓方向突然改变的地方,这些地方的信息量最大。而且眼睛的扫描路线也总是依次从一个特征转到另一个特征上。由此可见,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。同时,在大脑里必定有一个负责整合信息的机制,它能把分阶段获得的信息整理成一个完整的知觉映象。

在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。在文字材料的识别中,人们不仅可以把一个汉字的笔划或偏旁等单元组成一个组块,而且能把经常在一起出现的字或词组成组块单位来加以识别。 图像识别技术是人工智能的一个重要领域。为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。例如模板匹配模型。这种模型认为,识别某个图像,必须在过去的经验中有这个图像的记忆模式,又叫模板。当前的刺激如果能与大脑中的模板相匹配,这个图像也就被识别了。例如有一个字母A,如果在脑中有个A模板,字母A的大小、方位、形状都与这个A模板完全一致,字母A就被识别了。这个模型简单明了,也容易得到实际应用。但这种模型强调图像必须与脑中的模板完全符合才能加以识别,而事实上人不仅能识别与脑中的模板完全一致的图像,也能识别与模板不完全一致的图像。例如,人们不仅能识别某一个具体的字母A,也能识别印刷体的、手写体的、方向不正、大小不同的各种字母A。同时,人能识别的图像是大量的,如果所识别的每一个图像在脑中都有一个相应的模板,也是不可能的。 为了解决模板匹配模型存在的问题,格式塔心理学家又提出了一个原型匹配模型。这种模型认为,在长时记忆中存储的并不是所要识

186图像识别与人工智能研究所-学科专业名称及代码、研究

图像识别与人工智能研究所 图像识别与人工智能研究所(以下简称图像所)于1978年由教育部和航天部共同批准建立、直属于华中科技大学的一所融研究、教学为一体,以图像识别和人工智能为研究方向的研究机构。建所30年来,图像所始终瞄准航天、航空和信息技术领域的国家目标,进行应用基础和应用技术的研究,在国内的模式识别与智能系统学科具有明显的研究特色和学科优势,在航天航空的智能信息处理领域具有较高的知名度。图像所分别于1984年、1990年获得硕士和博士学位授予权,2003年被批准为湖北省重点学科,2007年被批准为国家重点二级学科“模式识别与智能控制”,是该二级学科全国5个重点学科单位之一。1993年批准为“图像信息处理与智能控制”国家教委开发实验室,1999年升格为教育部重点实验室。1998年3月由中国航天工业总公司和国家教委共同批准命名为“中国航天图像识别技术研究所”,与航天工业总公司共建。2005年12月被批准成立“多谱信息处理技术”国家级重点实验室。 图像所现有科研、教学人员38人,其中教授11名、副教授13名。有一名双聘的中国科学院院士,“长江学者”讲座教授1名,入选“新世纪优秀人才支持计划”1人,73%的教师有博士学位,2007年被批准为国防科工委的科技创新团队。 图像所在“模式识别与智能系统”学科点上现有的研究方向是:计算机视觉与应用、模式识别与图像分析、图像处理系统及应用、医学成像与处理、人工智能与认知科学、集成电路及系统芯片的研究与设计以及微纳光电技术。在“导航制导与控制”学科点上现有的研究方向是:多谱寻的制导、多谱匹配制导、多谱目标探测以及制导信息处理芯片设计。在“信息安全”学科点上现有的研究方向是:混沌密码理论与技术(包括密码算法的IC设计),无线移动网络的安全技术,网络主动防御技术以及城市交通智能管理与安全信息服务技术。2001年以来,图像所培养博士111名、硕士431名,5人获得湖北省优秀博士论文。图像所现有在读硕士研究生185人,博士研究生123人。 图像所在培养研究生的同时,也承担了大量的国家级科研项目,取得了一大批科研成果。2001年至今,图像所已经承担了包含国家自然科学基金、973、863、国家级预研计划等在内的各类研究项目630项,合同经费近1.6亿元。获省部级以上科研奖12项。在IEEE Trans.IP、IEEE Trans.SP、IEEE Trans.NN、IEEE Trans.CS、Pattern Recognition、Opt.Eng、PR Letters等国内外重要学术期刊和国际会议发表学术论文2454篇,其中SCI收录298篇,EI 收录768篇。出版专著1部。 图像所也非常重视科研基地的建设,除了拥有国家级重点实验室和教育部重点实验室外,还获得了国家211工程、985工程的支持,“九五”以来获得的基地建设费用3000余万元,拥有可见光、红外等成像传感器、激光成像雷达、六自由度机械手、三轴跟踪转台、标量网络分析仪、矢量网络分析仪、噪声系数测试仪、逻辑分析仪、频谱分析仪、SGI工作站、

相关主题