搜档网
当前位置:搜档网 › 三角函数图象及性质

三角函数图象及性质

三角函数图象及性质
三角函数图象及性质

1.三角函数的图像和固有性质:(其中z

k∈)

sin

y x

=cos

y x

=tan

y x

=图象

定义域R R,

2

x x k k

π

π

??

≠+∈Z

??

??值域[]

1,1

-[]

1,1

-R 最值

当2

2

x k

π

π

=+()

k∈Z时,

max

1

y=;当2

2

x k

π

π

=-

()

k∈Z时,

min

1

y=-.

当()

2

x k k

π

=∈Z时,

max

1

y=;当2

x kππ

=+

()

k∈Z时,

min

1

y=-.

既无最大值也无最小值

周期性2π2ππ

奇偶性奇函数偶函数奇函数

单调性

在2,2

22

k k

ππ

ππ

??

-+

??

??

()

k∈Z上是增函数;在

3

2,2

22

k k

ππ

ππ

??

++

??

??

()

k∈Z上是减函数.

在[]()

2,2

k k k

πππ

-∈Z上是

增函数;在[]

2,2

k k

πππ

+

()

k∈Z上是减函数.

在,

22

k k

ππ

ππ

??

-+

?

??

()

k∈Z上是增函数.

对称性

对称中心()()

,0

k k

π∈Z

对称轴()

2

x k k

π

π

=+∈Z

对称中心()

,0

2

k k

π

π

??

+∈Z

?

??

对称轴()

x k k

π

=∈Z

对称中心()

,0

2

k

k

π

??

∈Z

?

??

无对称轴

2.正弦型函数)

sin(?

ω+

=x

A

y的图像与性质:

(本节知识考察一般能化成形如)

sin(?

ω+

=x

A

y的图像及性质)

(1)函数B

x

A

y+

+

=)

sin(?

ω和B

x

A

y+

+

=)

cos(?

ω的周期都是

ω

π2

=

T

(2) 函数)tan(?ω+=x A y 的周期是ω

π

=

T (3) 五点法作)sin(?ω+=x A y 的简图,设?ω+=x t ,取0、

2

π、π、23π、π2来求相应x 的值以及

对应的y 值再描点作图。

(4) 关于平移伸缩变换可具体参考函数平移伸缩变换,提倡先平移后伸缩。切记每一个变换总是对字母x 而

言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。(附上函数平移伸缩变换):

函数的平移变换:

①)0)(()(>±=→=a a x f y x f y 将)(x f y =图像沿x 轴向左(右)平移a 个单位(左加右减) ②)0()()(>±=→=b b x f y x f y 将)(x f y =图像沿y 轴向上(下)平移b 个单位(上加下减) 函数的伸缩变换:

①)0)(()(>=→=w wx f y x f y 将)(x f y =图像纵坐标不变,横坐标缩到原来的

w

1

倍(1>w 缩短, 10<

②)0)(()(>=→=A x Af y x f y 将)(x f y =图像横坐标不变,纵坐标伸长到原来的A 倍(1>A 伸长,

10<

函数的对称变换:

①)()(x f y x f y -=→=) 将)(x f y =图像绕y 轴翻折180°(整体翻折)(三角函数:图像关于x 轴对称) ②)()(x f y x f y -=→=将)(x f y =图像绕x 轴翻折180°(整体翻折)(三角函数:图像关于y 轴对称) ③)()(x f y x f y =→=将)(x f y =图像在y 轴右侧保留,并把右侧图绕y 轴翻折到左侧(偶函数局部翻折) ④)()(x f y x f y =→=保留)(x f y =在x 轴上方图像,x 轴下方图像绕x 轴翻折上去(局部翻动) 知识点1:定义域

1.求下列函数的定义域(1)∈-x x ,21

cos _____(3)∈->x x ,1tan _____.

(4)_,21

4sin ∈≥?

?

? ??-x x π{x|2k π+125π≤x ≤2k π+1213π,k ∈Z} 知识点2:值域;

1.??? ??-∈=6,3,cos ππααy 2、??

?

??∈-=2,0),32sin(ππx x y

3.b x a y +=sin 最大值为27,最小值为2

5

-,求b a ,值.

4、函数sin cos 2y x x =++的最小值是 .

5、3sin 42cos +-=x x y 的最值为 .

6、函数2

()cos sin f x x x =+在区间[,]44

ππ

-上的最小值是_____________ 7.函数sin sin 2

x

y x =

+的最大值是 ,最小值是 .

8.若函数()()

2

0,cos tan 31π

<

≤+=x x x x f ,则()x f 的最大值为( B )

A .1

B .2

C .13+

D .23+

析:因为()(1)cos f x x x =

=cos x x =2cos()

3x π

-当

3x π

=是,函数取得最大值为2. 9.函数x x y 2sin cos 22+=的最小值是

_1-___

析:()cos 2sin 21)1

4f x x x x π

=++=++

,所以最小值为:1知识点3:单调性

1.)23sin(2x y -=π增区间是 ;)4

3cos(π

+=x y 减区间是 ___ ;

2.x y 2cos =增区间是 ______;x x y 2cos 2sin 3+=增区间是 ; 知识点4:奇偶性

B x A x f ++=)sin()(?ω是偶函数,则?=2

π

π+

k ;是奇函数,则?= πk ,B=___0________;

B x A x f ++=)cos()(?ω是偶函数,则?= πk ; 是奇函数,则?= 2

π

π+

k ,B=___0________;

1.)2sin()(?+=x x f 是偶函数,则?= ;)21

cos()(?+=x x f 是偶函数,则?= .

2. 已知函数()()?ω+=x x f sin 其中2

,0π

?ω<>,

(I )若0sin 4

3sin

cos 4

cos

=-?π

求?的值; (Ⅱ)在(I )的条件下,若函数()x f 的图像的相邻两条对称轴之间的距离等于

3

π

,求函数()x f 的解析式;并求最小正实数m ,使得函数()x f 的图像象左平移m 个单位所对应的函数是偶函数。

解:(I )由

3cos

cos sin

sin 04

4ππ??-=得cos cos sin sin 044ππ

??-=即cos()04π?+=又

||,24ππ??<∴=

(Ⅱ)由(I )得,

()sin()4f x x πω=+依题意,23T π= 又2,T πω=故3,()sin(3)

4f x x π

ω=∴=+ 函数()f x 的图像向左平移m 个单位后所对应的函数为

()sin 3()4g x x m π?

?=++??

?? ()g x 是偶函数当且仅当3()42m k k Z πππ+=+∈ 即()312k m k Z ππ=+∈从而,最小正实数

12m π=

知识点5:周期性一般说来,某一周期函数解析式单独加绝对值或平方,其周期性是:弦减半、切不变. 1.写出下列函数的周期

1)

y sin =2)

y tan =)x x y cos sin += 4)x x y cos sin = ,5)x y 2sin =

2.函数22()cos sin 5

5

x x f x =+的图象中相邻的两条对称轴之间的距离是 (C )

A .5π

B . 2π

C . 52π

D . 25

π

3.若函数()x x x x f 2sin sin 22sin 2

?-=,则()x f 是 ( D ) A .最小正周期为π的偶函数 B .最小正周期为π的奇函数

C .最小正周期为π2的偶函数

D .最小正周期为2

π

的奇函数

4.函数1)4

(cos 22

--=πx y 是 (A)

A .最小正周期为π的奇函数 B.最小正周期为π的偶函数

C.最小正周期为

2π的奇函数 D.最小正周期为2

π

的偶函数 5.函数()()

,cos tan 31x x x f +=的最小正周期为

A .π2

B .23π

C .π

D .2

π

【解析】由

()(1)cos cos 2sin()

6f x x x x x x π

==+=+可得最小正周期为2π,故选A. 6.函数()?ω+=x A y sin (?ω,,A 为常数,0,0>>ωA )在闭区间[]0,π-上的图象如图所示,则=ω .

【解析】3

2

T π

=,

23T π

=,所以3ω=,

知识点6:对称性

1、函数)θx cos(3)θx sin()x (f +++=的图象关于点)0 ,5(对称, 则θ的值是( D )

A. 103

2-π- B. 53-π

-

C. )z k ( 103

2k 2∈-π-π D. )z k ( 53k ∈-π-π 2.对)3

2sin(2)(π

+

=x x f 下列说法正确的是

①)()(21x f x f =,则12x x -必是π的整数倍 ②)(x f y =可以改写成)6

2cos(2)(π

-=x x f

③)(x f y =关于??

?

??-0,6π对称 ④)(x f y =关于6π-=x 对称

题型1.辅助角公式与二倍角及变形公式的应用(研究周期、最值、单调区间、对称性、奇偶性) 1. 已知函数()cos(2)2sin()sin()344

f x x x x π

ππ

=-

+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程

(Ⅱ)求函数()f x 在区间???

??

?-

2,12ππ上的值域 解:(1)()cos(2)2sin()sin()3

4

4

f x x x x πππ=-+-+

1

cos 22(sin cos )(sin cos )2

x x x x x x =+-+221cos 22sin cos 2x x x x =+- 1

cos 22cos 22

x x x =-sin(2)6x π

=- 2T 2ππ==周期∴

(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=

-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单

调递减,所以 当3

x π=时,()f x 取最大值 1 又

1()()1222f f ππ-=<= ,∴当12x π

=

-时,()f x 取

最小值 函数 ()f x 在区间??

????-2,12ππ上的值域为[ 2.已知函数()4cos sin()16

f x x x π

=+-.(1)求()f x

的最小正周期; (2)求()f x 在区间[,]64

ππ

-

上的最大值和最小值。 解:(1)()2sin(2)6

f x x π

=+

,函数()f x 的最小正周期为π;

(2)226

6

3x π

π

π-≤+≤

,当262x ππ+=即6

x π

=时,函数()f x 取得最大值2; 当26

6

x π

π

+

=-

即6x π

=-

时,函数()f x 取得最小值1-;

3.已知函数2()sin cos cos 2.222

x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω???π++>>∈的形式,并指出()f x 的周期;

(Ⅱ)求函数()??

?

???ππ127,在x f 上的最大值和最小值

解:(Ⅰ)f (x )=

21

sin x +2

3)4sin(2223)cos (sin 2122cos 1-+=-+=-+πx x x x .故f (x )的周期为2k π{k ∈Z 且k ≠0}. (Ⅱ)由π≤x ≤

1217π,得πππ35445≤+≤x .因为f (x )=2

3

)4sin(22-+πx 在[45,

ππ]上是减函数,在[1217,45ππ]上是增函数.故当x =45π时,f (x )有最小值-2

23+; 而f (π)=-2,f (1217π)=-4

6

6+<-2,所以当x =π时,f (x )有最大值-2.

4.【2012高考天津理15】

已知函数.,1cos 2)3

2sin()3

2sin()(2R x x x x x f ∈-+-

++

π

(Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4

,4[π

π-上的最大值和最小值.

【解析】(1)2()=sin (2+

)+sin(2)+2cos 13

3

f x x x x π

π

-

-2sin 2cos

cos 2)34

x x x π

π

=+=+ 函数()f x 的最小正周期为22

T π

π==

(2)32sin(2)11()444444

x x x f x ππππππ-≤≤?-≤+≤?≤+≤?-≤≤

当2()4

2

8

x x π

π

π

+

=

=

时,()max f x =2()4

44

x x π

π

π

+

=-

=-时,min ()1f x =- 5.【2012高考北京理15】已知函数x

x

x x x f sin 2sin )cos (sin )(-=。

(1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间。

解(1):s i n 0()x x k k Z π≠?≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈

(sin cos )sin 2()(sin cos )2cos sin x x x

f x x x x x

-=

=-?

sin 2(1cos 2))14

x x x π

=-+=

--

得:)(x f 的最小正周期为22

T π

π=

=; (2)函数sin y x =的单调递增区间为[2,2]()22

k k k Z ππ

ππ-

+∈ 则322224288

k x k k x k πππππ

ππππ-≤-≤+?-≤≤+

得:)(x f 的单调递增区间为3[,),(,]()88

k k k k k Z ππ

ππππ-+

∈ 6.【2012高考广东理16】 已知函数)6

cos(2)(π

ω+=x x f ,(其中ω>0,x ∈R )的最小正周期为10π.

(1)求ω的值; (2)设]2,

0[,π

βα∈,56)355(-=+παf ,17

16

)655(=-πβf ,求()βα+cos 的值. 【答案】本题考查三角函数求值,三角恒等变换,利用诱导公式化简三角函数式与两角和的余弦公式求值,难

度较低。 【解析】(1)21

105

T π

πωω

=

=?=

(2)56334(5)cos()sin ,cos 352555f ππαααα+=-?+=-?== 516815(5)cos ,sin 6171717

f πβββ-=?== 4831513

cos()cos cos sin sin 51751785

αβαβαβ+=-=?

-?=- 7.【2012高考陕西理16】 函数()sin()16

f x A x π

ω=-

+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为

2

π

, (1)求函数()f x 的解析式; (2)设(0,

)2π

α∈,则()22

f α

=,求α的值。 【解析】(Ⅰ)∵函数()f x 的最大值是3,∴13A +=,即2A =。

∵函数图像的相邻两条对称轴之间的距离为2π

,∴最小正周期T π=,∴2ω=。 故函数()f x 的解析式为()2sin(2)16

f x x π

=-+。

(Ⅱ)∵()2f α2sin()126πα=-+=,即1

sin()62πα-=,

∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3

π

α=。

题型2.已知()B x A y ++=?ωsin 的图像确定其解析式.

1.若函数)sin()(?ω+=x x f 的图象(部分)如图所示,则ω= ,?=

9第题图

2.π?ω?ω20,0,0),sin(<≤>>+=A x A y 图象如图,求?ω,,A

3.2

,0,0),sin(π

?ω?ω<

>>+=A x A y 图象如图,求?ω,,A

4.已知函数sin()y A x ω?=+(0A >,0ω>)

一个周期内的函数图象,如下图所示,求函数的一个解析式. 5.已知函数

())0,0( )sin(2π?ω?ω<<>+=x x f ,

且函数的图象如图所示,则点),( ?ω的坐标是

(A) )3,2( π (B))3,4( π

(C))32,2( π (D)

)3

2,4( π 6.已知函数y=sin (ωx+?)(ω>0, -π≤?<π)的图像如图所示,则

?

=_______910

π

__

解析:由图可知,

()544,,2,125589,510T x πωπ?ππ????

=

∴=+ ???

??

+∴=

???把代入y=sin 有:1=sin

7.已知函数()sin()(0)f x x ω?ω=+>的图象如图所示 则ω = 2

3

【解析】由图象可得最小正周期为∴T =

π3

4 ω=23

8. 已知函数()()R x x A x f ∈+=,sin ?ω(其中2

0,0,0π

?ω<<>>A )的图象与x 轴的交点中,相邻两个

交点之间的距离为

2π,且图象上一个最低点为??

?

??-2,32πM . (Ⅰ)求()x f 的解析式;(Ⅱ)当??

?

???∈2,12ππx ,求()x f 的值域.

解:(1)由最低点为2(,2)

3M π-得A=2.由x 轴上相邻的两个交点之间的距

离为2π得2T =2π

,即T π=,222T ππωπ===由点2(,2)

3M π-在图像

x

3

π56

π3

O

上的242sin(2)2,)133ππ???

+=-+=-即sin(

故42,3

2

k k Z ππ?π+=-∈

1126k π?π∴=- 又

(0,),,()2sin(2)

26

6f x x πππ??∈∴==+故

(2)

7[,],2[,]

122636x x πππππ∈∴+∈ 当

26x π

+

=2π,即

6x π=

时,()f x 取得最大值2;当7266x ππ+= 即

2x π

=

时,

()f x 取得最小值-1,故()f x 的值域为[-1,2]

9.函数()sin(),(,,f x A x A ω?ω?=+是常数,0,0)A ω>>的部分图象如图所示,则____)0(=f

解析:由图可知:7,2,41234T A πππω=

=-==7322,2,1223

k k πππ

?π?π?+=+=+

(0))3f k ππ=+=

由图知:(0)f = 题型3.图象的变换

1.)3sin(π

+

=x y 变换得)3

2sin(π

+=x y ;x y 2sin = 变换得)32sin(π+=x y

2.要得到)321sin(π-=x y 图象只需将x y 2

1

sin = 变换得到

要得到)23sin(x y -=π

图象只需将)2sin(x y -= 变换得到. 3.要得到)4

2sin(π

+

=x y 图象只需将x y 2cos = 变换得到.

4、函数()sin(2)6f x x π=-的图像可以通过以下哪种变换得到函数()cos(2)3g x x π=+的图像(D ) A .向右平移π个单位 B .向左平移π个单位 C .向右平移2π个单位 D .向左平移2

π

个单位 5.将函数x y 2sin =的图象向左移

个单位,再向上移1个单位,所得图象的函数解析式是( B ) A.cos 2y x = B.22cos y x = C.)4

2sin(1π++=x y D.

22sin y x = 6.已知函数)0,)(4

sin()(>∈+=w R x wx x f π

的最小正周期为π,将)(x f y =的图像向左平移||?个单位长

度,所得图像关于y 轴对称,则?的一个值是(D )

A 2π

B 83π

C 4π

D 8

π

析:由已知,周期为2,2==w w π

π , x x 2cos ]4

)(2sin[±=++π?,故选D 7.将函数y=sinx 的图象向左移?()π?20<≤单位后,得到函数??? ?

?

-=6sin πx y 的图象,则?等于(D )

A .6π

B .56π C. 76π D.116π

【解析】解析由函数sin y x =向左平移?的单位得到sin()y x ?=+的图象,由条件知函数sin()y x ?=+可

化为函数

sin()6y x π=-,易知比较各答案,只有11sin()6y x π=+sin()

6x π

=-,所以选D 项。

8.【2012高考安徽文7】要得到函数)12cos(+=x y 的图象,只要将函数x y 2cos =的图象 (A ) 向左平移1个单位 (B ) 向右平移1个单位

(C ) 向左平移

12个单位 (D ) 向右平移1

2个单位 【答案】C 9. 已知函数y=21cos 2

x+2

3sinx ·cosx+1 (x ∈R ),

(1)当函数y 取得最大值时,求自变量x 的集合;

(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?

解:(1)y=

21cos 2x+23sinx ·cosx+1=41 (2cos 2

x -1)+ 41+43(2sinx ·cosx )+1 =41cos2x+43sin2x+45=21(cos2x ·sin 6π+sin2x ·cos 6π)+45 =21sin(2x+6π)+4

5 所以y 取最大值时,只需2x+6π=2π+2k π,(k ∈Z ),即 x=6

π

+k π,(k ∈Z )。

所以当函数y 取最大值时,自变量x 的集合为{x|x=6

π

+k π,k ∈Z} (2)将函数y=sinx 依次进行如下变换:

(i )把函数y=sinx 的图像向左平移6π,得到函数y=sin(x+6

π

)的图像; (ii )把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y=sin(2x+6π

)的图像;

(iii )把得到的图像上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数y=21sin(2x+6

π

)的图像;

(iv )把得到的图像向上平移45个单位长度,得到函数y=21sin(2x+6π)+4

5

的图像。

综上得到y=21cos 2

x+2

3sinxcosx+1的图像。

知识讲解_三角函数的图象和性质_基础

正弦、余弦的图象和性质 编稿:李霞 审稿:孙永钊 【考纲要求】 1、会用“五点法”画出正弦函数、余弦函数的简图;熟悉基本三角函数的图象、定义域、值域、奇偶性、单调性及其最值;理解周期函数和最小正周期的意义. 2、理解正弦函数、余弦函数在区间[0,2]π的性质(如单调性、最大和最小值、与x 轴交点等),理解正切函数在区间(,)22 ππ -的单调性. 【知识网络】 【考点梳理】 考点一、“五点法”作图 在确定正弦函数sin y x =在[0,2]π上的图象形状时,最其关键作用的五个点是(0,0),( ,1)2 π , (,0)π,3( ,-1)2 π ,(2,0)π 考点二、三角函数的图象和性质 名称 sin y x = cos y x = tan y x = 定义域 x R ∈ x R ∈ {|,} 2 x x k k Z π π≠+ ∈ 值 域 [1,1]- [1,1]- (,)-∞+∞ 图象 奇偶性 奇函数 偶函数 奇函数 单调增区间: 单调增区间: 单调增区间: 应用 三角函数的图象与性质 正弦函数的图象与性质 余弦函数的 图象与性质 正切函数的 图象与性质

要点诠释: ①三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,再利用性质巩固图象.三角函数的性质的讨论仍要遵循定义域优先的原则,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域. ②研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合的思想方法去分析问题、解决问题. 考点三、周期 一般地,对于函数()f x ,如果存在一个不为0的常数T ,使得当x 取定义域内的每一个值时,都有 (+)=()f x T f x ,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的 最小正数,叫做最小正周期(函数的周期一般指最小正周期). 要点诠释: 应掌握一些简单函数的周期: ①函数sin()y A x ω?=+或cos()y A x ω?=+的周期2T π ω = ; ②函数tan()y A x ω?=+的周期T πω = ; ③函数sin y x =的周期=T π;

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

三角函数图象性质一览表

三角函数图象性质一览表 正弦定理、余弦定理及应用 设ABC △的外接圆的半径是R ,内切圆的半径是r ,()c b a p ++=2 1 是半周长。 1、正弦定理: R C c B b A a 2sin sin sin ===,或 C B A c b a sin :sin :sin ::= 变式:A R a sin 2=;B R b sin 2=;C R c sin 2= R a A 2sin = ;R b B 2sin =;R c C 2sin = 2、余弦定理: A bc c b a cos 2222-+=; B ac c a b cos 2222-+=; C ab b a c cos 2222-+= 推论:bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 2 22-+= 3、面积公式:B ac A bc C ab S A B C sin 2 1 sin 21sin 21=== △ 变式:⑴C B A R abc R S A B C sin sin sin 241 2== △ ⑵()()()c p b p a p p S A B C ---=△(海伦秦九韶公式) 4、常用结论: ⑴B A B A b a sin sin >?>?> ⑵b a B A B A =?=?=sin sin ⑶若B A 2sin 2sin =,则B A B A =?=22或2 22π π=+?=+B A B A ⑷和诱导公式有关的变式: 2cos 2sin C B A =+;2cos 2sin B C A =+;2 cos 2sin A C B =+; 2sin 2cos C B A =+;2sin 2cos B C A =+;2sin 2cos A C B =+ ()C B A sin sin =+;()B C A sin sin =+;()A C B sin sin =+; ()C B A cos cos -=+;()B C A cos cos -=+;()A C B cos cos -=+ ⑸B c C b a cos cos +=;A c C a b cos cos +=;A b B a c cos cos += 5、注意两角和与差公式、二倍角公式和半角公式、辅助角公式的应用。 6、注意函数()?ω+=x A y sin 的知识在三角形中的应用: 比如求()??? ??+ =82 1sin 2πA x f ,?? ? ??∈4,0πA 的最大值。

三角函数的图象与性质

三角函数的图象与性质 ——正弦函数、余弦函数的性质 【教学目标】 1.理解正、余弦函数的定义域、值域、最值、周期性、奇偶性的意义; 2.会求简单函数的定义域、值域、最小正周期和单调区间; 3.掌握正弦函数的周期及求法。(n )si y A x ω?=+ 【教学重点】 正、余弦函数的性质。 【教学难点】 正、余弦函数性质的理解与应用。 【教学过程】 一、讲解新课: (1)定义域: 正弦函数、余弦函数的定义域都是实数集[或], R (,)-∞+∞分别记作: sin y x x ∈R =,cos ,y x x =∈R (2)值域 ,1sin 1x ≤≤--1cos 1 x ≤≤也就是说,正弦函数、余弦函数的值域都是。[ ]-1,1其中正弦函数,sin y x =x ∈R (1)当且仅当,时,取得最大值1。 x 2k 2π π=+k ∈Z (2)当且仅当,时,取得最小值。 x 2k 2π π=+k ∈Z 1-

而余弦函数,cos y x =x ∈R 当且仅当,时,取得最大值1,时,取得最小值。 2x k π=k ∈Z (21)x k π=+k ∈Z 1-(3)周期性 由,()知: sin(2)sin x k x π+=cos(2)cos x k x π+=k ∈Z 正弦函数值、余弦函数值是按照一定规律不断重复地取得的。 一般地,对于函数,如果存在一个非零常数,使得当取定义域内的每一个值()f x T x 时,都有,那么函数f(x)就叫做周期函数,非零常数叫做这个函数的周()()f x T f x +=T 期。 由此可知,,,…,,,…(且)都是这两个函数的周期。2π4π2π-4π-2k πk ∈Z 0k ≠对于一个周期函数 ,如果在它所有的周期中存在一个最小的正数,那么这个最小正()f x 数就叫做 的最小正周期。()f x 注意: 1.周期函数定义域,则必有,且若则定义域无上界;则定义域x ∈M x T M +∈0T >0T <无下界; 2.“每一个值”只要有一个反例,则就不为周期函数(如) ()f x ()()001f x t f x +3.往往是多值的(如,,,…,,,…都是周期)周期中最T sin y x =2π4π2π-4π-T 小的正数叫做的最小正周期(有些周期函数没有最小正周期) ()f x 根据上述定义,可知:正弦函数、余弦函数都是周期函数,(且)都是它的2k πk ∈Z 0k ≠周期,最小正周期是2π (4)奇偶性 由sin()sin x x -=-可知:为奇函数 ()cos x cosx -=sin y x =为偶函数 cos y x =∴正弦曲线关于原点O 对称,余弦曲线关于y 轴对称

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

三角函数的图象与性质

三角函数的图象与性质 一、选择题 1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ? ? ???2x +π6,④y = tan ? ? ???2x -π4中,最小正周期为π的所有函数为( ) A.①②③ B.①③④ C.②④ D.①③ 解析 ①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ? ? ???2x +π6的最小正周期T =2π2=π; ④y =tan ? ? ???2x -π4的最小正周期T =π2,因此选A. 答案 A 2.(2017·石家庄模拟)函数f (x )=tan ? ? ???2x -π3的单调递增区间是( ) A.?????? k π2-π12,k π2+5π12(k ∈Z) B.? ???? k π2-π12,k π2+5π12(k ∈Z) C.? ?? ???k π-π12,k π+ 5π12(k ∈Z) D.? ? ???k π+π6,k π+ 2π3(k ∈Z) 解析 由k π-π2<2x -π3<k π+π2(k ∈Z),解得k π2-π12<x <k π2+ 5π 12(k ∈Z),所以函数y =tan ? ????2x -π3的单调递增区间是? ???? k π2-π12,k π2+5π12(k ∈Z),故选B. 答案 B 3.(2017·成都诊断)函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A.3,-1 B.3,-2 C.2,-1 D.2,-2 解析 y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1, 令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2,

三角函数图象和性质(总结的很全面_不看后悔)

三角函数专题辅导 课程安排 制作者:程国辉

专题辅导一 三角函数的基本性质及解题思路 课时:4-5学时 学习目标: 1. 掌握常用公式的变换。 2. 明确一般三角函数化简求值的思路。 第一部分 三角函数公式 1、两角和与差的三角函数: cos(α+β)=cos α·cos β-sin α·sin β cos(α-β)=cos α·cos β+sin α·sin β sin(α±β)=sin α·cos β±cos α·sin β tan(α+β)=(tan α+tan β)/(1-tan α·tan β) tan(α-β)=(tan α-tan β)/(1+tan α·tan β 2、倍角公式: sin(2α)=2sin α·cos α=2/(tan α+cot α) cos(2α)=(cos α)^2-(sin α)^2=2(cos α)^2-1=1-2(sin α)^2 tan(2α)=2tan α/(1-tan^2α) cot(2α)=(cot^2α-1)/(2cot α) 3、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αααβα αβααβα αα αα=±=???→=-↓=-=-±±=?-↓= - 4、同角三角函数的基本关系式: (1)平方关系:2 2 2 2 2 2 sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αα αααα = =

三角函数的图像与性质

一、选择题 1.函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B .[-5 4,-1] C .[-5 4,1] D .[-1,5 4 ] [答案] C [解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sin x =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sin x ∈[-1,1],y =t 2 +t -1,(-1≤t ≤1),显然-5 4 ≤y ≤1,选C. 2.(2011·山东理,6)若函数f (x )=sin ωx (ω>0)在区间[0,π 3]上单调递增, 在区间[π3,π 2 ]上单调递减,则ω=( ) A .3 B .2 C.32 D.2 3 [答案] C [解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2π ω, ∴2πω=43π,∴ω=32 .

故选C(亦利用y =sin x 的单调区间来求解) 3.(文)函数f (x )=2sin x cos x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数 [答案] C [解析] 本题考查三角函数的最小正周期和奇偶性. f (x )=2sin x cos x =sin2x ,最小正周期T =2π 2=π, 且f (x )是奇函数. (理)对于函数f (x )=2sin x cos x ,下列选项中正确的是( ) A .f (x )在(π4,π 2)上是递增的 B .f (x )的图像关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2 [答案] B [解析] 本题考查三角函数的性质.f (x )=2sin x cos x =sin2x ,周期为π,最大值为1,故C 、D 错;f (-x )=sin(-2x )=-2sin x ,为奇函数,其图像关 于原点对称,B 正确;函数的递增区间为???? ??k π-π4,k π+π4,(k ∈Z)排除A. 4.函数y =sin2x +a cos2x 的图像关于直线x =-π 8对称,则a 的值为 ( )

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

三角函数的图象与性质

三角函数的图象与性质(1) 教学目标 1、能借助正弦函数画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象; 2、借助图象理解正弦函数、余弦函数的性质. 重点难点 重点:正弦函数、余弦函数的图象及其性质; 难点:借助正弦函数画出正弦函数的图象. 教学过程 ]2,0[,sin π∈=x x y 的图象→R x x y ∈=,sin 的图象→余弦函数的图象→五点作图法 问题情境 学习函数我们需要研究它的图象和性质。借助三角函数线,我们已经得到了正弦、余弦函数的哪些性质? “为了更加直观地研究三角函数的性质,可以先作出它们的图象.”怎样作出正弦函数的图象? 学生活动 问题1:直接作出y = sinx ,x ∈ R 的图象有困难,我们该怎么作图呢? 根据周期性,可以先作出y = sinx ,x ∈ [0,2π]的图象,再由周期性得到整个图象. 问题2:描点法的基本步骤是什么?在[0,2π]上需要找几个点? ————列表描点连线。 比比看 ,看谁画的最快,最准确! 归纳出1、列表描点法 建构数学 (一)正弦函数的图像 问题3:如何比较精确的作出这些点并且可以准确的反映函数的变化趋势呢?利用正弦线可以实现吗? ————演示几何描点法和电脑描点法。 基本步骤详细化:(2、几何描点法) 先作单位圆,把⊙O1十二等分(当然分得越细,图象越精确); 十二等分后得对应于0,6π, 3π,2π ,…2π等角,并作出相应的正弦线; 将x 轴上从0到2π一段分成12等份(2π≈6.28),若变动比例,今后图象将相应“变形”; 取点,平移正弦线,使起点与轴上的点重合; 描图(连接)得y=sinx x ∈[0,2π];

必修4三角函数的图像与性质

§1.4.1正弦函数、余弦函数的图象 学习目标:1.能借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象. 2.能熟练运用“五点法”作图. 学习重点:运用“五点法”作图 学习难点:借助于三角函数线画y=sinx的图象 学习过程: 一、情境设置 遇到一个新的函数,画出它的图象,通过观察图象获得对它的性质的直观认识是研究函数的基本方法,那么,一般采用什么方法画图象? 二、探究研究 问题1. 在直角坐标系内把单位圆十二等分,分别画出对应角的正弦线. 问题2. 在相应坐标系内,在x轴表示12个角(实数表示),把单位圆中12个角的正弦线进行右移. 问题3. 通过刚才描点(x0,sinx0),把一系列点用光滑曲线连结起来,能得到什么? 问题4. 观察所得函数的图象,五个点在确定形状是起关键作用,哪五个点? 问题5.如何作y=sinx,x∈R的图象(即正弦曲线)? 问题6.用诱导公式cosx=________(用正弦式表示),y=cosx的图象(即余弦曲线)怎样得到? 问题7. 关键五个点.三、例题精讲 例1:用“五点法”画下列函数的简图 (1)y=1+sinx ,x∈[]π2,0 (2) y=-cosx,x∈[]π2,0 思考:(1)从函数图象变换的角度出发,由y=sinx,x∈[]π2,0的图象怎样得到y=1+sinx ,x∈[]π2,0的图像?由y=cosx,x∈[]π2,0的图象怎样得到y=-cosx, ,x∈[]π2,0的图像? 四、巩固练习 1、在[0,2π]上,满足 1 sin 2 x≥的x取值范围是( ). A.0, 6 π ?? ?? ?? B.5, 66 ππ ?? ?? ?? C.2, 63 ππ ?? ?? ?? D.5, 6 π π ?? ?? ?? 2、 用五点法作) y=1-cosx, x∈[]π2,0的图象. 3、结合图象,判断方程x sinx=的实数解的个数. 五、课堂小结 在区间] 2,0 [π上正、余弦函数图象上起关键作用的五个点分别是它的最值点及其与坐标轴的交点(平衡点).函数的图象可通过描述、平移、对称等手段得到. 六、当堂检测 1、观察正弦函数的图象,以下4个命题: (1)关于原点对称(2)关于x轴对称(3)关于y轴对称(4)有无数条对称轴其中正确的是

4.3三角函数的图象及性质应用

科 目 数学 年级 高三 备课人 高三数学组 第 课时 4.3三角函数的图象及性质应用 考纲定位 理解三角函数的性质,并利用其性质解决一些简单问题; 【典型例题】 1、如图所示,它是sin(),(0,0),||>的图象,由图中条件,写出该函数的解析式. 小结:根据图象如何求函数sin(),(0,0)y A x b A ω?ω=++>>中的参数,,,A b ω?. (1)A = ;(2)ω= ;(3)b = ;(4)? 【高考真题】 2、(2010四川)将函数sin y x =的图像上所有的点向右平行移动10 π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) (A )sin(2)10y x π=- (B )sin(2)5 y x π=- (C )1sin()210y x π=- (D )1sin()220y x π=- 3、(2010全国)为了得到函数sin(2)3y x π=- 的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4 π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2 π个长度单位 4、(2010辽宁)设0ω>,函数sin()23 y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是( ) (A )23 (B ) 43 (C ) 32 (D ) 3 5、(2010重庆)已知函数sin()(0,||)2 y x πω?ω?=+><的部分图象如题(6)图所示,则( ) A.ω=1,?= 6π B.ω=1,?=-6 π C.ω=2,?=6π D.ω=2,?=-6π

高中数学《三角函数的图像和性质》教案

基础梳理 1.“五点法”描图 (1) y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (3 (0,0), ( ,1) ,(π,0), 2 , 1) ,(2π,0). 2 (2) y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1), 0) ,(π,-1), (3 0) ,(2π,1). ( , , 2 2 2.三角函数的图象和性质 [-1,1] [-1,1] R

(k+0)k ∈Z , 2( k 0)k ∈Z , 2 单调增区间 [2k-2k+k ∈Z; , ] 2 2 单调减区间 [2k+2k+3 k ∈Z , ] 2 2 单调增区间 (k-k+k ∈Z , ) 2 2

) ) 1 . 函数 y = cos(x + ,x ∈R ( ). 双基自测 3 A .是奇函数 B .是偶函数 C. 既不是奇函数也不是偶函数 D .既是奇函数又是偶函数 y = - x ) 2. 函数 tan( 4 的定义域为( ). {x | x ≠ k - A . 4 ∈ Z } B .{x | x ≠ 2k - , k ∈ Z } 4 C .{x | x ≠ k + 4 ∈ Z } D .{x | x ≠ 2k + 4 ∈ Z } 3. y = sin(x - 的图象的一个对称中心是( ). 4 A .(-π,0) B . (- 3 C . (3 4 D. ,0) 2 ( ,0) 2 4. 函数 f (x )=cos (2x + 的最小正周期为 . ) 6 考向一 三角函数的周期 【例 1】?求下列函数的周期: y = - x ) (1) sin( 3 2 ;(2) y = tan(3x - ) 6 考向二 三角函数的定义域与值域 (1) 求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目: ①形如 y =a sin 2x +b sin x +c 的三角函数,可先设 sin x =t ,化为关于 t 的二次函数求值域(最值); ②形如 y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设 t =sin x ±cos x ,化为关于 t 的二次函数求值域(最值). , k , k , k ,0)

三角函数正余弦函数的图像及性质复习汇总

课题三角函数的图像及性质 1.借助单位圆中的三角函数线推导出诱导公式( π2/±α , π的±正α弦、余弦、正切) 教学目标 2.利用单位圆中的三角函数线作出y sin x,x R的图象,明确图象的形状; 3.根据关系cosx sin(x ) ,作出y cosx,x R的图象; 2 4.用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题; 重点、难点 1、正确地用三角函数线表示任意角的三角函数值 2、作余弦函数的图象。 教学内容 、正弦函数和余弦函数的图象: -1 正弦函数y sin x 和余弦函数y cos x图象的作图方法:五点法:先取横坐标分别为0,, ,3 ,2 22 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数y sin x(x R) 、余弦函数y cosx(x R) 的性质: ( 1)定义域:都是R。 (2)值域: 1、都是1,1 , 2、y sinx ,当x 2k k 2 3、y cosx ,当x 2k k Z 例: ( 1)若函数y a bsin(3 x Z 时,y 取最大值1 ;当x 时,y 取最大值1,当x 2k ) 的最大值为3,最小值为 62 3 2k 3 k Z 时,y 取最小值-1; 2 k Z 时,y 取最小值- 1 。 1,则 a __, b _ 2 3 y -2 1 y=cosx -3 -5 -32 -4 -7 -2 -3 22

1 答: a 1 2,b 1或b 1); ⑵ 函数 y=-2sinx+10 取最小值时,自变量 x 的集合是 3)周期性 : (正(余)弦型函数的对称轴为过最高点或最低点且垂直于 x 轴的直线,对称中心为图象与 x 轴的交 点)。 5)单调性 : 别忘了 k Z ! ⑴函数 y=sin2x 的单调减区间是( ① y sin x 、 y cos x 的最小正周期都是 2 ; ② f ( x) A sin( x )和 f (x) Acos( 2 x ) 的最小正周期都是 T 2 sin 3x ,则 f (1) f (2) ⑵.下列函数中,最小正周期为 例: (1)若 f (x) f (3) L 的是( A. y cos 4x B. y sin 2x C.y f (2003) = 答: 0); x sin 2 D.y x cos 4 ( 4)奇偶性与对称性 : 1、正弦函数 y sin x ( x R ) 是奇函 数, 对称中心是 k ,0 k Z ,对称轴是直线 x k k Z ; 2 2、余弦函数 y cosx (x R ) 是偶函数, 对称中心是 k 2 ,0 k Z ,对称轴是直线 x k k Z 5 例:(1) 函数 y sin 5 2 2x 的奇偶性是 答:偶函数); 2)已知函数 f ( x ) a x bsin 3 x 1( a,b 为常数), 且 f (5 ) 7, 则 f ( 5) 答:- 5); y sin x 在 2k , 2k 2 k Z 上单调递增,在 2k , 2k 2 3 k Z 单调递减; 2 y cosx 在 2k ,2 k Z 上单调递减,在 2k ,2k k Z 上单调递增。 特别提醒 ,

三角函数图象与性质

三角函数图象与性质 类型一 学会踩点 [例1] (本题满分12分)已知函数f (x )=cos x ·sin ? ???? x +π3-3cos 2x +34,x ∈R . (1)求f (x )的最小正周期; (2)求f (x )在闭区间x ∈???? ?? -π4,π4上的最大值和最小值. 解:(1)由已知得f (x )=cos x ·? ????12sin x +3 2cos x -3cos 2x +34=12sin x ·cos x - 32cos 2 x +3 4(2分) =14sin 2x -34(1+cos 2x )+34=14sin 2x -3 4cos 2x (4分) =12sin ? ? ? ??2x -π3.(6分) 所以,f (x )的最小正周期T =2π 2=π.(7分) (2)因为f (x )在区间??????-π4,-π12上是减函数,在区间?????? -π12,π4上是增函数.(10分) f ? ???? -π4=-14,f ? ????-π12=-12,f ? ?? ??π4=14.(11分) 所以,函数f (x )在闭区间?????? -π4,π4上的最大值为14,最小值为-12.(12分) 评分细则:得分点及踩点说明 (1)第(1)问无化简过程,直接得到f (x )=12sin ? ? ???2x -π3,扣5分.每一步用公式正确 就得分. (2)化简结果错误,但中间某一步正确,给2分. (3)第(2)问只求出f ? ???? -π4=-14,f ? ????π4=14得出最大值为14,最小值为-14,得1分. (4)若单调性出错,只得1分. (5)单调性正确,但计算错误,扣2分.

高中数学必修4 三角函数的图像与性质

三角函数的图像和性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0),)1,2 (π ,(π,0),) 1,23( -π,(2π,0). (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),)0,2(π,(π,-1),)0,23(π ,(2π,1). 2.三角函数的图象和性质

(1)周期性 函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π |ω|,y=tan(ωx+φ)的最小正周 期为π |ω|. (2)奇偶性 三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx,而偶函数一般可化为y=A cos ωx+b的形式. 三种方法 求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; (2)形式复杂的函数应化为y=A sin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域; (3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.

双基自测 1.函数)3cos(π +=x y ,x ∈R ( ). A .是奇函数 B .是偶函数 C .既不是奇函数也不是偶函数 D .既是奇函数又是偶函数 2.函数) 4 tan( x y -=π 的定义域为( ). A . } ,4 |{Z k k x x ∈- ≠π π B .},4 2|{Z k k x x ∈-≠π π C .},4 |{Z k k x x ∈+ ≠π π D .},4 2|{Z k k x x ∈+ ≠π π 3.)4sin(π -=x y 的图象的一个对称中心是( ). A .(-π,0) B .)0,4 3(π- C .)0,2 3( π D .)0,2 (π 4.函数f (x )=cos )6 2(π + x 的最小正周期为________. 考向一 三角函数的周期 【例1】?求下列函数的周期: (1)) 2 3 sin( x y π π - =;(2))6 3tan(π -=x y 考向二 三角函数的定义域与值域 (1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目:

三角函数图像及其性质

【本讲教育信息】 一.教学内容: 三角函数的图象与性质 二.教学目的: 了解三角函数的周期性,知道三角函数y=A sin(ωx+φ),y=A cos(ωx +φ)的周期为。 能画出y=sin x,y=cos x,y=tan x的图象,并能根据图象理解正弦函 数、余弦函数在[0,2π],正切函数在(-,)上的性质(如单调性、最大值和最小值、图象与x轴的交点等)。 了解三角函数y=A sin(ωx+φ)的实际意义及其参数A,ω,φ对函数图象变化的影响;会画出y=A sin(ωx+φ)的简图,能由正弦曲线y=sin x通过平移、伸缩变换得到y=A sin(ωx+φ)的图象。 会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型。 三.教学重点:三角函数的性质与运用 教学难点:三角函数的性质与运用。 四.知识归纳 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 的递增区间是, 递减区间是; 的递增区间是,

递减区间是, 的递增区间是, 3.函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象 与直线的交点都是该图象的对称中心。 4.由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换) 先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin(ωx+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0=平移个单位,便得y=sin(ωx+)的图象。 5.由y=Asin(ωx+)的图象求其函数式: 给出图象确定解析式y=Asin(ωx+)的题型,有时从寻找“五点”中的第一零点(-,0)作为突破口,要从图象的升降情况找准第一个零点的位置. 6.对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负。利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8.求三角函数周期的常用方法: 经过恒等变形化成“、”的形式,再利用周期公式,另外还有图像法和定义法。 9.五点法作y=Asin(ωx+)的简图: 五点取法是设x=ωx+,由x取0、、π、、2π来求相应的x值及对应的y值,再描点作图。

三角函数的图象与性质知识点汇总

三角函数的图象与性质 、知识网络 基弃变换 三、知识要点 (一)三角函数的性质 1、定义域与值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y = sinx , y = tanx ; 偶函数:y= cosx. (2) -'’ 一 -‘:型三角函数的奇偶性 (i)g (x)=* (x€ R) g (x )为偶函数 ' 二二—「二: O卫址1(徴 + ? =/win(-徴+@)(x亡卫)U sin ocrcos(p= 0(x白应) cos (p二 0 o(p= jt/r-hy e 7) 由此得 同理,旨(对二話乞山(伽+洌0€丘)为奇函数O 寻炉=七兀3€2). (ii)u'■■ ' '''「:;::「' ■?■. 八为偶函数' ..为奇函数

O S (<3X + 炉)+丘 的周期为 竺 kl 7T y = / tan (阪 + + 上丿=/cot (血+饲 + 上 的周期为 (2)认知 -I ' ' : " '型函数的周期 7T -;1 1 - - ■ : - 1 的周期为 门; 71 均同它们不加绝对值时的周期相同,即对 J 的解析式施加绝对值后, y = sin z|+|co3J : 的最小正周期为

周练(三) 三角函数的图象与性质

周练(三) 三角函数的图象与性质 函数y =A sin(ωx +φ)的图象 (时间:80分钟 满分:100分) 一、选择题(每小题5分,共40分) 1.函数y =sin ? ? ???4x +32π的周期是( ). A .2π B .π C.π 2 D .π 4 解析 T =2π4=π 2. 答案 C 2.函数y =cos ? ???? x +π2(x ∈R )是( ). A .奇函数 B .偶函数 C .非奇非偶函数 D .无法确定 解析 ∵y =cos ? ???? x +π2=-sin x ,∴此函数为奇函数. 答案 A 3.函数y =cos x 图象上各点的纵坐标不变,把横坐标变为原来的2倍,得到图象的解析式为y =cos ωx ,则ω的值为( ). A .2 B .1 2 C .4 D .14 解析 由已知y =cos x 的图象经变换后得到y =cos 12x 的图象,所以ω=1 2. 答案 B 4.函数y =-x sin x 的部分图象是( ).

解析 考虑函数的奇偶性并取特殊值.函数y =-x sin x 是偶函数,当x ∈? ? ???0,π2时,y <0. 答案 C 5.在下列区间上函数y =sin ? ???? x +π4为增函数的是( ). A.?????? -π2,π2 B .?????? -3π4,π4 C .[-π,0] D .???? ??-π4,3π4 解析 由2k π-π2≤x +π4≤2k π+π2(k ∈Z )得2k π-3π4≤x ≤2k π+π 4(k ∈Z ),当k =0时,-3π4≤x ≤π 4,故选B. 答案 B 6.已知简谐运动f (x )=2sin ? ????π3x +φ? ? ???|φ|<π2的图象经过点(0,1),则该简谐运动的最 小正周期T 和初相φ分别为( ). A .T =6,φ=π 6 B .T =6,φ=π 3 C .T =6π,φ=π 6 D .T =6π,φ=π 3 解析 将(0,1)点代入f (x )可得sin φ=1 2. ∵|φ|<π2,∴φ=π6,T =2π π 3 =6.

相关主题