搜档网
当前位置:搜档网 › 理论力学

理论力学

理论力学

2018年考试内容范围说明

1

理论力学考试知识点总结

《理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系与平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束与球铰链的性质。 3、熟练掌握如何计算力的投影与平面力对点的矩,掌握空间力对点的矩与力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶与力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法与简化结果。 3、熟练掌握如何计算主矢与主矩;掌握力的平移定理与空间一般力系与平面力系的简化方法与简化结果。 4、掌握合力投影定理与合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法与负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系与空间力偶系)的平衡条件求解单个物体与简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系与平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力系平衡条件求解单个物体与物体系的平衡问题。 3、了解静定与静不定问题的概念。 4、掌握平面静定桁架计算内力的节点法与截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法与弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动

理论力学计算题复习

习题1-1 图中设AB=l ,在A 点受四个大小均等于F 的力1F r 、2F r 、3F r 和4F r 作用。试分别计算每个力对 B 点之矩。 【解答】: 112()sin 452 B M F F l F l =-???=-?r 22()B M F F l F l =-?=-?r 332()sin 452 B M F F l F l =-???=-?r 4()0B M F =r 。 习题1-2 如图所示正平行六面体ABCD ,重为P F =100N ,边长AB=60cm ,AD=80cm 。 今将其斜放使它的底面与水平面成30?=?角,试求其重力对棱A 的力矩。又问当?等于多大时,该力矩等于零。 【解法1——直接计算法】: 设AC 与BD 的交点为O ,∠BAO=α,则: cos()cos cos sin sin 3341 0.11965252 α?α?α? +=-=?-?= 221 806050cm=0.5m 2AO =+= ()cos() 1000.50.1196 5.98N m A P P P M F F d F AO α?=?=??+=??=?r 当()0A P M F =r 时,重力P F r 的作用线必通过A 点,即90αβ+=?,所以: 令cos()cos cos sin sin 0α?α?α?+=-=→34 cos sin 055 ???- ?=,得: 3 tan 4 ?= →3652?'=?。 【解法2——利用合力矩定理】: 将重力P F r 分解为两个正交分力1P F r 和2P F r , 其中:1P F AD r P ,2P F AB r P ,则: 1cos P P F F ?=?,2sin P P F F ?=?

理论力学期末考试试卷(含答案)B

工程力学(Ⅱ)期终考试卷(A ) 专业 姓名 学号 题号 一 二 三 四 五 六 总分 题分 25 15 15 20 10 15 100 得分 一、填空题(每题5分,共25分) 1. 杆AB 绕A 轴以=5t ( 以rad 计,t 以s 计) 的规律转动,其上一小环M 将杆AB 和半径为 R (以m 计)的固定大圆环连在一起,若以O 1 为原点,逆时针为正向,则用自然法 表示的点M 的运动方程为_Rt R s 102 π+= 。 2. 平面机构如图所示。已知AB //O 1O 2,且 AB =O 1O 2=L ,AO 1=BO 2=r ,ABCD 是矩形板, AD =BC =b ,AO 1杆以匀角速度绕O 1轴转动, 则矩形板重心C '点的速度和加速度的大小分别 为v =_ r _,a =_ r 。 并在图上标出它们的方向。

3. 两全同的三棱柱,倾角为,静止地置于 光滑的水平地面上,将质量相等的圆盘与滑块分 别置于两三棱柱斜面上的A 处,皆从静止释放, 且圆盘为纯滚动,都由三棱柱的A 处运动到B 处, 则此两种情况下两个三棱柱的水平位移 ___相等;_____(填写相等或不相等), 因为_两个系统在水平方向质心位置守恒 。 4. 已知偏心轮为均质圆盘,质心在C 点,质量 为m ,半径为R ,偏心距2 R OC =。转动的角速度为, 角加速度为 ,若将惯性力系向O 点简化,则惯性 力系的主矢为_____ me ,me 2 ;____; 惯性力系的主矩为__2 )2(22α e R m +__。各矢量应在图中标出。 5.质量为m 的物块,用二根刚性系数分别为k 1和k 2 的弹簧连接,不计阻尼,则系统的固有频率 为_______________,若物体受到干扰力F =H sin (ωt ) 的作用,则系统受迫振动的频率为______________ 在____________条件下,系统将发生共振。 二、计算题(本题15分)

理论力学复习总结(重点知识点)

第一篇静力学 第 1 章静力学公理与物体的受力分析 1.1 静力学公理 公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F' 工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理 4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理 5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。 1.2 约束及其约束力 1.柔性体约束 2?光滑接触面约束 3.光滑铰链约束

第2章平面汇交力系与平面力偶系 1. 平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和 方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=^ F 2. 矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3. 力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的转动效应 用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo ( F) =± Fh) 4. 把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶, 记为(F,F')。 例2-8 如图2.-17 (a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩 为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17( b) 所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB) 构成一力偶与矩为M的力偶平衡(见图2-17 (c))。由平面力偶系的平衡方程刀Mi=0,得-Fad+M=0 500 则有FA=FB ' N=471.40N 由于FA、FB'为正值,可知二力的实际方向正为图2-17 ( c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB '471.40N,方向如图2-17 ( b)所示。 第3章平面任意力系 1. 合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中 各力对于同一点之矩的代数和。 2. 平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主矩同时 为零,即F R'=0,M O=0. 3. 平面任意力系的平衡方程:刀Fx=0,刀Fy=O,刀Mo(F)=0.平面任意力系平衡的解析条件是,力系 中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零 例3-1 如图3-8 (a)所示,在长方形平板的四个角点上分别作用着四个力,其中F仁4kN , F2=2kN , F3=F4=3kN,平板上还作用着一力偶矩为M=2kN ? m的力偶。试求以上四个力及 一力偶构成的力系向O点简化的结果,以及该力系的最后合成结果。 解(1)求主矢FR'建立如图3-8 (a)所示的坐标系,有 F 'Rx=刀Fx= - F2cos60° +F3+F4cos30 ° =4.598kN

南京大学理论力学期末考试样题

南京大学2010—2011学年第一学期《理论力学》期末考试A卷(闭卷) 院系年级学号姓名 共五道题,满分100分。各题分数标在题前,解题时写出必要的计算步骤。 一、(19分)如图所示,三根弹簧连结两个质量为m的质点于距离为4a的两面固定的墙内,各弹簧的质量可以忽略,其弹性系数与自然长度已由下图标出。求解该系统作水平方向小幅振动时的运动情形,并找出其简正模式和简正频率。

二、(20分)质量为m,长为a,宽为b的长方形匀质薄板绕其对角线作匀速转动,角速度为 。用欧拉动力学方程求薄板所受到的力矩(提示:采用主轴坐标系)。

三、(20分)一力学系统的哈密顿函数为2222q a m p H -= ,其中a m ,为常数,请证明该系统有运动积分Ht pq D -=2 ,这里t 表示时间。

四、(20分)考虑一维简谐振子,其哈密顿函数为2 222 2q m m p H ω+= ,m 为质量,ω为固有频率: (1)证明变换ω ωωim q im p P q im p Q 2 ,-= +=为正则变换,并求出生成函数 ),,(1t Q q U ,其中i 为虚数单位; (2)用变换后的正则变量P Q ,求解该简谐振子的运动。

五、(21分)质量为m 的带负电-e 的点电荷置于光滑水平面(x-y 平面)上,它受到两个均带正电+e 且分别固定于x=-c,y=0和x=c,y=0的点电荷的吸引,其势 能为)1 1(2 12r r e V +-=,其中1r 和2r 分别为负电荷到两个正电荷之间的距离,如图 所示。 (1)以v u ,为广义坐标,其中2121 ,r r v r r u -=+=,写出负电荷的拉格朗日函数; (2)写出v u ,对应的广义动量和负电荷的哈密顿函数; (3)根据(2)的结果,写出描述负电荷运动的关于哈密顿特征函数的哈密顿-雅可比方程,并用分离变量的方法求解哈密顿特征函数(写出积分式即可)。

理论力学计算题及答案

1. 图示圆盘受一平面力系作用,已知圆盘半径R =0.1m ,F 1=100N ,F 2=200N ,M 0=400Nm 。 求该平面任意力系的合力及其作用线与AC 或其延长线的交点位置。 平面任意力系简化 191.42,54.82,199.12391.347.16R x y F N F N F N M Nm OE m ==-==-=∑∑∑ 2. 求图示桁架中各杆的内力。 桁架内力计算,截面法与节点法:136 F F = 3. 已知图示结构中2m a =,在外力5kN F =和力偶矩=10kN m M ?作用下,求A 、B 和D 处的约束反力。 力系的平衡条件的应用,隔离体与整体分析: ()()()1010D Ax Ay Bx By A F F F F F kN M kNm ↑=→=↓====

4. 已知图示结构中1m =60,a οθ=,在外力10kN F =和力偶矩0=20kN m M ?作用下,求A 、 C 处的约束反力。 同上()20,0,20,17.32Ax Ay A c F kN F M kNm F kN =→=== 5. 图示构件截面均一,图中小方形边长为b ,圆形半径均为R ,若右图中大方形和半圆形 材料密度分别为12,ρρ,试计算确定两种情况下平面图形的质心位置。 以圆心为原点:() ()3 222c b x =-R b π→-左 以方形下缘中点为原点:()() () 12212123238c 2x = ρπρρρπρ++↑+右

6. 斜坡上放置一矩形匀质物体,质量m=10kg ,其角点A 上作用一水平力F ,已知斜坡角 度θ=30°,物体的宽高比b/h=0.3,物体与斜坡间的静摩擦系数s f =0.4。试确定不致破坏平衡时F 的取值范围。 计算滑动和翻倒两种情况得到(1)滑动平衡范围14.12124.54N F N -≤≤,(2)翻倒平衡范围:8.6962.27N F N ≤≤ 7. 如图机构,折杆OBC 绕着O 轴作顺时针的匀速定轴转动,角速度为ω,试求此时扣环 M 的速度和加速度。 点的合成运动:动系法 2 4sin 2tan ,sin 2M M V OM a OM ?ω?ω? -=??= 8. 悬臂刚性直杆OA 在O 处以铰链连接一圆环,半径R=0.5m ,圆环绕O 逆时针作定轴转 动,在图示瞬时状态下,圆环角速度1rad/s ω=,试求同时穿过圆环与杆OA 的扣环M 的速度和加速度。 9. 摇杆OA 长r 、绕O 轴转动,并通过C 点水平运动带动摇杆OA 运动。图示瞬时摇杆 OA 杆与水平线夹角?,C 点速度为V ,加速度a ,方向如图,试求该瞬时摇杆OA 的角速度和角加速度。

理论力学知识点总结静力学篇

静力学知识点 第一章静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。

第二章平面力系 本章总结 1. 平面汇交力系的合力 (1 )几何法:根据力多边形法则,合力矢为 合力作用线通过汇交点。 (2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 (1 )平衡的必要和充分条件: (2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 (3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为

一般以逆时针转向为正,反之为负。 或 4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。 力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系

理论力学复习题与答案(计算题部分)

三、计算题(计6小题,共70分) 1、图示的水平横梁AB,4端为固定铰 链支座,B端为一滚动支座。梁的长 为4L,梁重P,作用在梁的中点C。在 梁的AC段上受均布裁荷q作用,在梁 的BC段上受力偶作用,力偶矩M= Pa。试求A和B处的支座约束力。 2、在图示两连续梁中,已知q, M,a及θ,不计梁的自重,求 各连续梁在A,B,C三处的约 束力。 3、试求Z形截面重心的位置,其尺寸如图所示。 4、剪切金属板的“飞剪机”机构如图所 示。工作台AB的移动规律是s=0.2sin(π /6)t m,滑块C带动上刀片E沿导柱运动

以切断工件D,下刀片F固定在工作台上。设曲柄OC=0.6m,t=1 s 时,φ=60 o。求该瞬时刀片E相对于工作台运动的速度和加速度,并求曲柄OC转动的角速度及角加速度。 5、如图所示,在筛动机构中,筛子的摆动是 由曲柄连杆机构所带动。已知曲柄OA的转速 n OA=40 r/min,OA=0.3 m。当筛子BC运动 到与点O在同一水平线上时,∠BAO=90 o。 求此瞬时筛子BC的速度。 6、在图示曲柄滑杆机构中,曲柄以 等角速度ω绕O 轴转动。开始时, 曲柄OA水平向右。已知:曲柄的质 量为m1,沿块4的质量为m2,滑杆的 质量为m3,曲柄的质心在OA的中 点,OA=l;滑杆的质心在点C。 求:(1)机构质量中心的运动方 程;(2)作用在轴O的最大水平约 束力。 7、无重水平粱的支承和载荷如题图所示。已知力F、力偶矩为M的 力偶和强度为q的均布载荷。求支座A和B

处的约束力。 8、在图所示两连续梁中,已知M 及 a,不计梁的自重,求各连续梁在 A , B , C 三处的约束力。 9、工宇钢截面尺寸如图所示。求此截面 的几何中心。 10、如图所示,半径为R 的半圆形凸 轮D 以等速v 0沿水平线向右运动,带 动从动杆AB 沿铅直方向上升,求φ =30o时杆AB 相对于凸轮的速度和加 速度。 11、图示机构中,已知: ,OA=BD=DE=0.1m ,曲柄OA 的角速度ω =4rad/s 。在图示位置时,曲柄OA 与水平 m 30.1EF

大学理论力学期末试题及答案.

-精品- 一、作图题(10分) 如下图所示,不计折杆AB 和直杆CD 的质量,A 、B 、C 处均为铰链连接。试分别画出图中折杆AB 和直杆CD 的受力图。 二、填空题(30分,每空2分) 1.如下图所示,边长为a =1m 的正方体,受三个集中力的作用。则将该力系向O 点简化可得到: 主矢为=R F ( , , )N ; 主矩为=O M ( , , )N.m 。 2.如下图所示的平面机构,由摇杆A O 1、 B O 2,“T 字形”刚架ABCD ,连杆DE 和竖 直滑块E 组成,21O O 水平,刚架的CD 段垂 直AB 段,且AB =21O O ,已知l BO AO ==21,DE=l 4 ,A O 1杆以匀角速度ω绕1O 轴逆时针定轴转动,连杆DE 的质量均匀分布且大小为M 。 A B C P F D

根据刚体五种运动形式的定义,则“T字形”刚架ABCD的运动形式为,连杆DE的运动形式为。 在图示位置瞬时,若A O 1杆竖直,连杆DE与刚架CD段的夹角为o CDE60 = ∠, 则在该瞬时:A点的速度大小为,A点的加速度大小为,D 点的速度大小为,连杆DE的速度瞬心到连杆DE的质心即其中点的距离为,连杆DE的角速度大小为,连杆DE的动量大小为,连杆DE的动能大小为。 三、计算题(20分) 如左下图所示,刚架结构由直杆AC和折杆BC组成,A处为固定端,B处为辊轴支座,C处为中间铰。所受荷载如图所示。已知F=40 kN,M= 20kN·m,q=10kN/m,a=4m 。试求A处和B处约束力。 -精品-

-精品- 四、计算题(20分) 机构如右上图所示,1O 和2O 在一条竖直线上,长度mm A O 2001=的曲柄A O 1的一端A 与套筒A 用铰链连接,当曲柄A O 1以匀角速度s rad /21=ω绕固定轴1O 转动时,套筒A 在摇杆B O 2上滑动并带动摇杆B O 2绕固定轴2O 摆动。在图示瞬时,曲柄A O 1为水平位置,02130=∠B O O 。 试求此瞬时: (1)摇杆B O 2的角速度2ω;(2)摇杆B O 2的角加速度2α 五、计算题(20分) 如下图所示,滚子A 沿倾角为θ=030的固定斜面作纯滚动。滚子A 通过一根跨过定滑轮B 的绳子与物块C 相连。滚子A 与定滑轮B 都为均质圆盘,半径相等均为r ,滚子A 、定滑轮B 和物块C 的质量相等均为m ,绳子的质量忽略不计。系统由静止开始运动,试求: (1)物块C 的加速度; (2)绳子对滚子A 的张力和固定斜面对滚子A 的摩擦力。 B A 2o 1o 1ω

理论力学基础知识

《理论力学教程》基础知识 第一章 质点力学 在求解平面曲线运动问题时,可采用平面极坐标系,常将速度矢量分解为径 副法向:0 F b R b o 7. 质心运动定理反映了质点组运动的总趋势,而质心加速度完全取决于作用在 1. 2. 向速度和横向速度,其表达式分别为: v r r : v 为径向加速度和横向加速度,其表达式分别为a r 求解线约束问题,通常用内禀方程,它的优点是 以分开解算,这套方程可表示为,切向: md t ;将加速度矢量分解 a r 2r 。 运动规律和约束反作用力可 2 v m F n R n : 3. 试写出直角坐标系表示的质点运动微分方程式 mx F x 、my F y 、mz F z o 4. 质点在有心力作用下,只能在 垂直于动量矩J 的平面内运动,它的两个动力 学特征是:(1)对力心的动量矩守恒:(2)机械能守恒 5. 牛顿运动定律能成立的参考系,叫做惯性系:牛顿运动定律不能成立的参考 系,叫做非惯性系,为了使得牛顿运动定律在此参考系中仍然成立,则需加 上适当的惯性力。 6. 在平面自然坐标系中,切向加速度的表达式为a d ,它是由于速度大小改 变产生的;法向加速度的表达式为a n 2 —,它是由于速度方向改变产生 2

质点组上的外力,而内力不能使质心产生加速度 8.一质量为m的小环穿在光滑抛物线状的钢丝上并由A点向顶点0运动,其 2 建立起的运动微分方程为:吩 mgsin ; m- R mgcos。 注:此题答案不唯一。 9.一物体作斜抛运动,受空气阻力为R mkv,若采用直角坐标系建立其在任意时刻的运动微分方程为:證 mkv x ;瞪 mg mkv y ;若采用自 mg cos 。 10 .动量矩定义表达式为J r mv,它在直角坐标系中的分量式为 J x m yz zy、J y m zx xz、J z m xy yx。 然坐标系建立其在任意时刻的运动微分方程为: dv m一 dt mkv mg sin ; 第9题图

理论力学考试的试题

本部理论力学复习资料 计算各题中构件的动量、对转轴的转动惯量,对转轴的动量矩、动能。图a-d 中未标注杆长L ,质量m ,圆盘半径R ,质量M ,均为均质构件,转动角速度均为w 。 填空题 1.平面任意力系平衡的充分必要条件是力系的( )( )为零。 2.力系向一点简化得到的主矢与简化中心位置( )关,主矩矢一般与简化中心位置( )关。平面一般力系向一点简化可能得到的结果为力系简化为( )、( )或力系平衡。 4.平面汇交力系独立的平衡方程有( )个,空间汇交力系有( )个独立 平衡方程。 5.动点作曲线运动时的全加速度等于( )与( )两者矢量和。 6.已知质点运动方程为22,x t t y t =-+=,式中单位均为国际单位,则2t =秒时质点速度在,x y 轴投影分别为( )( );质点速度大小为( );加速度在,x y 轴投影大小分别为( )( )。 8. 力F 在x 轴上投影Fx=0和力F 对x 轴之矩Mx(F)=0,那么力F 应与( )轴( )并且( )。 9. 力偶矩矢的三个基本要素是( )( )和( )。 10. 直角刚杆AO=2m ,BO=3m ,已知某瞬时A 点的速度V A =4m/s,而B 点加速度与BO 成?=α60角。则该瞬时刚杆的角速度ω=( )rad/s ,角加速度ε=( )rad/s 2。 (a)(b) (c) e f

11.物体保持原有的( )( )状态的性质称为惯性。 12.平面一般力系向一点简化可能得到的结果为力系简化为( )、( )或力系平衡。 13.质心运动定理在空间直角坐标系下的三个投影方程为:( );( );( )。 14.摩擦角是指临界平衡时( )与( )夹角。 15.瞬时平动刚体上各点的速度( );各点加速度一般( )。(填相等、不相等)。 选择题 斜面倾角为30α= ,物块质量为m ,与斜面间的摩擦系数0.5s f =,动滑动摩擦系数 d f = (A ) (B ) (C ) (D)质量为m 压力大小为(A) mg (C ) 点 (t 以厘米计),则点( ) (C)6cm,8cm/s 2 (D) 16cm,8cm/s 2 点的合成运动中的速度合成定理a e r v v v =+ ,适用于哪种类型的牵连运动? (A) 只适用于牵连运动为平动的情况 (B) (C) (D) 楔形块A ,B 自重不计,大小相等,方向相反,(A) A ,B 都不平衡(C) A 平衡, B 不平衡

大学理论力学试题

一、单项选择题 1、若要在已知力系上加上或减去一组平衡力系,而不改变原力系的作用效果,则它们 所作用的对象必需是 ( C ) A 、同一个刚体系统; B 、同一个变形体; C 、同一个刚体,原力系为任何力系; D 、同一个刚体,且原力系是一个平衡力系。 2、以下四个图所示的是一由F1 、F2 、F3 三个力所组成的平面汇交力系的力三角形, 哪一个图表示此汇交力系是平衡的 ( A ) 3、作用在刚体的任意平面内的空间力偶的力偶矩是 ( C ) A 、一个方向任意的固定矢量; B 、一个代数量; C 、一个自由矢量; D 、一个滑动矢量。 4、图示平面内一力系(F1, F2, F3, F4) F1 = F2 = F3 = F4 = F ,此力系简化的最后结果为 ( C ) A 、作用线过 B 点的合力; B 、一个力偶; C 、作用线过O 点的合力; D 、平衡。 5、如图所示,用钢契劈物,接触面间的摩擦角为?m ,劈入后欲使契子不滑出,契子的夹角α应为 ( B ) A 、α>2?m B 、α<2?m C 、α>?m D 、α=?m 6、如图示的力分别对x 、y 、z 三轴之矩为 ( A ) A 、 mx(F)= - 3P, my(F)= - 4P, mz(F)=2.4P; B 、mx(F)=3P, my(F)=0, mz(F)= - 2.4P; C 、 mx(F)= - 3P, my(F)=4P, mz(F)=0; D 、 mx(F)=3P, my(F)=4P, mz(F)= - 2.4P; 7、若点作匀变速曲线运动,则 ( B ) F 1 F 2 F 3 A F 1 F 2 F 3 B F 1 F 2 F 3 C F 1 F 2 F 3 D B A O F 4 F 3 F 2 F 1 α P 5 4 3 x y z

太原理工大学理论力学知识点集合

平面力系 1. 平面汇交力系可简化为以合力,其大小和方向等于各分力的矢量和,合力的 作用线通过汇交点。 2. 平面汇交力系平衡的充要条件为合力等于零,与任意力系不同,任意力系由 于不能汇交,会产生力偶,必须得满足主矢主矩都等于零才平衡。 3. 平面汇交力系可以通过解析法,即将各力分解到直角坐标系上,再求合力。 4. 力对点取矩:是一个代数量,绝对值等于力的大小与力臂的乘积: Fd F Mo =)( 5. 合力矩定理:平面力系的合力对于平面内任一点的矩等于所有分力对该点的 矩的代数和。 6. 力偶、力偶矩:力偶由两个大小相等,方向相反,作用线不在同一直线上的 平行力组成。力偶矩等于平行力的大小乘上平行力的间距,逆时针为正,顺时针为负。 7. 力偶的等效定理:在同一平面内,只要力偶矩的大小和转向不变,力偶的作 用效果就不变。 8. 平面力系的简化:平面任意力系向一点的简化结果为一合力和一合力偶,合 力称为主矢,合力偶为主矩。主矢作用线过简化中心。 9. 平面任意力系平衡的充要条件:???==00'Mo F R ,其平衡方程为∑=0x F ,∑=0y F , ∑=0)(Fi Mo ,是三个独立的方程,可以求解三个未知数。 10. 静定问题:当系统中的未知量数目等于独立平衡方程的数目,则所有未知数 都能解出,这种问题称为静定问题。反之为非静定问题。

空间力系 11. 空间汇交力系的合力等于各分力的矢量和,合力的作用线过汇交点。可得合 力的大小和方向余弦:()()()222∑∑∑++Fz Fy Fx R F ,() R R F Fx i F ∑=,cos ,其余类似。 12. 空间汇交力系平衡的充要条件为该力系的合力为零,或所有分力在三个坐标 轴上投影的代数和为零,∑∑∑===0,0,0Fz Fy Fx ,可求三个未知数。 13. 力对点的矩矢等于该力作用点的矢径与该力的矢量积:()F r F M ?=o ;若k Fz j Fy i Fx F k z j y i x r ++=++=,,由行列式可得,()()()()k y F x x F y j x F z z F x i z F y y F z F Mo -+-+-=,在坐标轴上的投影为()[]y F z z F y F Mo x -=,()[]xFz zFx F Mo y -=,()[]yFx xFy F Mo z -=。 14. 力对轴的矩是一个代数量,其绝对值等于该力在垂直于该轴的平面上的投影 对于这个平面与该轴的交点的矩,而正负号只表示其转向。 15. 力对点的矩与力对通过该点的轴的矩的关系:()[]()F M F Mo x x =。 16. 空间力偶矩矢是自由矢量,而空间力偶对刚体的作用效果完全由力偶来确定,于是存在空间力偶等效定理:作用在同一刚体上的两个空间力偶,如果其力偶矩矢相等,则它们彼此等效。 17. 等效定理表明:空间力偶可以平移到与其作用面平行的任意平面而不改变力 偶对刚体的作用,只要力偶矩矢的大小方向不改变,其作用效果不改变。力偶矩矢d F M ?=,其中d 为'F F 和的间距。 18. 空间力偶系平衡的充要条件为:该力偶系的合力偶矩等于零或在各坐标轴上 的投影代数和分别为零。 19. 空间力系向任一点的简化同平面力系一样得到主矢和主矩,而主矢与简化中

理论力学基础知识

《理论力学教程》基础知识 第一章 质点力学 1. 在求解平面曲线运动问题时,可采用平面极坐标系,常将速度矢量分解为径 向速度和横向速度,其表达式分别为:r v r =;θθ r v =;将加速度矢量分解为径向加速度和横向加速度,其表达式分别为2θ r r a r -=; θθθ r r a 2+=。 第2题图 2. 求解线约束问题,通常用内禀方程,它的优点是运动规律和约束反作用力可以分开解算,这套方程可表示为,切向:τF dt dv m =;法向:n n R F v m +=ρ2 ;副法向:b b R F +=0。 3. 试写出直角坐标系表示的质点运动微分方程式x F x m = 、y F y m = 、z F z m = 。 4. 质点在有心力作用下,只能在垂直于动量矩J 的平面内运动,它的两个动力学特征是:(1)对力心的动量矩守恒;(2)机械能守恒。 5. 牛顿运动定律能成立的参考系,叫做惯性系;牛顿运动定律不能成立的参考 系,叫做非惯性系,为了使得牛顿运动定律在此参考系中仍然成立,则需加 上适当的惯性力。 6. 在平面自然坐标系中,切向加速度的表达式为dt dv a =τ,它是由于速度大小改变产生的;法向加速度的表达式为ρ2 v a n =,它是由于速度方向改变产生的。 7. 质心运动定理反映了质点组运动的总趋势,而质心加速度完全取决于作用在

质点组上的外力,而内力不能使质心产生加速度。 第8题图 8. 一质量为m 的小环穿在光滑抛物线状的钢丝上并由A 点向顶点O 运动,其 建立起的运动微分方程为:θsin mg dt dv m =;θρ cos 2 mg R v m -=。 注:此题答案不唯一。 第9题图 9.一物体作斜抛运动,受空气阻力为v mk R -=,若采用直角坐标系建立其在任意时刻的运动微分方程为:x x m kv dt dv m -=;y y mkv m g dt dv m --=;若采用自然坐标系建立其在任意时刻的运动微分方程为:θsin mg mkv dt dv m --=; θρc o s 2 mg v m =。 10.动量矩定义表达式为v m r J ?=,它在直角坐标系中的分量式为 ()y z z y m J x -=、()z x x z m J y -=、()x y y x m J z -=。

理论力学公式

理论力学公式

————————————————————————————————作者:————————————————————————————————日期: ?

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) 1.点的运动 矢量法 2 2 , , )(dt r d dt v d a dt r d v t r r ==== 直角坐标法 ) ()()(321t f z t f y t f x ===z v y v x v z y x ===z a y a x a z y x === 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ),sin(2 , 2r e r e k r e k v v a v a ωωω=?=2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量 的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 ω R v =ε τR a =2 ωR a n =全加速度: 2 ),(ωε= n a tg 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== ω ω , ?=+=AB v v v v BA BA A B 为图形角速度 ετ ?=AB a BA 2 ω ?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τ() d d e i p F t =∑

大学理论力学期末试题与答案.

2008-2009 学年第一学期考试题(卷) 课程名称理论力学考试性质试卷类型 A 使用班级材料成型及控制工程考试方法人数 题号一二三四五六七八九十总成绩成绩 一、作图题(10分) 如下图所示,不计折杆AB和直杆CD的质量,A、B、C处均为铰链连接。试分别画出图中折杆AB和直杆CD的受力图。 A F P B D C 二、填空题(30分,每空 2 分) 1. 如下图所示,边长为a=1m的正方体,受三个集中力的作用。则将该力系向O 点简化可得到: 主矢为F(,,) R N; 主矩为M O (,,) N.m 。 第 1 页共

2. 如下图所示的平面机构,由摇杆O A 2 ,“T 字形”刚架ABCD,连杆DE 和 1 、O B 竖直滑块E 组成,O 水平,刚架的CD 段垂直AB段,且AB= 1O 2 O ,已知AO1 BO 2 l , 1OO ,已知AO1 BO 2 l ,2 DE= 4l ,O1 A 杆以匀角速度绕O 轴逆时针定轴转动,连杆DE 的质量均匀分布且大 1 小为M 。 根据刚体五种运动形式的定义,则“T 字形”刚架ABCD 的运动形式为,连杆DE 的运动形式为。 1 杆竖直,连杆DE 与刚架CD 段的夹角为在图示位置瞬时,若O A o CDE 60 ,则 在该瞬时:A 点的速度大小为,A 点的加速度大小为,D 点的速度大小为,连杆DE 的速度瞬心到连杆DE 的质心即其中点的距离为,连杆DE 的角速度大小为,连杆DE 的动量大小为,连杆DE 的动能大小为。 O 1 2 O B A E C D 三、计算题(20分) 如左下图所示,刚架结构由直杆AC 和折杆BC 组成,A 处为固定端,B 处为辊轴支座,C 处为中间铰。所受荷载如图所示。已知F=40 kN,M= 20kN ·m,q=10kN/m, a=4m 。试求A 处和B 处约束力。

理论力学复习总结(知识点)

第一篇静力学 第1 章静力学公理与物体的受力分析 1.1 静力学公理 公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F’ 工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。 1.2 约束及其约束力 1.柔性体约束 2.光滑接触面约束 3.光滑铰链约束

第2章平面汇交力系与平面力偶系 1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和 方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=∑F 2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3.力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的 转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo(F)=±Fh) 4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称 为力偶,记为(F,F’)。 例2-8 如图2.-17(a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17(b)所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB’构成一力偶与矩为M的力偶平衡(见图2-17(c))。由平面力偶系的平衡方程∑Mi=0,得﹣Fad+M=0 则有FA=FB’N=471.40N 由于FA、FB’为正值,可知二力的实际方向正为图2-17(c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB’=471.40N,方向如图2-17(b)所示。 第3章平面任意力系 1.合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中各力对于同一点之矩的代数和。 2.平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主矩同时为零,即F R`=0,Mo=0. 3.平面任意力系的平衡方程:∑Fx=0, ∑Fy=0, ∑Mo(F)=0.平面任意力系平衡的解析条件是,力系中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零. 例3-1 如图3-8(a)所示,在长方形平板的四个角点上分别作用着四个力,其中F1=4kN,F2=2kN,F3=F4=3kN,平板上还作用着一力偶矩为M=2kN2m的力偶。试求以上四个力及一力偶构成的力系向O点简化的结果,以及该力系的最后合成结果。 解(1)求主矢FR’,建立如图3-8(a)所示的坐标系,有 F’Rx=∑Fx=﹣F2cos60°+F3+F4cos30°=4.598kN F’Ry=∑Fy=F1-F2sin60°+F4sin30°=3.768kN

理论力学模拟题计算题

理论力学模拟题计算题 1、图示梁,已知 m =20 kN.m , q = 10 kN /m , l =1m , 求固定端支座A 的约束力。 2、如图所示三铰刚架,已知P =20kN ,m =10kN.m ,q =10kN/m 不计自重,计算A 、B 、C 的束力。 3、多跨梁在C 点用铰链连接。已知均布荷载集度q =10 kN /m ,CD 上作用一力偶,力偶矩为M=40kN ·m ,l =2m 。试求A 、B 、 D 处约束力。 4、平面曲柄摆杆机构如图所示,曲柄OA 的一端与滑块A 用铰链连接。当曲柄OA 以匀角速度ω绕固定轴O 转动时,滑块在摇杆O 1B 上滑动,并带动摇杆O 1B 绕固定轴O 1摆动。设曲柄长OA= r ,两轴间距离OO 1=l 。求当曲柄OA 在水平位置时摇杆的角速度和角加速度。 5、图示四连杆机构,O 1B =l , AB=1.5 l 且C 点是AB 中点,OA 以角速度ω转动,在图示瞬时,求 B 、C 两点的速度和加速度,刚体AB 的角速度AB ω

6、在图示四连杆机构中,已知:曲柄OA= r =0.5 m ,以匀角速度 rad/s 40=ω转动,r AB 2=, r BC 2=;图示瞬时OA 水平,AB 铅直, 45=?。试求(1)该瞬时点B 的速度;(2)连杆AB 的角速度。 7、图示摇杆机构,折杆AB 以等速度υ向右运动。摇杆长度OC =a ,用点的合成运动知 识求当? =45?(距离l OA =)时C 点的速度、加速度。 8、刨床的急回机构如图所示。曲柄OA 以匀角速度ω绕O 作定轴转动,滑块在摇杆B O 1上滑动,并带动杆B O 1绕定轴1O 摆动。设曲柄长为r OA =,在图示位置时OA 水平,1OO 铅垂, 30=?。求:该瞬时摇杆B O 1角速度和角加速度。

大学理论力学期末试题及答案.

二、填空题(30分,每空2分) 1.如下图所示,边长为a =1m 的正方体,受三个集中力的作用。则将该力系向O 点简化可得到: 主矢为=R F ( , , )N ; 主矩为=O M ( , , )N.m 。 2.如下图所示的平面机构,由摇杆A O 1、B O 2, “T 字形”刚架ABCD ,连杆DE 和竖直滑块E 组成,21O O 水平,刚架的CD 段垂 直AB 段,且AB =21O O ,已知l BO AO ==21,DE=l 4 ,A O 1杆以匀角速度ω绕1O 轴逆时针定轴转动,连杆DE 的质量均匀分布且大小为M 。 根据刚体五种运动形式的定义,则“T 字形”刚架ABCD 的运动形式为 ,连杆DE 的运动形式为 。 在图示位置瞬时,若A O 1杆竖直,连杆DE 与刚架CD 段的夹角为o CDE 60=∠,则在该瞬时:A 点的速度大小为 ,A 点的加速度大小为 ,D 点的速度大小为 ,连杆DE 的速度瞬心到连杆DE 的质心即其中点的距离为 ,连杆DE 的角速度大小为 ,连杆DE 的动量大小为 ,连杆DE 的动能大小为 。

2 三、计算题(20分) 如左下图所示,刚架结构由直杆AC 和折杆BC 组成,A 处为固定端,B 处为辊轴支座,C 处为中间铰。所受荷载如图所示。已知F=40 kN ,M= 20kN ·m ,q=10kN/m ,a=4m 。试求A 处和B 处约束力。 四、计算题(20分) 机构如右上图所示,1O 和2O 在一条竖直线上,长度mm A O 2001=的曲柄A O 1的一端A 与套筒A 用铰链连接,当曲柄A O 1以匀角速度s rad /21=ω绕固定轴1O 转动时,套筒A 在摇杆B O 2上滑动并带动摇杆B O 2绕固定轴2O 摆动。在图示瞬时,曲柄A O 1为水平位置,02130=∠B O O 。 试求此瞬时: (1)摇杆B O 2的角速度2ω;(2)摇杆B O 2的角加速度2α 五、计算题(20分) 如下图所示,滚子A 沿倾角为θ=030的固定斜面作纯滚动。滚子A 通过一根跨过定

相关主题