搜档网
当前位置:搜档网 › 随机过程第五章期末练习题

随机过程第五章期末练习题

随机过程第五章期末练习题
随机过程第五章期末练习题

最新随机过程考试试题及答案详解1

随机过程考试试题及答案详解 1、(15分)设随机过程C t R t X +?=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均 匀分布。 (1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。 【理论基础】 (1)? ∞ -= x dt t f x F )()(,则)(t f 为密度函数; (2))(t X 为),(b a 上的均匀分布,概率密度函数?? ???<<-=其他,0,1 )(b x a a b x f ,分布函数 ?? ??? >≤≤--<=b x b x a a b a x a x x F ,1,,0)(,2)(b a x E += ,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数???<≥=-0,00 ,)(x x e x f x λλ,分布函数 ?? ?<≥-=-0 ,00,1)(x x e x F x λ,λ1)(=x E ,21 )(λ=x D ; (4)2 )(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞= -- x e x f x ,21 )(2 22)(σμπ σ, 分布函数∞<<-∞= ? ∞ --- x dt e x F x t ,21)(2 22)(σμπ σ,若1,0==σμ时,其为标准正态分布。 【解答】本题可参加课本习题2.1及2.2题。 (1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。由R 的取值范围可知, )(t X 为],[t C C +上的均匀分布,因此其一维概率密度?? ???+≤≤=其他,0,1 )(t C x C t x f ,一维分布 函数?? ??? +>+≤≤-<=t C x t C X C t C x C x x F ,1,,0)(;

随机过程期末复习试题

期末复习试题 一、填空题 1. 假设()0.4,P A =()0.7P A B =, 若A 与B 互不相容,则()________P B =; 若A 与B 相互独立,则()________P B =. 2.设0

___________________.

最新随机过程考试真题

1、设随机过程C t R t X +?=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。 (1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。 2、设{ }∞<<∞-t t W ),(是参数为2 σ的维纳过程,)4,1(~N R 是正态分布随机变量; 且对任意的∞<<∞-t ,)(t W 与R 均独立。令R t W t X +=)()(,求随机过程 {}∞<<∞-t t X ),(的均值函数、相关函数和协方差函数。 3、设到达某商场的顾客人数是一个泊松过程,平均每小时有180人,即180=λ;且每个 顾客的消费额是服从参数为s 的指数分布。求一天内(8个小时)商场营业额的数学期望与方差。 4、设马尔可夫链的转移概率矩阵为: ??? ? ? ??=3.007.08.02.0007.03.0P (1)求两步转移概率矩阵) 2(P 及当初始分布为 0}3{}2{,1}1{000======X P X P X P 时,经两步转移后处于状态2的概率。 (2)求马尔可夫链的平稳分布。 5设马尔可夫链的状态空间}5,4,3,2,1{=I ,转移概率矩阵为: ??? ??? ? ? ? ?=010007.03.0000 0001 00004.06.0003.04 .03.0P

求状态的分类、各常返闭集的平稳分布及各状态的平均返回时间。 6、设{}(),0N t t ≥是参数为λ的泊松过程,计算[]()()E N t N t s +。 7、考虑一个从底层启动上升的电梯。以i N 记在i 第层进入电梯的人数。假定i N 相互独立,且i N 是均值为i λ的泊松变量。在第i 层进入的各个人相互独立地以概率ij p 在第j 层离开电梯, 1ij j i p >=∑。令j O =在第j 层离开电梯的人数。 (1)计算()j E O (2)j O 的分布是什么 (3)j O 与k O 的联合分布是什么 8、一质点在1,2,3点上作随机游动。若在时刻t 质点位于这三个点之一,则在),[h t t +内, 它都以概率 )(h o h +分别转移到其它两点之一。试求质点随机游动的柯尔莫哥洛夫微分方程,转移概率)(t p j i 及平稳分布。 1有随机过程{ξ(t ),-∞

期末随机过程试题及标准答案

《随机过程期末考试卷》 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) 1.设A,B,C 为三个随机事件,证明条件概率的乘法公式: P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

随机过程习题答案A

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1)是齐次马氏链。经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

随机过程试题带答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) P(BC A)=P(B A)P(C AB)。 1.为it (e -1) e λ。2. 1(sin(t+1)-sin t)2ωω。3. 1 λ 4. Γ 5. 212t,t,;e,e 33?????? 。 6.(n)n P P =。 7.(n) j i ij i I p (n)p p ∈=?∑。 8.6 18e - 9。()()()()0 t K t H t K t s dM s =+-? 10. a μ 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

随机过程期末试题答案A卷(10年12月)

一.填空题(每空2分,共20分) 1.设随机变量X~U(a,b),则X 的特征函数为 itb ita e e i(b-a)t -。 2.设随机过程X(t)=Asint,-0,且 12P ()= 3 ω,21P ()= 3 ω,则这个随机过程的状态空间I=[]a,a -。 6.马氏链{}n X ,n 0≥,状态空间I ,记初始概率i 0p P(X =i)=,绝对概率j n p (n )P(X =j)=,n 步 转移概率(n) ij p ,则j p (n )= (n)i ij i I p p ∈∑ 7.设{} n X ,n 0≥为马氏链,状态空间I ,记初始概率i 0p P(X =i)=,一步转移概率{}ij n+1n p p X j X i ===,则{}0011n n P X =i ,X =i ,,X i == 00112n-1n i i i i i i i p p p p 8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥ (n) ij ij n=1 f f ∞ = ∑,若ii f 1=,称状态i 为_常返____________。 9.遍历状态的定义为不可约非周期的正常返状态。 10.如果状态j 非常返或零常返,则(n) ij n lim p →∞ =__0_____,i I ?∈。 二.证明题(每题6分,共24分) 1.概率空间(,,P)ΩF ,事件序列{}n E ,n 1≥单调,证明:n n n n lim P(E )=P(lim E )→∞ →∞ 。 证明:不妨设{}n E ,n 1≥单调增加,则n n n n=1 lim E E ∞ →∞ =?,令11F =E ,n n n-1F =E E -(n 2≥),

随机过程习题

2.设随机过程X(t)=Acos( t+),-

求(1){}X(t),t (,)∈-∞+∞的样本函数集合;(2)一维分布函数F(x;0),F(x;1)。 解:(1)样本函数集合为{}cos t,t ,t (-,+)π∈∞∞; (2)当t=0时,{}{}1 P X(0)=0P X(0)=12 == , 故0x<01F(x;0)=0x<12x 11???≤??≥??;同理0 x<-11F(x;1)=1x<12x 11 ??? -≤??≥?? 3.设明天是否有雨仅与今天的天气有关,而与过去的天气无关。又设今天下雨而明天也下雨的概率为α,而今天无雨明天有雨的概率为β;规定有雨天气为状态0,无雨天气为状态1。设 0.7,0.4αβ==,求今天有雨且第四天仍有雨的概率。 解:由题设条件,得一步转移概率矩阵为00 011011p p 0.70.3P=p p 0.40.6???? =? ???? ???,于是(2) 0.610.39P PP=0.520.48??=????,四步转移概率矩阵为(4)(2)(2) 0.57490.4251P P P 0.56680.4332??==???? ,从而得到今天有雨且第四天仍有雨的概率为(4) 00P 0.5749=。 4.一质点在1,2,3三个点上作随机游动,1和3是两个反射壁,当质点处于2时,下一时刻处于1,2,3是等可能的。写出一步转移概率矩阵,判断此链是否具有遍历性,若有,求出极限分布。 解:一步转移概率矩阵010111P=333010????? ????? ?? , 111333 (2)271 199911133 3,????==?????? P P (2)ij p 由>0知,此链有遍历性;(),,ππππ123设极限分布=, 1 1

第十二章 平稳随机过程

第十二章 平稳随机过程 §1 基本概念 定义1:已给s.p t X t X {=,}T t ∈,若1≥?n ,即T 中任意的,,,21n t t t Λ与 h t h t h t n +++,,,21Λ,n 维r.v ),,(21n t t t X X X Λ与),,(21h t h t h t n X X X +++Λ有相同 的n 维d.f 。即 ) ,,,;,,(),,() ,,(),,,;,,,(2121212121212121n n n h t h t h t n t t t n n x x x h t h t h t F x X x X x X P x X x X x X P x x x t t t F n n ΛΛΛΛΛΛ+++=≤≤≤=≤≤≤=+++ 则称s.p t X 是一个严(强,狭义)平稳过程。 当t X ?n 维d.l 时,则有 ),,;,,,(),,;,,,(21212121n n n n x x x h t h t h t f x x x t t t f ΛΛΛΛ+++= 若取n =1,则有),(),(1111x h t f x t f +=,特别,当T ∈0,可取,1t h -=则有),0(),(111x f x t f =。此时平稳过程t X 的一维d.l 与1t (时间)无关。于是 X X m dx x xf t X E μ=== ?+∞ ∞ -),0()(1 即t X 的均值是一个与时间无关的常数。 其方差 ?∞ ∞ -=-=-=.),0()(][2 22 X X X t t dx x f m x m X E X D σ也与时间t 无关的 常数。 而且T X 的二维d.l 也只依赖于.21t t -=τ即当2t h -=时,有 ).,;(),;0,(),;,(2121212121x x f x x t t f x x t t f τ∧ =-= 所以t X 与τ+t X 之间自相关为 ??∞∞-∞ ∞ -+== =+).(),;(),(21212 1ττττX t t X R dx dx x x f x x X X E t t R 它只依赖于.τ类似地τ+t t X X ,之间协方差为

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个 任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1)

与无关 (2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立

为多少? 3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。以小时为单位。 则((1))30E N =。 40 30 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= --

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

随机过程复习题(含答案)

随机过程复习题 一、填空题: 1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有 ______}|{|lim =<-∞ >-εa X P n n ,则称}{n X 依概率收敛于a 。 2.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t , ,则 15 92}6)5(,4)3(,2)1({-??= ===e X X X P , 618}4)3(|6)5({-===e X X P 15 32 62 32 92! 23!2)23(!23}2)3()5({}2)1()3({}2)0()1({} 2)3()5(,2)1()3(,2)0()1({} 6)5(,4)3(,2)1({----??=???==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P 66 218! 26}2)3()5({}4)3(|6)5({--===-===e e X X P X X P 3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(4 1 2141, ?????? ?? ????????? ?=434 103 13131043 411)(P ,则167)2(12=P ,161}2,2,1{210====X X X P

???????? ?????? ????=48 31481348 436133616367 164167165)1()2(2P P 16 7 )2(12=P 16 1 314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{} 2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P 4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R , )]()([)(π?δπ?δπω-++=X S 6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。 7.已知平稳过程)(t X 的谱密度为2 3)(2 42 ++=ωωωωS ,则)(t X 的均方值= 2 121- 222 2221 1221)2(22211122)(+??-+??=+-+= ωωωωωS ττ τ-- -=e e R X 2 12 1)(2

(完整版)应用随机过程期末复习资料

第一章 随机过程的基本概念 一、随机过程的定义 例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。 例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n 表示第n 次统计所得的值,则X n 是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性。 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。 例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。 定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ?Ω上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。 E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。 例1:E 为{0,1} 例2:E 为[0, 10] 例3:E 为},2,2,1,1,0{Λ-- 例4:E 都为), 0[∞+ 注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。 (2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。 (3)例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。 二、有限维分布与Kolmogorov 定理 随机过程的一维分布:})({),(x t X P x t F ≤= 随 机 过 程 的 二 维 分 布 : T t t x t X x t X P x x F t t ∈≤≤=21221121,,},)(,)({),(21 M

随机过程习题答案

1、 已知X(t)和Y(t)是统计独立的平稳随机过程,且它们的均值分别为mx 和my ,它们的自 相关函数分别为Rx()和Ry()。(1)求Z(t)=X(t)Y(t)的自相关函数;(2)求Z(t)=X(t)+Y(t)的自相关函数。 答案: (1)[][])()()()()()()(t y t x t y t x E t z t z E R z ττττ++=+= [][] ) ()()()()()()()()(τττττy x z R R t y t y E t x t x E R t y t x =++== :独立的性质和利用 (2)[]()()[])()()()()()()(t y t x t y t x E t z t z E R z +?+++=+=ττττ [])()()()()()()()(t y t y t x t y t y t x t x t x E ττττ+++++++= 仍然利用x(t)和y(t)互相独立的性质:)(2)()(τττy y x x z R m m R R ++= 2、 一个RC 低通滤波电路如下图所示。假定输入是均值为0、双边功率谱密度函数为n 0/2 的高斯白噪声。(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。 答案: (1) 该系统的系统函数为RCs s X s Y s H +==11)()()( 则频率响应为Ω +=ΩjRC j H 11)( 而输入信号x(t)的功率谱密度函数为2 )(0n j P X =Ω 该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为: ()2 20212/)()()(Ω+=ΩΩ=ΩRC n j H j P j P X Y 对)(Ωj P Y 求傅里叶反变换,就得到输出的自相关函数: ()??∞ ∞-Ω∞ ∞-ΩΩΩ+=ΩΩ=d e RC n d e j P R j j Y Y ττππτ22012/21)(21)( R C 电压:y(t) 电压:x(t) 电流:i(t)

随机过程参考题

2014-2015随机过程参考题 一.判断题 1.若随机变量的特征函数存在,则可以用它来刻画随机变量的概率分布. ( ) 2.对于独立的随机变量1,,n X X ,都有[]11 n n k k k k E X E X ==??=????∏∏. ( ) 3.若12(,, )n F x x x 是随机向量1=, ,)n X X X (的联合分布函数,则它对每个变量都是 单调不减的. ( ) 4.一个随机过程的有限维分布具有对称性和相容性. ( ) 5.非齐次泊松过程一定具有独立增量性和平稳增量性. ( ) 6.参数为λ的泊松过程第n 次与第1n -次事件发生的时间间隔n X 服从参数为n 和n λ的Γ分布. ( ) 7.复合P o i s s o n 过 程一定是计数过程. ( ) 8.若随机变量X 服从周期为d 的格点分布,则对自然数n 总有{}0P X nd =>.( ) 9.设,i j 是离散时间马氏链的两个互通的状态,则它们的周期相等. ( ) 10.离散时间马尔科夫链的转移矩阵的行和列的和均为1 . ( ) 11.一个随机变量的分布函数和特征函数相互唯一确定. ( ) 12.对独立的随机变量1, ,n X X ,都有[]1 1n n k k k k Var X Var X ==??=????∑∏. ( ) 13.一个随机过程的有限维分布族一定是具有对称性和相容性的分布族。 ( ) 14.若一个随机过程的协方差函数,s t γ()只与时间差t s -有关,则它一定是宽平稳过 程. ( ) 15.参数为λ的泊松过程中,第n 次事件发生的时刻n T 服从参数为λ的指数分布.( ) 16.非齐次泊松过程不具有独立增量性,但具有平稳增量性. ( ) 17.更新过程在有限时间内最多只能发生有限次更新. ( ) 18.更新过程的更新函数()M t 是t 的单调不增函数. ( ) 19.马尔科夫链具有无后效性. ( ) 20.Poisson 过程是更新过程. ( ) 具有对称性和相容性的分布族一定是某个随机过程的有限维分布族。 ( ) 21.若一个随机过程是宽平稳的,则它一定是严平稳的。 ( )

工程硕士研究生随机过程复习题

工程硕士随机过程复习题 1设有随机过程)cos()(t A t X ?=ω, 其中∞<t ,其中A 是在区间(1,2)上服从均匀分布的随机变量,求随机变量)1(X 的一维概率密度函数)1;(x f 和一维分布函数)1;(x F 。 3设随机过程)sin()cos()(t t t X ?+?=ωηωξ,其中∞<

6已知平稳随机过程)(t X ,∞<<∞-t 的谱密度为9 104 )(2 42+++=ωωωωX S , 求)(t X 的相关函数和)(2t EX . 7 设随机过程)sin()(0Φ+?=t A t X ω, 其中∞<<∞-t ,0ω为常数, A 和Φ 是相互独立的随机变量, A 服从[0,1]上的均布, Φ服从[0,2π]上的均匀分布. 试求(1))(t X 均值函数和自相关函数。(2) 讨论)(t X 的数学期望的各态历经性. 8设)(t X ,∞<<∞-t 是平稳随机过程,相关函数τ βατ-=e R X )(,其中βα,是正数, 求)(t X 的谱密度. 9已知均值为零的实平稳随机过程)(t X ,∞<<∞-t 的相关函数,τβτ-=e R X )( )(t Y 满足随机微分方程)()()(t X t Y t Y =+'α,其中βαβα≠,,为常数。 求(1) 判断输出过程)(t Y 是否为平稳过程,若是,求)(t Y 的均值函数、自相关函数和谱密度. (2) 求)(t X 和 )(t Y 的互谱密度. 10设0,≥n X n 是具有三个状态的齐次马氏链,一步转移概率矩阵为 ?? ?? ? ?????=10002/12/102/12/1P 试证此链不是遍历的 11 设0,≥n X n 是具有三个状态0,1,2的齐次马氏链,一步转移概率矩阵为 ???? ? ?????=4/34/104/12/14/104/34/1P 初始分布为{}2,1,0,31)0(0====i i X P p i , 求(1){}2,131==X X P

随机过程复习试题及答案

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 证明:当12n 0t t t t <<< <<时, 1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤= n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x , X(t )-X(0)=x )≤= n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x , X(t )=x )≤=n n P(X(t)x X(t )=x )≤ 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

通信原理期末考试试题及答案

通信原理期末考试试题及答案 一、填空题(总分24,共12小题,每空1分) 1、数字通信系统的有效性用传输频带利用率衡量,可靠性用差错率衡量。 2、模拟信号是指信号的参量可连续取值的信号,数字信号是指信号的参量可离散取值的信号。 3、广义平均随机过程的数学期望、方差与时间无关,自相关函数只与时间间隔有关。 4、一个均值为零方差为n的窄带平稳高斯过程,其包络的一维分布服从瑞利分布, 相位的一维分布服从均匀分布。 5、当无信号时,加性噪声是否存在?是乘性噪声是否存在?否。 6、信道容量是指:信道传输信息的速率的最大值,香农公式可表示为: C B log 2(1 鲁)。 7、设调制信号为f (t)载波为cos c t,则抑制载波双边带调幅信号的时域表达式为 1 f(t)cos c t,频域表达式为—[F( c) F( c)]。 2 8、对最高频率为f H的调制信号m (t)分别进行AM、DSB、SSB调制,相应已调信号的带宽分别为2f H 、2f H 、f H 。 9、设系统带宽为W,则该系统无码间干扰时最高传码率为2W 波特。 10、PSK是用码元载波的相位来传输信息,DSP是用前后码元载波的相位差来传输信息,它可克服PSK的相位模糊缺点。 11、在数字通信中,产生误码的因素有两个:一是由传输特性不良引起的码间串 扰,二是传输中叠加的加性噪声。 12、非均匀量化的对数压缩特性采用折线近似时,A律对数压缩特性采用13_折线 近似,律对数压缩特性采用15_折线近似。 二、简答题(总分18,共4小题) 1、随参信道传输媒质的特点? ( 3分) 答:对信号的衰耗随时间变化、传输的时延随时间变化、多径传播

相关主题