搜档网
当前位置:搜档网 › E.用示波器测量信号的电压及频率.05

E.用示波器测量信号的电压及频率.05

E.用示波器测量信号的电压及频率.05
E.用示波器测量信号的电压及频率.05

实验名称用示波器测量信号的电压及频率

一、前言

示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观察电信号随时间变化的波形,定量测量波形的幅度、周期、频率、相位等参数。一般的电学量(如电流、电功率、阻抗等)和可转化为电学量的非电学量(如温度、位移、速度、压力、光强、磁场、频率)以及它们随时间变化的规律都可以用示波器来观测。由于电子的惯性很小,电子射线示波器一般可在很高的频率范围内工作。采用高增益放大器的示波器可以观察微弱的信号;具有多通道的示波器,则可以同时观察几个信号,并比较它们之间的相应关系(如时间差或相位差),是目前科学实验、科研生产常用的电子仪器。

二、教学目标

1、了解通用双通道示波器的结构和工作原理,熟悉各个旋钮的作用和使用方法。

2、掌握用示波器观察波形、测量电压和频率的方法;了解用示波器测量相位差

的方法。

3、掌握观察李萨如图形的方法,并能用李萨如图形测量未知正弦信号的频率;

能用示波器观察“拍”现象。

三、教学重点

1、通用双通道示波器的结构,面板旋钮的作用和使用方法。

四、教学难点

1、通用双通道示波器的工作原理,李萨如图形测量未知正弦信号频率的原理,

观察“拍”现象的原理。

五、实验原理

(1)通用双通道示波器的介绍

主要结构:示波管、电子放大系统、扫描触发系统、电源

工作原理: (a )示波管

示波管是呈喇叭形的玻璃泡,被抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面内壁上涂有荧光物质,构成荧光屏。下图是示波管的构造图。

电子枪由灯丝F 、阴极K 、栅极G 以及一组阳极A 所组成。灯丝通电后炽热,使阴极发热而发射电子。由于阳极电位高于阴极,所以电子被阳极电压加速。当高速电子撞击在荧光屏上会使荧光物质发光,在屏上就能看到一个亮点。改变阳极组电位分布,可以使不同发射方向的电子恰好会聚在荧光屏某一点上,这种调节称为聚焦。栅极G 电位较阴极K 为低,改变G 电位的高低,可以控制电子枪发射电子流的密度,甚至完全不使电子通过,这称为辉度调节,实际上就是调节荧光屏上亮点的亮暗。

Y 偏转板是水平放置的两块电极。当Y 偏转板上电压为零时,电子束正好射在荧光屏正中P 点。如果Y 偏转板加上电压,则电子束受到电场力作用,运动方向发生上下偏移。如果所加的电压不断发生变化,P 点的位置也随着在铅垂线上移动。在屏上看到的是一条铅直的亮线。荧光屏上亮点在铅直方向位移Y 和加在Y 偏转板的电压

Y 输入

X 输入 外触发

X 偏转板是垂直放置的两块电极。在X 偏转板加上一个变化的电压,那么,荧光屏上亮点在水平方向的位移X 也与加在X 偏转板的电压U X 成正比,于是在屏上看到的则是一条水平的亮线。

(b )示波器显示波形的原理

如果在Y 偏转板上加上一个随时间作正弦变化的电压t U U YM Y ωsin =,我们在荧光屏上仅看到一条铅直的亮线,而看不到正弦曲线。只有同时在X 偏转板上加上一个与时间成正比的锯齿形电压t U U XM x ?=,才能在荧光屏上显示出信号电压U Y 和时间t 关系曲线,其原理如下图所示。

设在开始时刻a ,电压U Y 和U X 均为零,荧光屏上亮点在A 处,时间由a 到b ,在只有电压U Y 作用时,亮点沿铅直方向的位移为AB Y ,屏上亮点在B Y 处,而在同时加入U X 后,电子束既受U Y 作用向上偏转,同时又受U X 作用向右偏转(亮点水平位移为bB X ),因而亮点不在B Y 处,而在B 处。随着时间的推移,以此类推,便可显示出正弦波形来。所以,在荧光屏上看到的正弦曲线实际上是两个相互垂直的运动(t U U YM Y ωsin =和t U U xm x ?=)合成的轨迹。

上锯齿形电压,把U Y 产生的垂直亮线“展开”。这个展开过程称为“扫描”,锯齿形电压又称为扫描电压。

上面讨论的波形因为U Y 和U X 的周期相同,荧光屏上显示出一个正弦波形,若频率,1,2,3......y x f Nf N ==则荧光屏上将出现一个,两个,三个……稳定的正弦波形。只有当y f 为x f 的整数倍时,正弦波形才能在荧光屏上稳定。为了在荧光屏上得到稳定不动的信号波形,一般采用被测信号来控制扫描电压的产生时刻,称为触发扫描。只要被测信号达到某一个定值时,扫描电路才开始工作,产生一个锯齿波,将被测信号显示出来。由于每次被测信号触发扫描电路工作的情况都是一样的,所以显示的波形也相同。这样,在荧光屏上看到的波形就稳定不动了。

面板旋纽的作用:见双通道示波器使用说明书(略) (2)函数信号发生器简介

输出信号的频率范围和电压范围:见函数信号发生器使用说明书(略) 面板旋纽的作用:见函数信号发生器说明书(略)

2.测量原理

1) 测量信号的电压和周期

用示波器测量信号的电压,一般是测量其峰—峰值U pp ,即信号的波峰到波谷之间的电压值。在选择适当的通道偏转因数和扫描时基因数后,只要从屏上读出峰—峰值对应的垂直距离Y (div)和一个周期对应的水平距离X (div),即可求出信号的电压和周期。

偏转因数?=Y U pp (1)

扫描时基因数?=X T (2)

正弦信号的有效值U eff 和峰—峰值U pp 的关系为

pp eff U U 2

21=

(3)

有时,被测信号电压比较高,必须经过衰减后才能输入示波器的Y 通道。衰减倍数用分贝数表示,

其定义为0

U

式中,U 0为未衰减时的信号电压值,U 为示波器测得的衰减后的电压值。根据衰减的分贝数和示波器测得的值U ,就可得到被测信号的电压值。

2) 观察李萨如图形,测信号频率 设两个互相垂直的振动为

)2cos(111?π+=t f A x )2cos(222?π+=t f A y

式中,1f 、2f 为两振动的频率,1?、2?为两振动的初相。当12f f =时合成振动的轨迹方程为

)(sin )cos(2122

12212

2

2212????-=--+A A xy A y A x (5) (5)式是一个椭圆方程。当210??-=或π±时,椭圆退化为一条直线;当212??π-=±时,合成轨迹为一正椭圆。

当f 1≠f 2时,合成振动的轨迹比较复杂,但当f 1与f 2成简单的整数比时,合成振动的轨迹为封闭的稳定几何图形,这些图形称为李萨如图形,如下图所示。

:x y n n

1:1 1:2 1:3 2:3 3:4 李萨如图形

x n

1 1 1

2

3 y n

1

2

3

3

4

从图形中,人们总结出如下规律:如果作一个限制光点在x ,y 方向运动的假想矩形框,则图形与此矩形框相切时,竖边上的切点数n y 与横边上的切点数n x 之比恰好等于两振动的频率之比,即

::x y y x f f n n =或y y x x f n f n = (6) 因此,若已知其中一个信号的频率,从李萨如图形上数得切点数n x 和n y ,就可以求出另一待测信号的频率。

3) 观察“拍”现象

振幅随时间缓慢的呈周期性变化,这种现象称为“拍”。

设两个同方向的简谐振动为

)2cos(1111?π+=t f A y )2cos(2222?π+=t f A y

选某一时刻两振动相位相同时作为计时起点,则21???==,若两振动的振幅也相同(21A A A ==),则合成振动可以表示为

])(cos[])(cos[2121221?ππ++-=+=t f f t f f A y y y

当f 1与f 2的差值远小于f 1、f 2时,合成振动的振幅()212cos A f f t π-????随时间缓慢地呈周期性变化,这种现象称为拍,振幅变化的频率叫拍频

123f f f -= (7) 下图所示为拍的形成的示意图,其中,t =0时,y 1与y 2的相位差为π。如果信号频率f 1已知且连续可调,则通过改变f 1观察拍频的变化,可以判断出待测信号频率f 2是大于f 1还是小于f 1,然后根据测得的拍频f 3和(7)式就可求出待测信号的频率。

六、实验仪器

通用双通道示波器,函数信号发生器、同轴电缆等。

七、实验内容与步骤

(1)开机准备:了解示波器面板上各功能键的作用,并把各个旋钮调到居中。 (2)打开电源开关,电源指示灯亮,稍等预热,屏上出现亮点。分别调节亮度和聚焦旋钮,使光点亮度适中、清晰。

2、观察交流信号波形并画出波形图

打开信号发生器电源开关,将其输出接CH1。调节信号发生器频率为1kHz ,输出电压为4.0V ,输出衰减置20dB ,CH1通道偏转因数旋钮调为0.2V/格,扫描速率旋钮调为0.5ms/格,观察示波器上的波形;若波形不稳定,调节电平旋钮使之稳定;将扫描速率旋钮改为0.2ms/格,再观察示波器上的波形;画出观察到的波形图。

3、正弦信号电压与周期测量

按观察交流信号波形的输出信号频率和电压调好信号发生器,CH1通道偏转因数置为50mV/格,选择合适的扫描速率值,使屏上刻度范围内出现完整波形,将实验数据记录入下表:

4、观察李萨如图形,测量信号的频率

(1)将待测信号输入CH1通道,使示波器显示出信号波形,并估算其频率大致值。

(2)将标准已知频率信号输入CH2通道,扫描速率旋钮置X-Y (逆时针到底),调节信号幅度或改变通道偏转因数,使图形不超出荧光屏视场。

(3)根据待测信号频率的粗测值,调节CH2通道信号的频率,使示波器屏上分别出现y x x y n n f f :: =1:1、1:2、2:3、3:4的李萨如图形。描下李萨如图形,并在下表中记下相应的CH2通道信号的频率值y f 。

5、观察“拍”现象

(1)将待测信号输入CH1通道,垂直方式选CH1,选择适当的偏转因数和扫描速率,使屏上出现合适的稳定的正弦波图形估算信号的大致频率。

(2)将可调标准信号源信号输入CH2通道,垂直方式选CH2,调节信号源,使其输出信号的频率和幅度与待测信号的大致相同。

(3)垂直方式选ADD ,通道2极性选NORM ,扫描速率调到合适值。调可调标准信号源信号频率,使屏上出现稳定的“拍”波形。记下此时一个“拍”波形的长度X 1、

形,记下此时一个“拍”波形的长度X 2、标准信号源频率2f 和扫描速率值。(选做)

6、关闭电源,整理仪器。

八、数据表格及数据处理

1、正弦信号电压与周期测量数据表

表1 正弦信号电压与周期测量数据记录表

信号发生器

示波器 频率(Hz ) 电压示数(V ) 偏转因数(V /格)

Y (格) 扫描速率(s/格)

X (格) 1000

0.36

0.1

3.50

0.2

5.00

pp U Y V =?偏转因数=0.35

0.12eff pp U U V ==

T X ms =?时间因数=1.0 1f ==1000Hz

2、用李萨如图形测正弦信号频率

表2 用李萨如图形测量正弦信号频率数据记录表

:x y n n

1:1 1:2 2:3 3:4 李萨如图形

x n

1 1

2

3 y n 1 2 3

4 ()

x f Hz (待测) 1001 1006 1001 1003 ()y f Hz

1001

503

667

752

1111

1001y x y x n f f Hz n =

= 2222

1006y x y x n f f Hz n =

=

3333

1001y x y x n f f Hz n =

= 4444

1003y x y x n f f Hz n =

=

九、指导要点及注意事项

2、测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);

3、不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。

4、动旋钮和按键时必是有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,电缆与插座的配合方式类似于挂口灯泡与灯座的配合方式,切忌生拉硬拽。。

5、示波器的标尺刻度盘与荧光屏不在同一平面上,之间有一定距离,读数时要尽量减小视差。

6、电压表指示的电压值是正弦信号的有效值U eff,它与峰峰值U pp之间的关系为

U 。

pp eff

7、注意公共端的使用,接线时严禁短路。

十、实验管理和成绩记载

1、实验管理

(1)预习检查:检查学生的学生证,检查学生预习报告并签字,随机提问(约占实验学生的四分之一)检查学生的预习情况。无预习报告或预习检查不合格的学生取消当堂课实验资格,重新预约该实验。

(2)操作管理:巡回检查学生的实验操作和实验数据记录情况,及时发现、指导、解决学生在实验操作中遇到的问题,检查完成实验学生的数据记录并签字;对在1小时左右完成实验的学生进行认真的检查并要求其完成实验的选做内容。

(3)实验报告批改:要求学生认真作好实验报告,并于实验后一周内交给任课教师(地点:主教学楼1楼走廊信箱) ;及时批改学生的实验报告,作好成绩记载并及时发还给学生。

2、成绩记载

平时成绩:实验操作60%;实验报告40%;及时在实验预约单上记载平时成绩。

综合成绩:平时成绩60%;考试成绩40%。

十一、实验思考题

1、如果打开示波器电源后,看不到扫描线也看不到光点,可能有那些原因? 排除仪器故障原因后,可从下面几个方面调节。检查亮度(辉度)旋钮,是否亮度适中,不可太暗;检查位移旋钮,是否光迹偏离出屏幕;检查触发方式,选择开关是否置于“自激AUTO ”,如置于“NORM ”档,则不会出现扫描线;检查扫描开关,是否打开进行扫描;检查垂直方式中的通道显示是否显示当前输入信号所在通道,切换正确通道。

2、当Y 轴输入端有信号,但屏上只有一条水平线时,是什么原因?应如何调节才能使波形沿Y 轴展开?

可能当前通道不是输入信号通道,切换通道;电压衰减旋钮将波形幅度衰减为零,改变偏转旋钮档位,改变波形幅度。

3、如何用示波器测量两正弦信号的相位差?(选做)

在示波器上双显两信号波形,读出两正弦信号相邻波峰(波谷)在水平方向的距离(单位div )和一个波长所占长度(单位div ),代入相位差公式2x ??π?λ=计算。

十二、教学后记

1、如果图形不稳定,总是向左或向右移,应如何调节? 图形左右移动、滚动、模糊,调节电平旋钮使之稳定。

十三、实验成绩评定标准

实验操作要求 实验报告要求 等 级

1 预 习 充 分 格 式 规 范 A :达到要求 B :基本达到要求 C :达不到要求 D :不及格

各档对应分数

A +(100) A (95) A -(90)

B +(85) B (80) B -(75)

C +(70) C (65) C -(60)

2 目 的 明 确 书 写 整 洁

3 原 理 清 楚 作 图 完 美

4 步 骤 正 确 表 达 完 整

5 操 作 规 范 结 果 分 析

6 数 据 正 确 实 验 体 会

7 遵 守 纪 律 见 解 创 新 8

整 理 仪 器

习 题 正 确

1、实验有新发现,有创新或独到见解,实验成绩评定后,提高一档。

2、迟到,成绩降一档。

3、缺席,该次实验成绩为零分。

4、无故迟交报告,成绩降一档。

5、篡改实验数据,成绩降一档。

6、抄袭实验报告或数据,该实验成绩为零分。

十四、教材和教学参考书

教材:杨长铭,等.大学物理实验教程.武汉:武汉大学出版社,2012. 教学参考书:

1、杨述武.普通物理实验.北京:高等教育出版社,2000.

2、漆安慎,杜婵英.普通物理学教程.北京:高等教育出版社,2001.

3、李天应.物理实验.武汉:武汉大学出版社,2002.

4、周殿清.大学物理实验.武汉:武汉大学出版社,2002.

5、杨长铭,等.大学物理实验.武汉:武汉大学出版社,2003.

6、熊永红,等.大学物理实验.武汉:华中科技大学出版社,2004.

7、熊永红,张昆实,等.大学物理实验.北京:科学出版社,2008.

用示波器测量时间(预习)

实验报告(预习) 05级数学系PB05001054骆阳 2006.04.07 实验题目:3.2.2 用示波器测量时间 实验目的:通过实验了解示波器的基本原理和结果,学习使用示波器观察波形和测量信号周期及其时间参数,并观测李萨如图形。 实验原理:(1)用x 轴时基测时间参数 对于示波器,为了得到清晰稳定的波形,上述扫描电压的周期T x (或频率 f x )与被测信号的周期T y (或f y )需要满足如下算式:n T T x y = ,x x nf f =,n=1,2,…,设待测信号接y 轴输入端,则T y 是待测信号的周期,T x 是x 轴扫描信号的周期,N 是一个扫描周期内所显示的待测信号的波形周期个数。如荧光屏上显示2个信号波形,扫描信号的周期为10ms ,则待测信号的周期为5ms 。x 轴扫描信号的周期,实际上是以时基单位(时间/cm 或时间/度)来标示的,一般的示波管荧光屏直径以10cm 的居多,则上式的T x ,由时基(时间/cm )乘上10cm ,如时基为0.1ms/cm ,则扫描信号的周期为1ms 。为此,在实际测量中,将上式改成下面的形式:波形厘米数时基单位?=x T 。式中的波形厘米数, 可以是信号一个周期的读数(可测待测信号的周期)、正脉冲(或负脉冲)的信号宽度的读数或待测信号波形的其他参数。 (2)用李萨如图形测信号的频率 如果将不同的信号分别输入到y 轴和x 轴的输入端,当两个信号的频率满足一定的关系时,在荧光屏上将显示出李萨如图形,可用测量李萨如图形的相位参数或波形的切点数来测量时间参数。 二个互相垂直的振动(有相同的自变量)的合成李萨如图形。 频率相同而振幅和相位不同时,两正交正弦电压的合成图形。设此两正弦电 压分别为:t A x ωcos =,)cos(?ω+=t B y ,消去自变量t ,得到轨迹方程: ??2 2 222sin cos 2=-+AB xy B y A x (是一个椭圆方程)。当两个正交电压的相位差φ取0~2π的不同值时,合成的图形如下:

准确测量脉冲信号的S参数(二)

准确测量脉冲信号的S参数(二) 频谱归零方法通常在脉冲宽度小于需要数字化和获取一个离散时间数据点的最小时间的时候使用。因此,必须对一个数据点获取捕获多个脉冲。在单独的输入脉冲和分析仪的时域抽样之间没有严格的同步。脉冲调制信号的频域描述具有离散PRF单音,这可以通过滤波滤出,剩下的是基调,它载有测量信息。在分析仪的下变频过程中,通过滤波去除不希望的噪声和信号分量。一旦信号被数字化,分析仪应用一个由用户指定中频带宽的数字滤波器。通常,这个数字滤波器用来减小测量噪声并增加动态范围。对非脉冲调制信号来说数字滤波算法工作得很好,但是当接收机接收到一个脉冲调制信号的时候会发生什么呢? ?利用窄带检测,利用一个数字矩形滤波器消弱接收信号中除了调制基调成分以外的所有成分是很有必要的。这需要一个最小阻带频率小于脉冲调制信号PRF的滤波器从而具有最优的阻碍。滤波器过渡斜度需要远离第一个PRF单音(图4,左),这样对不需要的单音具有最大的阻碍。这个滤波器会很难设计因为PRF单音会和基频很近。严格的矩形滤波器在频域有一些折衷,例如在时域具有额外的抖动。对此,滤波器设计者在频域和时域采用不同的技术获得最佳的性能,同时提供有效的滤波性能。 ?图4的左面给出用于分析仪中的一个可能的中频数字滤波器的响应。它在形状上不是矩形,因此如果不加改变地使用,会在频域引入不需要的成分,从而导致测量误差。另外,这个数字滤波器在频域具有周期排列的零点。这些零点的周期与接收机的采样速率和数字滤波器的结构成正比。使用一个微波PNA,通过调整数字滤波器的零点对准不需要的脉冲调制谱成分有可能滤除不需要的信号分量,只留下基频(图5)。这种滤波技术的一个优点是滤波器的零点

示波器测高频脉冲信号失真解决的方法

示波器测高频脉冲信号失真解决的方法 有位深圳福田华强北的工程师是专门研发生产屏幕的,需要用示波器测量出苹果平板电脑 ipad 给屏幕上电时的一串脉冲信号,示波器捕捉下来后,他就可以对照着模拟出这段信号。但是这位朋友测了好几次都不成功,或者对捕捉到的信号不满意,因此他特意带着他的麦科信平板示波器和其他相关设备来上门咨询了 首先他演示了一遍他的测量方法,他一共需要测量三路信号,分别连接了示波器的三个通道。当通道三上电产生一个直流电时,通道一和通道二就会分别产生一段脉冲正负间隔并且脉宽有差异的信号,而他需要观察的就是通道一的脉冲变化规律,以此作为依据做出模拟。 通道三产生的直流电在二点几伏,通道一和通道二的脉冲在±500mV 以内。因此他把通道一和通道二的垂直档位设置为了 200mV/div,通道三的垂直档位设置为了 1V/div。接着他把示波器的时基打到了 500ms,也就是一屏幕记录 500*14ms 的波形,既时长 7 秒的信号。 接着他将信号分别接入三个通道,然后进行上电,示波器在 500ms 时基下进入了滚屏模式,因此他可以实时看到信号的变化,当捕捉完一屏幕信号后,他按下暂停键,然后调节时基展开信号,观察通道一脉冲密集处的信号。可是展开以后看到的波形却令他大失所望,因为预期的方波都变成了锯齿波。甚至还丢失了部分脉冲信号。

其实他的操作并没有问题,问题出在他的操作必须要求示波器有很大的存储深度,这样在时基打大的时候,采样率就不会降低太多。他这个脉冲信号一个周期实际上是在 1us 左右,也就是 1M 的频率,此时示波器的带宽还是满足测量条件的,但是采样率收到存储深度所限,已经下降太多。理想的测量采样率应该是在 5M/s-20M/s 左右。 这里和分享一个基本的知识点,就是示波器的实时采样率是 = 示波器存储深度 ÷ 波形记录时长,由这个公式可见,由于示波器的存储深度是固定的,因此波形记录时长越长,示波器的实时采样率就越低。我们购买示波器的时候总是会看到示波器标注采样率 1G/s 或者 2G/s,往往忽略了存储深度这个指标,实际上在测量的过程中,如果示波器的存储深度太低,示波器是无法保持这个标注的采样率的。 找到了问题所在,解决起来也就容易了。首先,我们把示波器的存储深度调到 28Mpts,默认是自动的。由于示波器打开了三个通道,因此每个通道分到 7Mpts。 然后通过对之前捕捉信号的整体观察,我们将时基打到 1ms,将触发方式设为边沿上升触发,触发电平上移到 292mV,然后点击 Single SEQ,打算采用单次触发的方式来捕捉信号。设置好以后,进行上电,然后示波器就捕捉到了如下图所示的信号。 然后,我们停止信号,调节时基再将信号展开,就可以清晰的看到通道一的每个脉冲,以及那个脉宽比较大的脉冲。用户比较好奇,为什么脉冲信号上

一种简单的交流电压测量方法

一种简单的交流电压测量方法 姓名:李俊利序号:18 通常,在测量220V或380V工频电压时,并不要求非常高的精度,一般的控制系统中,能精确到1%就足够了。在这里向大家介绍一种设计得非常简单的测量方法,实践证明,该方法实用、可靠,成本低廉,完全能够满足一般监控系统的要求。 硬件电路:仅用一个220V/6V-1W的普通电源变压器,经过全波整流,小电容滤波,滤除其高频干扰谐波,然后电阻分压成适合A/D转换的带有纹波的电压。直接连接到A/D输入脚。如果测量380V的电压,将两只220V的变压器串联使用即可。 软件设计: 1、先进行一次A/D转换,存入一个变量x中,作为参考值; 2、再进行一次A/D转换,与上次比较,如果小于x,说明正处于交流电压的下降沿,存入x中;继续A/D转换,至到大于前次的转换值,说明已经进入了交流电压的上升沿,存入x; 3、继续A/D转换,如果转换结果大于x,存入x;直到转换结果小于x,说明x中保存的就是交流电压的最大值! 4、然后把x除以一个常数,得出你想显示出的值即可。完成一次测量。 这样完成一次测量最长时间是10ms,最短时间只需三次A/D转换时间。如果软件还执行其它操作,便转入其它子程序,之后继续1-4的步骤,将每次结果累加。 测量n次后,求算术平均值。也可以采取其它数字滤波的方法。 为避免测量0电压程序进入死循环,可以设置一个A/D转换次数计数器,转换一定次数之后退出。 校准电压可以在分压电阻中设置一个电位器,也可以软件校准。软件校准的方法:例如在380V点校准,把结果乘以380,再除以380,假如得382。那么,把除数变成382即可。 这样测量交流电压,在宽范围内的线性不是太好,主要原因是全波整流的二极管电压降是一个常数(约1.4V)。但针对220V或380V的电压测量来讲,电压波动不可能超过30%,在此范围内的线性误差还是可以接受的。我曾以一只0.5级的电压表与采取该方法的测量显示值相比较,基本一致。

如何利用示波器测试低占空比脉冲信号

高速信号在提升电子设备性能的的同时,也为检定和调试的设计工程师带来了很多问题。在这些问题中,一类典型的例子是偶发性或间歇性的事件以及一些低占空比的信号,如激光脉冲或亚稳定性,低占空比雷达脉冲等等。这些事件很难识别和检定,要求测试设备同时提供高采样率和超强的数据捕获能力。这对示波器性能提出了极高的要求。在过去,要对这些信号的测试不得不在分辨率和捕获长度之间进行取舍:所有示波器的存储长度都是有限的;在示波器中,采样率×采集时间=采集内存,以使用示波器的所有采集内存为例,采样率越高,则数据采集的时间窗口越小;另一方面,若需要加长采集时间窗口,则需要以降低水平分辨率(降低采样率)为代价。 当前的高性能示波器提供了高采样率和高带宽,因此现在的关键问题是优化示波器捕获的信号质量,其中包括:怎样以足够高的水平分辨率捕获多个事件,以有效地进行分析;怎样只存储和显示必要的数据,优化存储器的使用。 对于这两个关键问题,泰克的高性能示波器采用FastFrame分段存储技术,改善了存储使用效率和数据采集质量,消除了采集时间窗口和水平分辨率不可兼得的矛盾。 本文将分别介绍传统方法和FastFrame分段存储技术测试偶发性或间歇性的事件以及一些低占空比的信号,从而分析FastFrame分段存储技术在实际测试带来好处。 1. 传统测试方法 传统测试低占空比脉冲等间歇性的信号,通常利用数字示波器。为了提高测试精度,通常使用示波器的最高采样率来采集波形数据。通常在高采样率的支持下,可以看到大部分波形细节,见图1。 但是,如果想查看多个连续脉冲,那么必须提高采集的时间窗口。要让多个脉冲落在示波器提供的有限存储器内,很多时候必须通过降低采样率来达到。显而易见地,降低采样率本身会降低水平分辨率,使得时间测试精度大大下降。当然,用户也可以扩展示波器的存储器的长度,在不降低采样率的情况下提高采集时间窗口。但是,这种方法有其局限性。尽管存储技术不断进步,高速采集存储器仍是一种昂贵的资源,而且很难判断多少存储容量才足够。即使拥有被认为很长的存储器长度,但可能仍不能捕获最后的、可能是最关键的事件。 图2是在长记录长度时以高分辨率捕获的多个脉冲。从图2中可以看出,时间窗口扩展了10倍,可以捕获更多的间歇性脉冲。其实现方式:通常是提高采集数据的时间长度,并提高记录长度,同时保持采样率不变。这种采集方法带来了以下这些缺点: 1.更大的采集数据提高了存储器和硬盘的存储要求。 2.更大的采集数据影响着I/O传送速率。 3.更高的记录长度提高了用户承担的成本。 4.由于示波器要处理更多的信息,因此前后两次采集之间的不活动时间或“死区时间”提高了,导致更新速率下降。 考虑到这些矛盾,必须不断地在高采样率与每条通道提供的存储长度中间做出平衡,并且还是很难达到测试更多个脉冲的需求。

用示波器测试高频信号时,如何消除高频点火信号对低频信号的干扰

高频点火信号对低频信号的干扰 现象描述 现有一台电机点火设备,用一个低频信号源给该电机供电,供电电压幅度为5V左右,频率为50Hz。用一台PicoScope 5444B示波器同时测试低频信号源输出的电压波形和高压点火电压。 测试时,发现了一个奇怪的现象:单独测试低频信号源电压时,能够正确测试到低频电压波形,如图1所示(低频信号源输出是正弦电压信号,但是由于高频点火设备强电磁干扰的影响,导致波形上叠加了很多点火毛刺)。单独测试高压点火信号时,也是可以测试出正确波形的,如图2所示。但是同时测试低频电压信号和高频点火信号时,发现信号发生器上显示输出电压为0V,无法给电机提供供电电压,同时示波器也无法测试出任何电压波形,如图3所示。 图1 单独测试低频信号源电压时的波形

图2 单独测试高频点火电压信号波形 图3 同时测试高压电弧和低频信号输出的波形

原因分析 PicScope5444B示波器各个通道间是共地的。高频点火信号和低频信号接入示波器后,低频信号发生器无电压输出的主要原因是由于接地问题引起的。高压点火设备和低频信号发生器的设备的接地电阻不同,产生接地回路,从而致使低频信号的输出电压受到影响。 主要解决办法是采用浮地测量。有几种具体的解决方法: 1、采用通道隔离示波器 2、2采用差分探头 3、A-B伪差分,以牺牲通道为代价。 4、隔离器 5、浮地“传统示波器”。 现场测试时,我们想到一个类似于“浮地”测量的解决方法。将信号发生器信号线和信号地反接,这样点火地和信号地不连接在一起,起到“浮地的作用”。此时可以同时测试高频点火信号和低频信号发生器的信号,如图4所示。 图4 同时测试高频点火信号和低频信号发生器的信号 此文档由广州虹科Eva完成于2014年6月26日。

用示波器测量时间

实验报告 PB06013212 王主光实验题目:用示波器测量时间 实验目的:了解示波器的基本原理和结构,学习使用示波器观察波形和测量信号周期及其时间参数. 实验原理: 1.示波器的基本结构 示波器的结构如图3.2.2-1所示,由示波管(又称阴极射线管)、放大系统、衰减系统、扫描和同步系统及电源等部分组成. 为了适用于多种量程,对于不同大小的信号,经衰减器分压后,得到大小相同的信号,经放大器放大后产生最大约20V左右的电压送至示波管的偏转板. 示波管是示波器的基本构件,它由电子枪、偏转板和荧光屏三部分组成,被封装在高真空的玻璃管内,其结构如图 3.2.2-2所示.电子枪是示波管的核心部分,它由阴极、栅极和阳极构成. (1)阴极——阴极的射线源:由灯丝(F)和阴极(K)构成,阴极表

面涂有脱出功较低的钡、锶氧化物,灯丝通电后,阴极被加热,大量的电子从阴极表面逸出,在真空中自由运动从而实现电子发射. (2)栅极——辉度控制:由第一栅极G1(又称控制级)和第二栅极G2(又称前加速级)构成,栅极是一个顶部有小孔的金属圆筒,它的电位低于阴极,具有反推电子的作用,只有少量电子能通过栅极,调节栅极电压可控制通过栅极的电子束的强弱,从而实现辉度调节.在G1的控制下,只有少量电子通过栅极,G2与A2相连,所加电位比A1高,G2的正电位对阴极发射的电子奔向荧光屏起加速作用. (3)第一阳极——聚焦:第一阳极(A1)呈圆柱形(或圆形),有好几个间壁,第一阳极上加有几百伏的电压,形成一个聚焦的电场,当电子束通过此聚焦电场时,在电场力的作用下,电子汇合于一点,结果在荧光屏上得到一个又小又亮的光点,调节加在A1上的电压可以达到聚焦的目的. 第二阳极——电子的加速:第二阳极(A2)上加有1000V以上

脉冲调制信号分析与测量方法

脉冲调制信号分析与测量方法 【摘要】本文主要介绍用频谱分析仪对脉冲调制信号脉冲频谱载波功率进行直接测量后转换成峰值功率的方法,并系统地分析了窄带和宽带状态下脉冲调制信号频谱及功率测量的差别。这对雷达信号应用时的脉冲功率测量具有实用性。 【关键词】线状谱;脉冲谱;脉冲退敏因子 1.概述 脉冲波形是雷达和数字通信系统中的一类重要信号。脉冲调制信号的测量较之连续波形可能会遇到更多的困难。当频谱仪采用窄的分辨率带宽(RBW)时,显示频谱呈现出离散的谱线,当采用宽的分辨率带宽(RBW)时,这些谱线便融合到一起,频谱呈现出连续状。在这样的测量条件下,频谱分析仪的调节对被测结果会产生严重影响。 2.脉冲波形的频谱 脉冲重复频率为PRF=fmod调制频率,脉冲周期为T,脉冲宽度为τ,脉冲幅度为1单位。依据单脉冲的傅氏变换理论得脉冲的频域表示为: 频谱的零点发生在当f=±1/τ的整数倍处,脉冲波形的频谱形状与图2相同,横轴为频率f,中心为频率零点,纵轴为幅度。频谱的幅度与脉宽τ成正比,这意味着脉冲越宽,脉冲的能量越大。绝大部分脉冲能量都处在频率低于f=|±1/τ|的主瓣内。在频域中,随着时域脉宽τ的减小,第一个零点移向较高的频率。因此,脉冲越窄,它在频域中的带宽就越宽。因为较窄的脉冲要求瞬时电压变化得更快,电压的变化较快意味着有更多的高频成分,即时域中的电压变化越快,频域中的带宽越宽。 脉冲串是由周期性地复制所形成的。由于其波形是周期波形,依据脉冲周期波形的傅氏级数的时域表示为: 该波形具有τ/T的直流分量,这恰好是脉冲波形的平均值。信号的谐波将处在该波形的基频即f=1/T的整数倍处。谐波的总体形状或包络呈现(sinx)/x特性,频谱形状的大部分能量集中在主瓣和邻近旁瓣,这是与单脉冲的傅氏变换相同的形状。在1/τ的整数倍处出现频谱包络的零点。 脉冲串频谱的幅度取决于波形的占空比。占空比是脉冲宽度与周期之比,即占空比=τ/T。脉冲串频谱的总体形状由脉冲宽度决定,脉冲频谱包络零点间隔=1/τ,而脉冲重复频率PRF=谱线间隔如图1所示。 3.线状谱

单片机脉冲信号测量

郑州工业应用技术学院 课程设计说明书 题单片机脉冲信号测量 姓名: 院(系):信息工程学院专业班级:计算 机科学与技术学号: 指导教师: 成绩: 时间:年月日至年月日

摘要 脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,频率等参数,并用十进制数字显示出来。利用定时器的门控信号GATE进行控制可以 实现脉冲宽度的测量。在单片机应用系统中,为了便于对LED显示器进行管理,需要建立一个显示缓冲区。本文介绍了基于单片机AT89C51的脉冲信号参数测量仪的设计。该设计可以对脉冲信号的宽度,频率等参数进行测量。 关键词:脉冲信号;频率;宽度;单片机AT89C51

目录 摘要............................................................... I 目录............................................................... II 第一章技术背景及意义 (1) 第二章设计方案及原理 (2) 第三章硬件设计任务 (3) 第四章软件结论 (12) 第五章参考文献 (13) 第六章附录 (14)

第一章技术背景及意义 单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和I/O 接口电路等。因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。由于单片机稳定可靠、物美价廉、功耗低,所以单片机的应用日益广泛深入,涉及到各行各业,如工业自动化、智能仪表与集成智能传感器、家用电器等领域。单片机应用的意义绝不仅限于它的广阔范围以及带来的经济效益,更重要的意义在于,单片机的应用正从根本上改变着传统的控制系统的设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分控制功能,现在使用单片机通过软件就能实现了。随着单片机应用的推广普及,单片机控制技术将不断发展,日益完善。因此,本课程设计旨在巩固所学的关于单片机的软件及硬件方面的知识,激发广大学生对单片机的兴趣,提高学生的创造能力,动手能力和将所学知识运用于实践的能力。 中断功能是一种应用比较广泛的功能,它指的是当CPU正在处理某件事情的时候,外部发生了某一件事(如一个电平的变化,一个脉冲沿的发生或定时器计数溢出等)请求CPU迅速去处理,于是,CPU暂时终止当前的工作,转去处理所发生的事件。中断服务处理完该事件以后,再回到原来被中止的地方继续原来的工作,这样的过程称为中断。本文中用到了定时器T0溢出中断,以实现软件延时。脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,脉冲频率等参数。

用示波器测量信号的电压和频率

用示波器测量信号的电压及频率 长江大学马天宝应物1203班 1、示波器和使用 -【实验目的】 1.了解示波器的大致结构和工作原理。 2.学习低频信号发生器和双踪示波器的使用方法。 3.使用示波器观察电信号的波形,测量电信号的电压和频率。 【实验原理】 一、示波器原理 1.示波器的基本结构 示波器的种类很多,但其基本原理和基本结构大致相同,主要由示波管、电子放大系统、扫描触发系统、电源等几部分组成,如图4.9-1所示。 (1)示波管 示波管又称阴极射线管,简称CRT,其基本结构如图4.9-2所示,主要包括电子枪、偏转系统和荧光屏三个部分。 电子枪:由灯丝、阳极、控制栅极、第一阳极、第二阳极五部分组成。灯丝通电后,加热阴极。阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是一个顶端有小孔的圆筒,套在阴极外面,它的电位相对阴极为负,只有初速达到一定的电子才能穿过栅极顶端的小孔。因此,改变栅极的电位,可以控制通过栅极的电子数,从而控制到达荧光屏的电子数目,改变屏上光斑的亮度。示波器面板上的“亮度”旋钮就是起这一作用的。阳极电位比阴极高得多,对通过栅极的电子进行加速。被加速的电子在运动过程中会向四周发散,如果不对其进行聚焦,在荧光屏上看到的将是模糊一片。聚焦任务是由阴极、栅极、阳极共同形成的一种特殊分布的静电场来完成的。这一静电场是由这些电极的几何形状、相对位置及电位决定的。示波器面板上的“聚焦”旋钮就是改变第一阳极电位用的,而“辅助聚焦”就是调节第二阳极电位用的。 偏转系统:它由两对互相垂直的平行偏转板——水平偏转板和竖直偏转板组成。只有在偏转板上加上一定的电压,才会使电子束的运动方向发生偏转,从而使荧光屏上光斑的位置发生改变。通常,在水平偏转板上加扫描信号,竖直偏转板上加被测信号。

高压直流电压电流的测量

高压直流电压电流的测量 一.高压直流电流测量 测量方式: 1.霍尔式隔离传感器(磁隔离) 2.直放式LEM传感器 3.平衡式LEM传感器 测量原理: 1.霍尔式隔离传感器(磁隔离) 霍尔效应: 如图所示,在一个N型半导体薄片(霍尔元件)相对两侧面通以控制电流I,在薄片垂直方向加以磁场B,则在半导体两侧面会产生一个大小与 控制电流I和磁场B乘积成正比的电势UH。即IB U K H H 这一现象叫做霍尔效应,产生的电势UH叫做霍尔电势,为灵敏度。 当I一定时,UH正比于B。 2.直放式LEM传感器: 在如图所示直放式LEM传感器中存在下列关系:VX∝iX∝LX∝B∝E 该传感器价格便宜,但是存在零点飘移。 目前市场上多为双电源,单电源数量少而且价格高且易发生磁化问题。4.平衡式LEM传感器: 平衡式LEM传感器自身存在动态平衡,反映速度快,其线性度、灵敏度都比直放式好,且它不受零飘的影响。如图所示,Bx与Bf相抵消直至E=0。

二.高电压测量 稳态高电压与冲击高电压区别: 稳态高电压:主要是指工频交流高压和直流高压。但所述及的测量方法或装置,有的也可用于频率在一定范围以内的高频高压或脉动成分很大的直流高压的测量。 冲击电压:无论是雷电冲击电压或操作冲击电压,均为快速变化或较快速变化的一种电压。测量冲击电压的整个测量系统包括其中的电压转换装置和指示、记录及测量仪器必须具有良好的瞬态响应特性。一些适宜于测量稳态或慢过程(如直流和交流电压)的测量系统不一定适宜于或根本不可能测量冲击电压。冲击电压的测量包括峰值测量和波形记录两个方面。 实验室与电力系统的高电压测量区别: 电力系统:电力运行部门测量交流高电压,是通过电压互感器和电压表来实现的。用电压互感器测交流电压把电压互感器的高压边接到被测电压,低压边跨接一块电压表,把电压表读数乘上电压互感器的变比,就可得被测电压值。 电力系统没有专门的冲击电压测量系统 实验室:互感器在高电压实验室中用得不多,因为高电压实验室中所要测的电压值常常比现有电压互感器的额定电压高许多,特制一个超高压的电压互感器是比较昂贵的,而且很高电压的互感器也比较笨重,所以采用别的方法来测量交流高电压 实验室的高电压测量: 交流高电压测量: (1) 利用气体放电测量交流高电压――如测量球隙 (2) 利用静电力测量交流高电压――如静电电压表 (3) 利用整流电容电流测量交流高电压――如峰值电压表 (4) 利用整流充电电压测量交流高电压――如峰值电压表 直流高电压的测量: 用高欧姆电阻串联直流毫安表可以测量直流电压的平均值,是一种比较方便而又常用的测量系统 冲击高电压的测量: (1) 球隙法:是直接测量高电压峰值的一种方法。 (2) 分压器――峰值电压表:只测峰值,不测波形。事先应验证波形合乎标准,或同时用示波器观测波形。 (3) 分压器――示波器(或数字记录仪):可同时测出峰值及波形。在采用数字式示波器或数字记录仪时,可立即获得峰值和时间参数值,并可打印

示波器的测量

示波器的测量 1.1 示波器的应用 1.实训目的 1﹚掌握示波器、交流毫伏表、音频信号发生器的基本应用。 2﹚掌握示波器观察信号波形和测量直流电压幅度、周期的方法。 2.实训内容 ﹙1﹚示波器的校准 ﹙2﹚利用示波器1khz,0.5Vp-p的方波校准信号作为示波器的输入信号,调出图1-1所示正常波形。 ﹙3﹚将扫描基线移动的格数、垂直偏转因数和稳定电压原指示电压值填入表1-1中。 图1-1 表1-1直流电压测量 ﹙4﹚正弦波电压幅度、周期的测量 1﹚用信号发生器产生下表中的输入信号,用示波器测量信号的周期和电压,将测量数据填入表1-2

表1-2 正弦波电压幅度、周期的测量 1.2 示波器的特殊应用 1.用示波器测量脉冲信号的上升时间和下降时间。 1)用函数信号发生器产生频率为20KHz的矩形波脉冲信号。 2)按图1-2连接电阻和电容,组成一个低通网络。 图1-2 低通滤波电路 3)因为函数信号发生器输出的脉冲信号上升时间较小,不易测量,所以把脉冲信号通过低通网络后送到示波器测量,以加大脉冲信号的上升时间,便以测量。 4)调节示波器X轴的偏转因素选择开关,尽量使屏幕上突出显示脉冲的上升沿部分或下降沿部分。并配合使用X轴位移旋钮,使对应上升沿10%(或下降沿90%)高度处的测量点对齐X轴的某个刻度线,然后读出对应上升沿90%(或下降沿10%)高度处另一测量点到上一测量点的相对时间值。该相对时间值便是所测脉冲的上升时间(或下降时间)。读数等于刻度个数乘上X轴偏转因数。 5)注意以上操作只有在X轴细调(V ariable)旋钮顺时针旋到底后读数才是正确的。2.用双踪法测量两个信号的相位差 1)先用信号发生器产生一个频率为20KHz的幅度为1V的正弦信号。 2)再按图1-3连接电阻和电容,组成一个阻容延迟网络。信号发生器输出信号一路直接作为信号1送入示波器CH1通道,另一路通过阻容延迟网络后作为信号2 送入示波器CH2通道。由于信号2 通过延迟网络,所以信号2比信号1在时间上要延迟,两个信号之间存在着相位差。 图1-3阻容延迟网络

04 使用力科示波器测量信号相位变化的方法

胡为东系列文章之四—— 使用力科示波器测量信号相位变化的方法 美国力科公司胡为东摘要:在实际应用中,经常会遇到相位的测量,比如说两个信号之间的相位测量,或者同一个信号在不同时刻的相位变化(如相位调制信号)。示波器是测量信号时域特征最常用的仪器,本文就基于力科示波器来介绍如何使用示波器来测量信号的相位变化。 关键词:力科相位测量相位差调制 一、两个信号之间的时延或者相位差测量 在信号完整性测试中我们经常会遇到对两个或者多个信号之间的偏移或者相位差的测量。如某个单板上多个电源信号之间的时序关系;DDR等内存测试中数据信号和时钟信号的建立时间和保持时间等时序关系等等。 图1 基本D触发器的锁存数据示意图 在一些射频应用中,也经常需要测试多个信号之间的相位差,如图1所示,为了验证一个被测件DUT的特性,采用射频信号源通过定向耦合器分成两路,一路射频信号施加到DUT上,经过示波器后连接到示波器(图中是以力科的最高实时带宽为45GHZ的实时示波器为例)的一个通道,另外一路射频信号直接进入到示波器中作为参考源,然后使用示波器观察经过DUT之前的信号和经过DUT后的信号之间的相互关系,如相位关系、时序偏差等。力科示波器中的标准测量参数中包含了相位差(phase)测量和时序偏移(skew)测量,且提供了灵活的设置,比如说边沿测量位置、是在上升沿测量还是下降沿测量、输出结果类型(绝对值、百分比、度数、弧度等),如下图2和图3所示。

图2 力科示波器中集成的相位差Phase测量和时序偏移Skew测量参数 图3 力科示波器中相位差Phase的设置项 在很多情况下,往往需要统计长时间的参数变化情况,此时可以将力科的参数追踪(Trend)以及自动保存功能(Auto save)结合起来使用,比如说我们要测量两个信号之间的相位或者时序偏移关系,且需要长时间的统计其效果,这时候我们可以先用力科示波器中的相位测量(phase)参数实现对相位差的测量,然后用Trend函数功能实现对相位测量参数的追踪,然后再选中自动保存Trend函数的功能,这时候示波器就会连续的保存参数的变化,并保存为很多个文件至示波器的硬盘上,最后测试人员可以再通过软件的方法将这些文件组合到一起(去除重合的数值,因为自动保存的多个文件的内容一般有一部分是重合的,需要将重合的部分去掉)形成一个新的长时间的参数变化曲线。

E题-脉冲信号参数测量仪报告

脉冲信号参数测量仪 摘要:本设计选用 FPGA 作为数据处理与系统控制的核心,采用FPGA 与单片机相结合的方式制备出可测量脉冲信号频率、占空比、幅度、上升时间的测量仪以及标准脉冲信号发生器。本设计由以下功能模块构成:前端信号处理模块、峰值检波模块、窗口比较器模块、幅值升压模块等。利用FPGA 的强大处理能力,完成数字信号处理,并将处理后的信号送至单片机进行显示,设计中综合运用了电容去耦、滤波以及同轴电缆等抗干扰措施,减少了电路干扰。在FPGA 内有等精度测频模块、占空比测量模块和上升时间测量模块、标准脉冲产生模块等。显示与校准通过单片机完成。 关键词:峰值检波 窗口比较器 脉冲参数测试仪 标准脉冲信号发生器 一、系统方案 1.方案论证与比较 方案一:图1所示为中规模电路脉冲信号测量仪。此方案采用中规模数字电路构成,主要由比较器、功能选择、量程选择、计数器和控制模块组成。该方案电路复杂,频带过窄,功能不强,实现起来比较困难。故不采用此方案。 图1 小规模数字电路原理框图 方案二:图2所示为纯单片机方案,该方案以单片机为核心。 门控信号由单片机内部计数定时器产生。该方案成本低,但受单片机本身限制,其时序控制能力弱,处理速度慢,无法达到本次设计要求。故不采用此方案。 图2 纯单片机方案原理框图 方案三:图3所示为FPGA 与单片机相结合的方案。此方案中,FPGA 构成主要测量模块,输入信号经过前端处理电路,得到5V 信号输入到FPGA 中。单

片机控制FPGA完成各种测量功能并显示测量数据。该方案外围元件相对较少,对高速信号处理速度快,精度高,且控制灵活、可靠性高。 图3 FPGA与单片机结合方案原理框图 综上所述,本设计拟采用方案三。 2.总体方案设计 当进行频率测量时,脉冲信号进入前置分挡模块。当信号较大时衰减,当信号较小时放大。在放大模块中,高频信号通过高速放大器,低频信号通过精密放大器,使输入波形均为幅值适中的脉冲,直接进入FPGA进行计算测量。FPGA 中,采用等精度测频方法进行测频和测占空比,利用基本上升时间测量模式进行两个信号的上升时间测量。单片机完成数据读取及校准功能。测量幅值时经过峰值检测并保持电路,再经单片机AD采集测出。 二、理论分析与计算 1.频率测量方法 本设计中的频率测量采用等精度测频法。该方法是将标准频率信号与待测信号输入到两个计数器进行同步计数。如图4所示,测量时单片机先预置闸门时间T,当闸门开启时,等待被测信号触发沿到来,计数器开始计数;预置闸门时间结束时,计数器并不立即停止而是等被测信号下一个同相位触发沿到来才关闭同步门并停止计数。可见实际闸门时间是被测信号周期的整数倍,即与被测信号同步。 若被测信号与标准信号的计数值分别为N x 和N ,则被测频率为: f x =N x /N ×f (1) 若忽略标频f 的误差,则等精度测频可能产生的相对误差为: η=(|f xe-f x|/f xe) ×100% (2) 式(2)中f xe 为被测信号频率的准确值。 在测量过程中,由于f x 计数的起止时间都是由该信号的上升测触发的,在 闸门时间T内对f x 的计数N x 无误差;对f 的计数N s 最多相差一个数的误差,即 |N s |≤1。则理论误差:η≤1/(T×f ) (3)由(3)式可以看出,测量频率的相对误差与被测信号频率的大小无关,仅 与闸门时间和标准信号频率有关,从而实现被测频带内的等精度测量。由于周期和频率互为倒数,因此可根据频率求出对应周期。该方法使测量精度大幅度提高,测量原理框图如图4 所示。

高电压测量方法概述

高电压测量方法概述 球隙法测量高电压是试验室比较常用的方法之一。空气在一定电场强度下,才能发生碰撞游离。均匀电场下空气间隙的放电电压与间隙距离具有一定的关系。可以利用间隙放电来测量电压,但绝对的均匀电场是不易做到的,只能做到接近于均匀电场。测量球隙是由一对相同直径的金属球所构成。加压时,球隙间形成稍不均匀电场。当其余条件相同时,球间隙在大气中的击穿电压决定于球间隙的距离。对一定球径,间隙中的电场随距离的增长而越来越不均匀。被测电压越高、间隙距离越大。要求球径也越大。这样才能保持稍不均匀电场。球隙法测量接线如图1所示。 测量球隙作为一种高电压测量方法的优缺点进行比较。其优点是:可以测量稳态高电压和冲击电压的幅值,是直接测量超高压的重要设备。结构简单,容易自制或购买,不易损坏。有一定的准确度,测量交流及冲击电压时准确度在3%以内。球隙法测量的缺点是:测量时必须放电放电时将破坏稳定状态可能引起过电压。气体放电有统计性。数据分散,必须取多次放电数据的平均值,为防止游离气体的影响,每次放电间隔不得过小。且升压过程中的升压速度应较缓慢,使低压表计在球隙放电瞬间能准确读数,测量较费时间。实际使用中,测量稳态电压要作校订曲线,测量冲击电压要用50%放电电压法。手续都较麻烦。被测电压越高,球径越大,目前已有用到直径为±3m的铜球,不仅本身越来越笨重,而且影响建筑尺寸。 静电压表法测量原理是加电压于两电极,由于两电极上分别充上异性电荷,电极就会受到静电机械力的作用,测量此静电力的大小或是由静电力产生的某一极板的偏移(或是偏转)就能够反映所加电荷的大小。 静电电压表有两种类型,一种是绝对静电电压表,另一种是非绝对的静电电压表,由于绝对静电电压表结构和应用都非常复杂。在工程上应用较多的还是构造相对简单的非绝对静电电压表,其测量不确定度为1%~3%。量程可达1000kV。此种测量表测量时可动电极有位移。可动电极移动时,张丝所产生的扭矩或是弹簧的弹力产生了反力矩,当反力矩和静电场的力矩相平衡时,可动电极的位移达到一个稳定值。与可动电极相连接在一起的指针或反射光线的小镜子就指出了被测电压的数值。静电电压表从电路中吸取的功率相当小,当测量交流电压时,表计通过的电容电流的多少决定于被测电压频率的高低以及仪器本身电容的大小,由于仪表的电容一般仅有几皮法到几十皮法,所以吸取的功率十分的微小,因此静电电压表的内阻抗极大。通常还可以把它接到分压器上来扩大其电压量程,目前国内已生产有250~500kV的静电电压表。

如何用示波器进行射频信号测量

前言--如何用示波器进行射频信号测量连载(一) 前面推出了《数字工程师需要掌握的射频知识》连载后,反响强烈。有些工程师朋友联系我说,除了数字工程师要用到射频仪器外,有些射频工程师也会用到示波器做射频信号测试,但是不清楚精度如何,以及和频谱仪等传统仪器的区别,希望能对这方面做些讲解。 为此,我对示波器做射频信号测试的应用案例和注意事项做了一些整理,将陆续连载,希望能给大家提供一些帮助。 时域测量的直观性 要进行射频信号的时域测量的一个很大原因在于其直观性。比如在下图中的例子中分别显示了4个不同形状的雷达脉冲信号,信号的载波频率和脉冲宽度差异不大,如果只在频域进行分析,很难推断出信号的时域形状。由于这4种时域脉冲的不同形状对于最终的卷积处理算法和系统性能至关重要,所以就需要在时域对信号的脉冲参数进行精确的测量,以保证满足系统设计的要求。 更高分析带宽的要求 在传统的射频微波测试中,也会使用一些带宽不太高(<1GHz)的示波器进行时域参数的测试,比如用检波器检出射频信号包络后再进行参数测试,或者对信号下变频后再进行采集等。此时由于射频信号已经过滤掉,或者信号已经变换到中频,所以对测量要使用的示波器带宽要求不高。 但是随着通信技术的发展,信号的调制带宽越来越宽。比如为了兼顾功率和距离分辨率,现代的雷达会在脉冲内部采用频率或者相位调制,典型的SAR成像雷达的调制带宽可能会达到2GHz以上。在卫星通信中,为了小型化和提高传输速率,也会避开拥挤的C波段和Ku 波段,采用频谱效率和可用带宽更高的Ka波段,实际可用的调制带宽可达到3GHz以上甚至更高。 在这么高的传输带宽下,传统的检波或下变频的测量手段会遇到很大的挑战。由于很难

脉冲信号参数测量仪

2016年TI杯江苏省大学生电子设计竞赛题目: 脉冲信号参数测量仪 题目编号: E题 参赛队编号: 参赛队学校: 参赛队学生: 二○一六年七月

目录 摘要 (1) 1.设计方案工作原理 (1) 1.1方案选择 (1) 1.2总体方案设计 (2) 2.核心部件电路设计 (3) 2.1高速缓冲电路 (3) 2.2自动增益电路 (3) 2.3高速比较器电路 (4) 2.4放大电路 (5) 3.系统软件设计分析 (5) 3.1 CPLD数据处理 (5) 4.竞赛工作环境条件 (6) 4.1设计分析软件环境 (6) 4.2仪器设备硬件平台 (6) 5.作品成效总结分析 (6) 5.1脉冲信号频率测量 (6) 5.2脉冲信号占空比测量 (7) 5.3脉冲信号幅值测量 (7) 5.4脉冲信号上升时间测量 (8) 6.参考文献 (8) 附录.................................................................................................. 错误!未定义书签。

脉冲信号参数测量仪 摘要:本作品以美国德州仪器(TI)生产的16位超低功耗单片机MSP430F169作为主控芯片,利用CPLD技术实现矩形脉冲信号的频率、占空比、上升时间的测量,并且利用CPLD产生一个标准矩形脉冲信号。本设计外围硬件电路主要由高速缓冲降压模块、AGC自动增益模块、幅度测量模块组成,通过对上述模块的合理整合,设计并制作了一个性能较好的脉冲信号参数测量仪。由于采用了AGC模块,系统实现了全程自动增益控制,稳定输出电压。 针对矩形脉冲信号的特点,本设计采用多种抗干扰措施,对电路布线进行优化,并合理运用低噪声芯片OP07、OPA690、VCA810、THS3001、TLV3501。后期,利用ADS1115及Matlab,对测试数据进行合理的分析,以优化算法系统,进一步提高了精度。 该脉冲信号参数测量仪结构简单,性能稳定,功能完善,达到了各项设计指标。关键词:脉冲信号参数测量仪;CPLD ;AGC ;TLV3501 ;Matlab; 1.设计方案工作原理 1.1方案选择 本方案主要由THS3001缓冲模块、AGC自动增益模块、TLV3501高速比较模块、ADS1115模块组成,实现脉冲信号频率、占空比、幅度、上升时间测量。 1、主控部件选择 方案一:采用CPLD作为参数测量仪的主控芯片,完成参数测量及实时显示等全部功能。CPLD具有可编程和大规模集成的特点,此方案可以使电路大为简化,但此设计仅使用PLD不能充分发挥其特点及优势,导致系统性能降低。因此不采用此方案。 方案二:采用FPGA作为主控芯片,FPGA外围拓展功能更多,但在运行速度、编程灵活性以及使用方便性上CPLD优于FPGA,即在电路结构上FPGA更复杂,因此不采用此方案。 方案三:采用CPLD和单片机相结合的方案。分别利用CPLD在信号处理高速稳定方面以及单片机在逻辑运算、智能控制方面的优越性,使得电路不仅能够简化,而且能够达到设计要求,因此选择方案三。 2、频率测量 方案一:采用周期法。需要有标准倍的频率,在待测信号的一个周期内,记录标准频率的周期数,这种方法的计数值会产生±1个脉冲误差,并且测试精度与计数器中的记录的数值有关,为了保证测试精度,测周期法仅适用于低频信号的测量。

万用表总电流与交流工作电压的测量方法

万用表 万用表的基本原理是利用一只灵敏的磁电式直流电流表(微安表)做表头。当微小电流通过表头,就会有电流指示。下面就让艾驰商城小编对万用表总电流与交流工作电压的测量方法来一一为大家做介绍吧。 总电流测量法 该法是通过检测IC电源进线的总电流,来判断IC好坏的一种方法。由于IC 内部绝大多数为直接耦合,IC损坏时(如某一个PN结击穿或开路)会引起后级饱和与截止,使总电流发生变化。所以通过测量总电流的方法可以判断IC的好坏。也可用测量电源通路中电阻的电压降,用欧姆定律计算出总电流值。 交流工作电压测量法 为了掌握IC交流信号的变化情况,可以用带有dB插孔的万用表对IC 的交流工作电压进行近似测量。检测时万用表置于交流电压挡,正表笔插入dB插孔;对于无dB插孔的万用表,需要在正表笔串接一只0.1~0.5μF隔直电容。该法适用于工作频率比较低的IC,如电视机的视频放大级、场扫描电路等。由于这些电路的固有频率不同,波形不同,所以所测的数据是近似值,只能供参考。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅

捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.sodocs.net/doc/ef1230159.html,/

示波器测量波形浅析

示波器测量波形浅析 【摘要】用示波器的AC与DC档测量同一个波形,观察到不同的现象:一个观察到尖脉冲,另一个观察到脉冲方波,可见采用不同的耦合方式会影响到波形的测量结果。 【关键词】耦合方式;交流耦合;直流耦合 一、引言 现代科技的进步,为电路波形的测量与观察提供了先进的手段,用示波器对波形测量便是众多科技手段之一,它精确而又直观的测量为查找电路故障与电路的分析提供了强有力的保证。 进行波形测量时,我们通常是利用示波器的探头将信号连接到示波器的输入端子,数字示波器菜单上有三个选择:DC、AC与GND。通常来说,当你要观察的波形是含有直流的信号,或是频率极低的信号,这个开关应当置于“直流”位置,有DC标记;当你要观察的波形是交流信号,或是要观察信号中的交流分量,这个开关应当置于“交流”位置,有AC标记;当你不想让接在输入端子上的信号进入,就将这个开关置于“接地”位置,这在双输入端子的示波器上用得较多。 图1是示波器内部结构示意图,左上部分给出了耦合方式的选择示意图。 二、不同耦合方式下的波形 现在,我们从信号发生器送出一个小于10Hz的极低频矩形波连接到数字示波器的CH1、CH2端子,同时观察不同耦合方式下的波形。其中CH1端子选择DC方式,而CH2端子选择AC方式,得到如图2所示的波形对比。 可以观察到波形出现了很大的区别:AC耦合方式下得到一个正负相间的尖脉冲,而DC模式下依然是一个理想的矩形波;现在我们把信号发生器的矩形波频率改为6.4KHz,再重复前面的测量过程,可这次我们观察到两个端子的波形是相同的。是什么样的原因导致了这种区别? 三、示波器的频率响应 为何会出这两种完全不同的结果?这种现象与电路的结构与相关参数的大小有什么样的关系?看下面电路结构,AC耦合方式就相当于串联了一个电容,如图4所示。给示波器输入一个脉冲宽度为tw的方波脉冲信号。 1.低频信号输入(tw >>RC) 开始,输入电压由0突变成Vm时,这一瞬间C上还来不及累积电荷,因

相关主题