搜档网
当前位置:搜档网 › 知识讲解 函数模型的应用举例 基础

知识讲解 函数模型的应用举例 基础

知识讲解 函数模型的应用举例 基础
知识讲解 函数模型的应用举例 基础

函数模型的应用实例

【学习目标】

1.能够找出简单实际问题中的函数关系式,应用指数函数、对数函数模型解决实际问题,并初步掌握数学建模的一般步骤和方法.

2.通过具体实例,感受运用函数建立模型的过程和方法,体会指数函数、对数函数模型在数学和其他中的应用.

3.通过函数应用的学习,体会数学应用的广泛性,树立事物间相互联系的辩证观,培养分析问题、解决问题的能力,增强数学的应用意识.

【要点梳理】

【高清课堂:函数模型的应用实例392115 知识要点】

要点一:解答应用问题的基本思想和步骤

1.解应用题的基本思想

2.解答函数应用题的基本步骤

求解函数应用题时一般按以下几步进行:

第一步:审题

弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 第二步:建模

在细心阅读与深入理解题意的基础上,引进数学符,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求.

第三步:求模

运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果. 第四步:还原

把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景.

上述四步可概括为以下流程:

实际问题(文字语言)?数学问题(数量关系与函数模型)?建模(数学语言)?求模(求解

数学问题)?反馈(还原成实际问题的解答).

要点二:解答函数应用题应注意的问题

首先,要认真阅读理解材料.应用题所用的数学语言多为“文字语言、符语言、图形语

言”并用,往往篇幅较长,立意有创新脱俗之感.阅读理解材料要达到的目标是读懂题

目所叙述的实际问题的意义,领悟其中的数学本质,接受题目所约定的临时性定义,理

解题目中的量与量的位置关系、数量关系,确立解体思路和下一步的努力方向,对于有

些数量关系较复杂、较模糊的问题,可以借助画图和列表来理清它.

其次,建立函数关系.根据前面审题及分析,把实际问题“用字母符、关系符”表达出

来,建立函数关系. 其中,认真阅读理解材料是建立函数模型的关键.在阅读这一过程

中应像解答语文和外语中的阅读问题一样,有“泛读”与“精读”之分.这是因为一般

的应用问题,一方面为了描述的问题与客观实际尽可能地相吻

合,就必须用一定的篇幅描述其中的情境;另一方面有时为了思想教育方面的需要,也

要用一些非数量关系的语言来叙述,而我们解决问题所关心的东西是数量关系,因此对

那些叙述的部分只需要“泛读”即可.反过来,对那些刻画数量关系、位置关系、对应

关系等与数学有关的问题的部分,则应“精读”,一遍不行再来一遍,直到透彻地理解

为止,此时切忌草率.

【典型例题】

类型一、已建立函数模型的应用题

例1.心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间.讲

座开始时,学生的兴趣激增,中间有一段不太长时间,学生的兴趣保持较理想的状态,

随后学生的注意力开始分散.分析结果和实验表明,用f (x)表示学生掌握和接受概念

的能力,x表示提出和讲授概念的时间(单位:分),可有以下的公式:

20.12.643, (010)()59, (1016)3107, (1630)xxxfxxxx?????????????????.

问开讲后多少分钟,学生的接受能力最强?能维持多长时间?

【答案】开讲后10分钟,学生达到最强的接受能力(值为59),并维持6分钟.

【解析】当0<x≤10时,

f (x)=―0.1x2+2.6x+43=―0.1(x―13)2+59.9,

可知f (x)在(0,10)上单调递增,故其最大值为

f (10)=―0.1×(―3)2+59.9=59.

显然,当16<x≤30时,f (x)递减,

f (x)<-3×16+107=59.

因此,开讲后10分钟,学生达到最强的接受能力(值为59),并维持6分钟.

【总结升华】(1)解决分段函数模型问题的关键在于“分段归类”,即自变量属于哪一

段就选用哪段的函数【解析】式来分析解决问题.(2)求解“已建立数学模型”的应用

问题关键是抓住已建立的函数模型,选择合适的方法求解建立的数学模型.注意一定要

“读”懂模型.

例2.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每

生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生

产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)

满足20.44.2(05)()11,(5)xxxRxx?????????,假定该产品产销平衡(即生

产的产品都能卖掉),根据上述统计规律,请完成下列问题:

(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本);

(2)工厂生产多少台产品时,可使盈利最多?

【思路点拨】(1)由题意得G(x)=2.8+x.由

20.44.2(05)()11,(5)xxxRxx?????????,f(x)=R(x)-G(x),能写出利润函数y=f(x)的解析式.

(2)当x>5时,由函数f(x)递减,知f(x)<f(5)=3.2(万元).当0≤x≤5时,函数2()0.4(4)3.6fxx????,当x=4时,f(x)有最大值为3.6(万元).由此能求出工厂生产多少台产品时,可使盈利最多.

【答案】(1)20.43.22.8(05)8.2(5)xxxxx??????????;(2)400

【解析】(1)由题意得G(x)=2.8+x.

∵20.44.2(05)()11,(5)xxxRxx?????????,

∴20.43.22.8(05)()()()8.2(5)xxxfxRxGxxx?????????????.

(2)当x>5时,

∵函数f(x)递减,

∴f(x)<f(5)=3.2(万元).

当0≤x≤5时,函数2()0.4(4)3.6fxx????,

当x=4时,f(x)有最大值为3.6(万元).

所以当工厂生产4百台时,可使赢利最大为3.6万元.

【总结升华】本题考查函数知识在生产实际中的具体应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.

举一反三:

【变式1】设在海拔x m处的大气压强是y Pa,y与x之间的函数关系式是y=ce kx,其中c,k为常量,已知某地某天海平面上的大气压为1.01×105 Pa,1000 m高空的大气压为0.90×105 Pa,求600 m高空的大气压强(结果保留3位有效数字).【答案】0.943×105.

【解析】这里已有函数模型,要求待定系数c、k,由x=0时y=1.01×105Pa和x=1000 m时y=0.90×105

Pa可求.

将x=0,y=1.01×105,x=1000,y=0.90×105分别代入函数关系式y=ce kx中,得

50510001.01100.9010kk cece??????????,∴5510001.01100.9010k cce?????????.将c=1.01×105代入0.90×105=ce1000k中得0.90×105=1.01×105e1000k,

∴10.90ln10001.01k??.

由计算器算得k=-1.15×10-4,

∴451.15101.0110x ye??????.

将x=600代入上述函数关系式得451.15106001.0110ye???????,

由计算器算得y=0.943×105 Pa

..

答:600 m高空的大气压强约为0.943×105 Pa

..

【总结升华】函数y=c·a kx(a、c、k为常数)是一个应用广泛的函数模型,它在电学、生物学、人口学、气象学等都有广泛的应用,解决这类给出指数函数模型的应用题的基本方法是待定系数法,即根据题意确定相关的系数即可.

类型二、自建函数模型的应用问题

例3. (2016 湖南岳阳月考)旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为16000元.旅行团中的每个人的飞机标按以下方式与旅行社结算:若旅行团的人数不超过35人时,飞机票每张收费800元;若旅行团的人数多于35人时,则予以优惠,每多1人,每个人的机票费减少10元,但旅行团的人数最多不超过60人.设旅行团的人数为x人,飞机票价格为y元,旅行社的利润为Q元.

(1)写出飞机票价格y元与旅行团人数x之间的函数关系式;

(2)当旅行团人数x为多少时,旅行社可获得最大利润?求出最大利润.

【思路点拨】(1)依题意得,当1≤x≤35时,y=800;当35<x≤60时,y=800―10(x―35)=―10x+1150,从而得出结论.

(2)设利润为Q,则由Q=yx―1600可得Q的解析式.当1≤x≤35且x∈N时,求得max Q的值,当35<x≤60且x∈N时,再根据Q的解析式求得max Q的值,再把这两个max Q的值作比较,可得结论.

【答案】(1)800(135,)101150(3560,)xxNyxxxN????????????且且;(2)当x=57或x=58时,max Q=17060>12000

【解析】(1)依题意得,当1≤x≤35时,y=800.

当35<x≤60时,y=800―10(x―35)=―10x+1150;

∴800(135,)101150(3560,)xxNyxxxN????????????且且.

(2)设利润为Q,则

280016000(135,)1600010115016000(3560,)xxxNQyxxxxxN???? ?????????????且且.

当1≤x≤35且x∈N时,max Q=800×5-16000=12000,

当35<x≤60且x∈N时,

22115341251011501600010()22Qxxx????????,

因为x∈N,所以当x=57或x=58时,max Q=17060>12000.

故当旅游团人数为57或58时,旅行社可获得最大利润为17060元.

【总结升华】本题主要考查求函数最值的应用,二次函数的性质,体现了分类讨论的数学思想.

举一反三:

【变式1】某商场销售某一品牌的羊毛衫,假设每天购买人数m与每件羊毛衫的标价x (元)之间满足关系式m=kx+b(k、b为实常数),标价越高,购买人数越少.把购买

人数为零时的最低标价

....称为无效价格,已知无效价格为每件300元,且当x=200时,m=100.已知这种羊毛衫的成本价是每件100元,商场以高于成本价的相同价格(标价)x元出售.

(Ⅰ)求实常数k、b的值;

(Ⅱ)若为使商场每天获得的利润最大,那么每件羊毛衫的标价x应为多少元?

【答案】(Ⅰ)1300kb??????;(Ⅱ)当x=200时,最大值为10000元

【解析】(Ⅰ)由题意得:0300,1,100200,300,kbkkbb??????????????;(Ⅱ)设商场每天获取的利润为y,∵

300mx???2(100)(300)40030000yxxxx???????2(200)+10000 (100300)xx?????,

∴当200x?时,y取最大值为10000元;

即为使商场每天要获取的利润最大,每件羊毛衫的标价为200元.

【高清课堂:函数模型的应用实例392115 例2】

例4.某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异). (1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;

(2)新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内、外环线乘客的最长候车时间之差不超过1分钟,问:内、外环线应各投入几列列车运行?

【思路点拨】(1)根据题意列出不等式求解(2)列出不等式求解,因为计算过程中,数字比较大,可以使用计算器。

【答案】(1)20(2)10 8 【解析】

(1)设内环线列车平均速度最小为/vkmh

由题得:3060109v??

解得20/vkmh?。

答:内环线列车的最小平均速度为每小时20千米。

(2)设内、外环线分别投入列车数量为x、18x?列

由题得:3030|6060|12530(18)xx?????

即7260||118xx???

得72601118xx?????,

解得:1501731611418182x????,由计算器得:10x?。

答:内、外环线应各投入10列、8列列车运行,才能使内、外环线乘客的最长候车时间之差不超过1分钟

类型三、拟和函数模型的应用问题

这类应用题提供的变量关系是不确定的,只是给出了两个变量的几组对应值(是搜集或

用实验方法测定的).为了降低难度,有时采用限定函数模型范围的方法.

例5. 某汽车公司曾在2009年初公告:2009年销量目标定为39.3万辆;且该公司重事长极力表示有信心完成这个销量目标.

2006年,某汽车年销量8万辆;

2007年,某汽车年销量18万辆;

2008年,某汽车年销量30万辆.

如果我们分别将2006,2007,2008,2009年定义为第一,二,三,四年,现在有两个函数模型:二次函数型f (x)=ax2+bx+c(a≠0),指数函数型g (x)=a·b x+c(a ≠0,b≠1,b>0),哪个模型能更好地反映该公司年销量y与第x年的关系?

【解析】建立年销量y(万辆)与第x年的函数,可知函数图象必过点(1,8),(2,18),(3,30).

(1)构造二次函数型f (x)=ax2+bx+c(a≠0),

将点的坐标代入,可得842189330abcabcabc??????????????,解得

170abc????????.

则f (x)=x2+7x,故f (4)=44,与计划误差为4.7.

(2)构造指函数型g (x)=a·b x+c,将点的坐标代入,

可得2381830abcabcabc???????????,解得

12536542abc?????????????,则1256()()4235x gx???,

故41256(4)()4244.435g????,与计划误差为5.1.

由上可得f (x)=x2+7x模型能更好地反映该公司年销量y(万辆)与第x年的关系.【总结升华】某个函数模型能否更好地反映变量间的关系,必须与实际数据的误差相对较小.

举一反三:

【变式1】某地区不同身高的未成年男性的体重平均值如下表:

身高/cm

60

70

80

90

100

110

120

130

140

150

160

170

体重/kg 6.13 7.90 9.99 12.15 15.02 17.50 20.92 26.86 31.11 38.85 47.25 55.05 若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高175cm,体重为78kg的在校男生的体重是否正常?

【解析】本例没有给出函数模型,所以我们要先画出草图,再根据图象与我们学习过的函数图象进行比较,猜测出函数模型.

以身高为横坐标,体重为纵坐标,画出由离散点构成的草图,如图所示.

根据点的分布情况,结合以前学过的指数函数图象特征,可猜测以x yka?(a>0,a≠1 )

为男性的体重与身高关系的函数模型.

把点(70,7.90)、(160,47.25)代入函数以x yka?中,得

701607.90,47.25.kaka???????使用计算器可求得2,1.02.ka?????

所以,函数模型为21.02x y??.

用计算器验证其它点与模拟函数的关系,发现拟和程度相符.

再将x=175代入函数式21.02x y??,即17521.02y??,用计算器求得y≈63.98.

因为7863.98≈1.22>1.2,所以,这个男生偏胖.

【总结升华】由于本题没有给出函数模型,因此需要根据题目中的有关数据描绘出基本草图,然后根据直观性,去和已学过的有关函数图象对照、比较,由此猜测函数模型.在解此类问题的过程中,首先需要在实际的情境中去理解、分析所给的一系列数据,舍弃与解题无关的因素,抽象转化为数学模型.

体重

身高●●●●●●●●●●

高一数学必修1-函数模型及其应用

高一数学必修1 函数模型及其应用(1) 【学习导航】 知识网络 学习要求 1.了解解实际应用题的一般步骤; 2.初步学会根据已知条件建立函数关系式的方法; 3.渗透建模思想,初步具有建模的能力. 自学评价 1.数学模型就是把 实际问题 用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述. 2. 数学建模就是把实际问题加以 抽象概括 建立相应的 数学模型 的过程,是数学地解决问题的关键. 3. 实际应用问题建立函数关系式后一般都要考察 定义域 . 【精典范例】 例1.写出等腰三角形顶角y (单位:度)与底角x 的函数关系. 【解】1802y x =- ()090x << 点评: 函数的定义域是函数关系的重要组成部分.实际问题中的函数的定义域,不仅要使函数表达式有意义,而且要使实际问题有意义. 例2.某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元.分别写出总成本C (万元)、单位成本P (万元)、销售收入R (万元)以及利润L (万元)关于总产量x (台)的函数关系式.

分析:销售利润()L x =销售收入()R x -成本()C x ,其中成本()C x = (固定成本+可变成本). 【解】总成本与总产量的关系为 2000.3,C x x N *=+∈. 单位成本与总产量的关系为 200 0.3,P x N x *= +∈. 销售收入与总产量的关系为 0.5,R x x N *=∈. 利润与总产量的关系为 0.2200,L R C x x N *=-=-∈ . 例3.大气温度()y C 随着离开地面的高度()x km 增大而降低,到上空11km 为止,大约每上升1km ,气温降低6C ,而在更高的上空气温却几乎没变(设地面温度为22C ). 求:(1)y 与x 的函数关系式; (2) 3.5x km =以及12x km =处的气温. 【解】(1)由题意, 当011x ≤≤时,226y x =-, ∴当11x =时,2261144y =-?=-, 从而当11x >时,44y =-. 综上,所求函数关系为 []226,0,1144,(11,) x x y x ?-∈? =? -∈+∞??; (2)由(1)知, 3.5x km =处的气温为 226 3.51y =-?=C , 12x km =处的气温为44C -. 点评:由于自变量在不同的范围中函数的表达式不同,因此本例第1小题得到的是关于自变量的分段函数;第2小题是已知自变量的值,求函数值的问题. 追踪训练一 1.生产一定数量的商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企

人教版高中数学知识与巩固·函数及其表示方法(基础)

人教版高中数学知识与巩固·函数及其表示方法(基础) 【学习目标】 (1)会用集合与对应的语言刻画函数,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. (2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数. (3)求简单分段函数的解析式;了解分段函数及其简单应用. 【要点梳理】 要点一、函数的概念 1.函数的定义 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数. 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 要点诠释: (1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。 2.构成函数的三要素:定义域、对应关系和值域 ①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数); ②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关. 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 区间表示: <<= {x|a≤x≤b}=[a,b]; x a x b a b {|}(,); (] {|}, ≤<=; x a x b a b {|}, x a x b a b <≤=;[) (][) ≤=∞≤=+∞. x x b b x a x a {|}-,; {|}, 要点二、函数的表示法 1.函数的三种表示方法: 解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势. 列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值. 2.分段函数: 分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况. 要点三、映射与函数 1.映射定义: 设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B. 象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象. 要点诠释: (1)A中的每一个元素都有象,且唯一;

初中数学函数基础知识难题汇编及解析

初中数学函数基础知识难题汇编及解析 一、选择题 1.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是() A.甲乙两地相距1200千米 B.快车的速度是80千米∕小时 C.慢车的速度是60千米∕小时 D.快车到达甲地时,慢车距离乙地100千米 【答案】C 【解析】 【分析】 (1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为600 10 =60(千米 /小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案. 【详解】 解:(1)由图象得:甲乙两地相距600千米,故选项A错; (2)由题意得:慢车总用时10小时, ∴慢车速度为:600 10 =60(千米/小时); 设快车速度为x千米/小时, 由图象得:60×4+4x=600,解得:x=90, ∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确; (3)快车到达甲地所用时间:60020 903 =小时,慢车所走路程:60× 20 3 =400千米,此时 慢车距离乙地距离:600-400=200千米,故选项D错误. 故选C 【点睛】 本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式. 2.如图,在边长为3的菱形ABCD中,点P从A点出发,沿A→B→C→D运动,速度为每秒3个单位;点Q同时从A点出发,沿A→D运动,速度为每秒1个单位,则APQ ?的面

积S 关于时间t 的函数图象大致为( ) A . B . C . D . 【答案】D 【解析】 【分析】 根据动点的运动过程分三种情况进行讨论解答即可. 【详解】 解:根据题意可知: 3AP t =,AQ t =, 当03t <<时, 2133sin sin 22 S t t A t A =??=? 0sin 1A << ∴此函数图象是开口向上的抛物线; 当36t <<时, 133sin sin 22 S t A t A =??=? ∴此时函数图象是过一、三象限的一次函数; 当69t <<时, 2139(93)sin ()sin 222 S t t A t t A =??-=-+. ∴此时函数图象是开口向下的抛物线. 所以符号题意的图象大致为D . 故选:D . 【点睛】 本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式. 3.如图所示,菱形ABCD 中,直线l ⊥边AB ,并从点A 出发向右平移,设直线l 在菱形ABCD 内部截得的线段EF 的长为y ,平移距离x =AF ,y 与x 之间的函数关系的图象如图2所示,则菱形ABCD 的面积为( )

高考数学回归基础知识二、函数及其表示

高考数学回归基础知识:二、函数及其表示 二、函数及其表示 (一)函数的概念 1、定义 一般地,我们说: 设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为集合A 到集合B 的一个函数,记作A x x f y ∈=),( 其中,x 叫做自变量,x 的取值范围A 叫函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(叫做函数的值域,显然,值域是集合B 的子集。 2、函数的三要素 (1)函数的三要素是指定义域、对应关系和值域。 (2)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 3(2)满足不等式a

- 2 -文档收集于互联网,如有不妥请联系删除. ?? ?≠-≥????≠-≥+2 1 0201x x x x ,即x ≥-1且x ≠2, 故所求函数的定义域为{}21|≠-≥x x x 且 例2 (1)已知函数f(x)的定义域是[-1,3],求f(x+1)和f(x 2 )的 定义域 (2)已知函数f(2x+3)的定义域为(]2,1-,求f(x-1)的定义域 解析 (1)∵f(x)的定义域为[-1,3], ∴f(x+1)的定义域由-1≤x+1≤3确定,即-2≤x ≤2, ∴f(x+1)的定义域为[-2,2]. f(x 2 )的定义域由-1≤x 2 ≤3确定,即33≤≤-x ∴f(x 2 )的定义域为[33,-] (2)∵函数f(2x+3)的定义域为(]2,1-, ∴2x+3中的x 满足-1

函数模型的应用实例 说课稿 教案 教学设计

函数模型的应用实例 课型:新授课 教学目标 能够利用给定的函数模型或建立确定性函数模型解决实际问题,进一步感受运用函数概念建立函数模型的过程和方法,对给定的函数模型进行简单的分析评价. 二、教学重点 重点:利用给定的函数模型或建立确定性质函数模型解决实际问题. 难点:将实际问题转化为数学模型,并对给定的函数模型进行简单的分析评价. 三、学法与教学用具 1.学法:自主学习和尝试,互动式讨论. 2.教学用具:多媒体 四、教学设想 (一)创设情景,揭示课题. 现实生活中有些实际问题所涉及的数学模型是确定的,但需我们利用问题中的数据及其蕴含的关系来建立.对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评价,验证数学模型的与所提供的数据的吻合程度. (二)实例尝试,探求新知 例1.一辆汽车在某段路程中的行驶速度与时间的关系如图所示. 1)写出速度v关于时间t的函数解析式; 2)写出汽车行驶路程y关于时间t的函数关系式,并作图象; 3)求图中阴影部分的面积,并说明所求面积的实际含义; 4)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数s与时间t的函数解析式,并作出相应的图象. 本例所涉及的数学模型是确定的,需要利用问题中的数据及其蕴含的关系建立数学模型,此例分段函数模型刻画实际问题. 教师要引导学生从条块图象的独立性思考问题,把握函数模型的特征. 注意培养学生的读图能力,让学生懂得图象是函数对应关系的一种重要表现形式. 例2.人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798,英国经济家马尔萨斯就提出了自然状态下的人口增长模型: 0rt y y e 其中t表示经过的时间, y表示t=0时的人口数,r表示人口的年均增长率.下表是1950~1959年我国的人口数据资料:(单位:万人) 年份1950 1951 1952 1953 1954 人数55196 56300 57482 58796 60266 年份1955 1956 1957 1958 1959

函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数基础知识大全 §1.2.1、函数的概念 1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作: ()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全 一致,则称这两个函数相等. 3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法 1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法 (1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式. (2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有: (1)已知函数类型,求函数的解析式:待定系数法; (2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式; (4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值围) 2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等) 3、整体代换(配凑法) 4.赋值法: 3.映射的定义: 一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B. 由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集. 4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。 1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一. 2求函数定义域一般有三类问题: (1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合; (2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;

2015届高考数学总复习 基础知识名师讲义 第二章 第一节函数及其表示 理

【金版学案】2015届高考数学总复习 基础知识名师讲义 第二 章 第一节函数及其表示 近三年广东高考中对本章考点考查的情况 本章内容主要包括:函数的概念与表示,函数的基本性质,基本初等函数,函数的应用,导数的概念、运算及其应用. 第二章 函数、导数及其应用

1.函数的概念、表示和函数的基本性质(单调性与最值、奇偶性、周期性): (1)判断两函数是否为同一函数,确定定义域与对应关系即可. (2)用换元法求函数的解析式时,注意换元前后的等价性. (3)单调性与最值是函数的局部性质,凸显用导数研究单调性及利用单调性求最值或求参数的取值范围. (4)奇偶性是函数的整体性质,奇偶性、周期性的综合运用灵活多变. 2.基本初等函数:以具体的二次函数、指数函数、对数函数、幂函数等函数的概念、性质和图象为主要考查对象,适当考查分段函数、抽象函数. 3.函数的应用主要包含:函数与方程、函数模型及应用两部分内容. (1)对函数是否存在零点(方程是否存在实根)进行判断或利用零点(方程实根)的存在情况求相关参数的取值范围,是高考中常见的题目类型. (2)函数的实际应用问题,多以社会实际生活为背景,设问新颖、灵活,综合性较强. 4.导数的概念、运算及应用. (1)导数的概念是推导基本初等函数导数公式和四则运算法则的基础. (2)利用导数求曲线的切线方程时,一定要分清已知点是否在曲线上.另外,曲线的切线和平面几何中圆的切线概念易混淆,曲线在点P(x0,f(x0))处的切线是曲线另一点Q无限接近点P时的极限位置,它与曲线可能还有其他公共点. (3)利用公式求导时,一定要注意公式的适用范围及符号,还要注意公式不要用混. (4)导数的应用包括函数的单调性、极值、最值等方面,单调性是关键,一个函数的递增区间或递减区间有多个时,不能盲目地将它们取并集,特别是函数的定义域不能忽略.在选择题和填空题中,主要以导数的运算、导数的几何意义、导数的应用为主(研究函数的单调性、极值和最值等);在解答题中,有时作为压轴题,主要考查导数的综合应用,往往与函数、方程、不等式、数列、解析几何等联系在一起,考查学生的分类讨论、转化与化归等思想. 预测高考对本部分内容的考查,仍会以小题和大题的形式出现,小题主要考查基本初等函数的图象、性质,几种常见函数模型在实际问题中的应用以及函数零点,函数与方程的关系等,大题主要以函数为背景,以导数为工具,考查应用导数研究函数的单调性、极值或最值问题,在函数、不等式、解析几何等知识网络交汇点命题. 复习本章要重点解决好五个问题: 1.准确、深刻地理解函数的有关概念. 概念是数学的基础,而函数是数学中最主要的概念之一,函数概念贯穿在中学数学的始终.数、式、方程、不等式、导数、数列等都是以函数为中心的代数知识.近十年来,高考试题中始终贯穿着函数及其性质这条主线. 2.揭示并认识函数与其他数学知识的内在联系. 函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容. 3.把握数形结合的特征和方法. 函数图象的几何特征与函数性质的数量特征紧密结合,图象有效地揭示了各类函数的定义域、值域、单调性、奇偶性、周期性等基本属性.因此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图象的平移变换、对称变换、伸缩变换. 4.认识函数思想的实质,强化应用意识. 函数思想的实质就是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系,使问题得以解决.纵观近几年高考题,考查函数思想方法,尤其是应用题力度加大,因此一定要认识函数思想的实质,强化应用意识. 5.运用好导数这一锐利武器.

高中数学3.2.2函数模型的应用举例(2)教案新人教版必修1

322 (2)函数模型的应用实例(教学设计) 教学目标: 知识与技能:能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题. 过程与方法:感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数模型在数学和其他学科中的重要性. 情感、态度、价值观:体会运用函数思想和处理现实生活和社会中的简单问题的实用价值. 教学重点难点: 重点运用一次函数、二次函数模型的处理实际问题. 难点运用函数思想理解和处理现实生活和社会中的简单问题. 一、新课引入: 2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目. 67岁的马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了可供决策部门参考的应用软件. 这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真.结果指出,将患者及时隔离对于抗击非典至关重要?分析报告说,就全国而论,若非典病人延迟隔离1天,就医人数将增加1000人左右,推 迟两天约增加2100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府未采取隔离措施,则高峰期病人人数将达60万人. 这项研究在充分考虑传染病的一般流行机制、非典的特殊性、我国政府所采取的一系列强有力措施的基础上,根据疾病控制中心每日发布的数据,利用统计学的方法和流行病传播机理建立了非典流行趋势预测动力学模型和 优化控制模型,并对非典未来的流行趋势做了分析预测. 二、师生互动,新课讲解: 例1 :(课本第104页例5)某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示, 请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润? 解:(课本P104) 课本第104页表3-9中数据的变化是有特定规律的,教学时应注意引导学生分析问题所提供的数据特点,由数据特点抽象出函数模型.同时,应注意变量的变化范围,并以此检验结果的合理性. 例2 :(课本第105页例6)某地区不同身高的未成年男性的体重平均值如下表: (身高:cm;体重:kg) 2 )若体重超过相同身高男性体重平均值的 1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?

函数的基础知识

第一部分 函数的概念 一、映射的概念 1、相关概念:映射;一一映射、函数 2、构成映射的基本条件: 构成一一映射的基本条件: 3、映射的要素: 4、构成映射的个数:A 中有m 个元素,B 中有n 个元素,则B A f →:的映射个数是m n 个; A 中有n 个元素, B 中有n 个元素,则B A f →:的一一映射个数是!n 个 二、函数的概念 1.函数的定义(1)两要素(2)如何判断给定两个变量之间的关系是否为函数关系(3)判断两 个函数是否为同一个函数 2.函数的表示方法:函数是非空数集与非空数集之间的映射. 3.函数的表示:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判 断一个图形是否是函数图象的依据; (1)解析法:必须注明函数的定义域; (2)图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征; (3)列表法:选取的自变量要有代表性,应能反映定义域的特征. 三、函数的定义域: 1、函数解析式:使得函数成立的自变量的取值范围. (1)整式函数的定义域是全体实数; (2)分式函数的分母不为零; (3)偶次根式或者是幂指数的指数为分母是偶数时,底数不小于零; (4)奇次根式或者是幂指数的指数为分母是奇数时,定义域是全体实数; (5)对数中底数大于零且不等于1,指数大于零; (6)零指数或负指数(指数没分母或者分母不是偶数)幂函数时底数不为零; (7)对数函数定义域底数大于0,且不等于1,真数大于0 (8)分段函数各部分的定义域取并集; (9)几个简单函数通过加减乘除运算的各部分定义域取交集; 2、图表:表中的x 值的集合 3、图像:每个点对应的横坐标的集合 4、实际问题:实际问题实际分析.

函数基础知识基础测试题附答案解析

函数基础知识基础测试题附答案解析 一、选择题 1.在平面直角坐标系xoy 中,四边形0ABC 是矩形,且A ,C 在坐标轴上,满足3OA = ,OC=1.将矩形OABC 绕原点O 以每秒15°的速度逆时针旋转.设运动时间为t 秒()06t ≤≤ ,旋转过程中矩形在第二象限内的面积为S ,表示S 与t 的函数关系的图象大致如右图所示,则矩形OABC 的初始位置是( ) A . B . C . D . 【答案】D 【解析】 【分析】 【详解】 解:根据图形可知当t=0时,s=0,所以矩形OABC 的初始位置不可能在第二象限,所以A 、C 错误; 因为1OC =,所以当t=2时,选项B 中的矩形在第二象限内的面积为S=1331236 ??=,所以B 错误, 因为3OA = t=2时,选项D 中的矩形在第二象限内的面积为S=13132?=,故选D . 考点:1.图形旋转的性质;2.直角三角形的性质;3.函数的图象. 2.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L ),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是( )

A.以相同速度行驶相同路程,甲车消耗汽油最多 B.以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米 C.以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少 D.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油 【答案】D 【解析】 【分析】 根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题. 【详解】 解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A错误. 以10km/h的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B错误. 以低于80km/h的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C错误. 以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确. 故选D. 【点睛】 本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答. 3.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是() A.他们都骑了20 km B.两人在各自出发后半小时内的速度相同 C.甲和乙两人同时到达目的地 D.相遇后,甲的速度大于乙的速度 【答案】C 【解析】 【分析】 首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达

高一数学函数模型及其应用练习题2

函数模型及其应用测试题 一、选择题 1.某工厂的产值月平均增长率为P,则年平均增长率是() A.11 +-D.12 (1)1 P P +- (1)P +B.12 (1)P +C.11 (1)1 答案:D 2.某人2000年7月1日存入一年期款a元(年利率为r,且到期自动转存),则到2007年7月1日本利全部取出可得() A.7 a r +元 (1) (1) a r +元B.6 C.7 (1)(1)(1) +++++++ …元 a a r a r a r (1) a a r ++元D.26 答案:A 3.如图1所示,阴影部分的面积S是h的函数(0) ≤≤,则该函数的图象可 h H 能是() 答案:C 4.甲、乙两个经营小商品的商店,为了促销某一商品(两店的零售价相同),分别采取了以下措施:甲店把价格中的零头去掉,乙店打八折,结果一天时间两店都卖出了100件,且两店的销售额相同,那么这种商品的价格不可能是()A.4.1元B.2.5元C.3.75元D.1.25元 答案:A 5.某厂工人收入由工资性收入和其他收入两部分构成.2003年该工厂工人收入3150元(其中工资性收入1800元,其他收入1350元).预计该地区自2004年开始的5年内,工人的工资性收入将以每年6%的年增长率.其他收入每年增加160元.据此分析,2008年该厂工人人均收入将介于() A.42004400 元 元B.44004600 C.46004800 元D.48005000 元 答案:B 二、填空题 6.兴修水利开渠,其横断面为等腰梯形,如图2,腰与水平线夹角为60 ,要求浸水周长(即断面与水接触的边界长)为定值l,同渠深h=,可使水渠量最大.

2015届高考数学总复习 基础知识名师讲义 第二章 第一节函数及其表示 文

【金版学案】2015届高考数学总复习基础知识名师讲义第二章第 一节函数及其表示文 近三年广东高考中对本章考点考查的情况

本章内容主要包括:函数的概念与表示,函数的基本性质,基本初等函数,函数的应用,导数的概念、运算及应用. 1.函数的概念、表示和函数的基本性质(单调性与最值、奇偶性、周期性): (1)判断两函数是否为同一函数,确定定义域与对应关系即可. (2)用换元法求函数的解析式时,注意换元前后的等价性. (3)单调性与最值是函数的局部性质,凸显用导数研究单调性及利用单调性求最值或求参数的取值范围. (4)奇偶性是函数的整体性质,奇偶性、周期性的综合运用灵活多变. 2.基本初等函数:以具体的二次函数、指数函数、对数函数、幂函数等函数的概念、性质和图象为主要考查对象,适当考查分段函数、抽象函数. 3.函数的应用主要包含:函数与方程、函数模型及应用两部分内容. (1)对函数是否存在零点(方程是否存在实根)进行判断或利用零点(方程实根)的存在情况求相关参数的取值范围,是高考中常见的题目类型. (2)函数的实际应用问题,多以社会实际生活为背景,设问新颖、灵活,综合性较强. 4.导数的概念、运算及应用. 高考总复习·数学(文科)(1)导数的概念是推导基本初等函数导数公式和四则运算法则的基础. (2)利用导数求曲线的切线方程时,一定要分清已知点是否在曲线上.另外,曲线的切线和平面几何中圆的切线概念易混淆,曲线在点P(x0,f(x0))处的切线是曲线另一点Q无限接近点P时的极限位置,它与曲线可能还有其他公共点. (3)利用公式求导时,一定要注意公式的适用范围及符号,还要注意公式不要用混. (4)导数的应用包括函数的单调性、极值、最值等方面,单调性是关键,一个函数的递增区间或递减区间有多个时,不能盲目地将它们取并集,特别是函数的定义域不能忽略. 在选择题和填空题中出现,主要以导数的运算、导数的几何意义、导数的应用为主(研究函数的单调性、极值和最值等);在解答题中,有时作为压轴题,主要考查导数的综合应用,往往与函数、方程、不等式、数列、解析几何等联系在一起,考查学生的分类讨论、转化与化归等思想. 预测高考对本部分内容的考查,仍会以小题和大题的形式出现,小题主要考查基本初等函数的图象、性质,几种常见函数模型在实际问题中的应用以及函数零点,函数与方程的关系等,大题主要以函数为背景,以导数为工具,考查应用导数研究函数的单调性、极值或最值问题,在函数、不等式、解析几何等知识网络交汇点命题. 复习本章要重点解决好五个问题: 1.准确、深刻地理解函数的有关概念. 概念是数学的基础,而函数是数学中最主要的概念之一,函数概念贯穿在中学数学的始终.数、式、方程、不等式、导数、数列等都是以函数为中心的代数知识.近十年来,高考试题中始终贯穿着函数及其性质这条主线.

初高中函数知识点总结大全

初高中函数知识点总结大全 正比例函数 形如y=kx (k为常数,k≠0)形式,y是x的正比例函数。 1.定义域:R(实数集) 2.值域:R(实数集) 3.奇偶性:奇函数 4.单调性: 当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图像位于第二、四象限,y随x的增大而减小(单调递减)。 一次函数 一、定义及定义式: 自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k ≠0) 一次函数及正比例函数的识别 方法:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k≠0),这 时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。 ☆A及B成正比例A=kB(k≠0) 二、一次函数的性质:

1.y的变化值及对应的x的变化值成正比例,比值为k,即:y=kx+b (k 为任意不为零的实数 b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法及图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以做出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像及x 轴和y轴的交点) 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数及y轴交点的坐标总是(0,b),及x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b及函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

人教版初中数学函数基础知识经典测试题及答案解析

人教版初中数学函数基础知识经典测试题及答案解析 一、选择题 1.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系: 物体质量x/千克0 1 2 3 4 5 … 弹簧长度y/厘米10 10.5 11 11.5 12 12.5 … 下列说法不正确的是() A.x与y都是变量,其中x是自变量,y是因变量 B.弹簧不挂重物时的长度为0厘米 C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米 D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米 【答案】B 【解析】 试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法. 解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意; B、弹簧不挂重物时的长度为10cm,错误,符合题意; C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意; D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意. 故选B. 点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大. 2.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是() A.他们都骑了20 km B.两人在各自出发后半小时内的速度相同 C.甲和乙两人同时到达目的地 D.相遇后,甲的速度大于乙的速度 【答案】C 【解析】

高一数学上册第一章函数及其表示知识点及练习题(含答案)

函数及其表示 (一)知识梳理 1.映射的概念 设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x). 2.函数的概念 (1)函数的定义: 设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A (2)函数的定义域、值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成 值域。 (3)函数的三要素: 定义域 、 值域 和 对应法则 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式来表示。 4.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 (二)考点分析 考点1:判断两函数是否为同一个函数 如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。 考点2:求函数解析式 方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法; (2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; (3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f 一、选择题 1. 判断下列各组中的两个函数是同一函数的为( C ) ⑴3 )5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =;⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f . A. ⑴、⑵ B. ⑵、⑶ C. ⑷ D. ⑶、⑸

函数基础知识基础测试题及答案解析

函数基础知识基础测试题及答案解析 一、选择题 1.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是( ) A .用了5分钟来修车 B .自行车发生故障时离家距离为1000米 C .学校离家的距离为2000米 D .到达学校时骑行时间为20分钟 【答案】D 【解析】 【分析】 观察图象,明确每一段小明行驶的路程,时间,作出判断即可. 【详解】 由图可知, 修车时间为15-10=5分钟,可知A 正确; 自行车发生故障时离家距离为1000米,可知B 正确; 学校离家的距离为2000米,可知C 正确; 到达学校时骑行时间为20-5=15分钟,可知D 错误, 故选D. 【点睛】 本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键. 2.如图,矩形ABCD 中,6cm AB =,3cm BC =,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C →→B →的方向在边AD , DC ,CB 上运动,设运动时间为x (秒),那么APQ ?的面积()2 cm y 随着时间x (秒)变化的函数图象大致为( )

A.B. C. D. 【答案】A 【解析】 【分析】 根据题意分三种情况讨论△APQ面积的变化,进而得出△APQ的面积y(cm2)随着时间x (秒)变化的函数图象大致情况. 【详解】 解:根据题意可知:AP=x,Q点运动路程为2x, ①当点Q在AD上运动时, y=1 2 AP?AQ= 1 2 x?2x=x2,图象为开口向上的二次函数; ②当点Q在DC上运动时, y=1 2 AP?DA= 1 2 x×3= 3 2 x,是一次函数; ③当点Q在BC上运动时, y=1 2 AP?BQ= 1 2 x?(12?2x)=?x2+6x,为开口向下的二次函数, 结合图象可知A选项函数关系图正确, 故选:A. 【点睛】 本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ的面积变化. 3.如图1,在矩形ABCD中,动点P从点A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB的面积为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积为()

知识讲解-函数及其表示方法-基础

函数及其表示方法 编稿:丁会敏审稿:王静伟 【学习目标】 (1)会用集合与对应的语言刻画函数,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. (2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数. (3)求简单分段函数的解析式;了解分段函数及其简单应用. 【要点梳理】 要点一、函数的概念 1.函数的定义 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数. 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 要点诠释: (1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。 2.构成函数的三要素:定义域、对应关系和值域 ①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数); ②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关. 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 区间表示: <<= {x|a≤x≤b}=[a,b]; x a x b a b {|}(,); (] x a x b a b ≤<=; {|}, x a x b a b {|}, <≤=;[) (][) x x b b x a x a ≤=∞≤=+∞. {|}-,; {|}, 要点二、函数的表示法 1.函数的三种表示方法: 解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势. 列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值. 2.分段函数: 分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况. 要点三、映射与函数 1.映射定义: 设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B. 象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a

相关主题