搜档网
当前位置:搜档网 › 电池片生产工艺流程

电池片生产工艺流程

电池片生产工艺流程
电池片生产工艺流程

电池片生产工艺流程

一、制绒

a.目的

在硅片的表面形成坑凹状表面,减少电池片的反射的太阳光,增加二次反射的面积。一般情况下,用碱处理是为了得到金字塔状绒面;用酸处理是为了得到虫孔状绒面。不管是哪种绒面,都可以提高硅片的陷光作用。

b.流程

1.常规条件下,硅与单纯的HF、HNO3(硅表面会被钝化,二氧化硅与HNO3

不反应)认为是不反应的。但在两种混合酸的体系中,硅则可以与溶液进行持续的反应。

硅的氧化

硝酸/亚硝酸(HNO2)将硅氧化成二氧化硅(主要是亚硝酸将硅氧化)

Si+4HNO3=SiO2+4NO2+2H2O (慢反应)

3Si+4HNO3=3SiO2+4NO+2H2O (慢反应)

二氧化氮、一氧化氮与水反应,生成亚硝酸,亚硝酸很快地将硅氧化成二氧化硅。

2NO2+H2O=HNO2+HNO3 (快反应)

Si+4HNO2=SiO2+4NO+2H2O (快反应)(第一步的主反应)

4HNO3+NO+H2O=6HNO2(快反应)

只要有少量的二氧化氮生成,就会和水反应变成亚硝酸,只要少量的一氧化氮生成,就会和硝酸、水反应很快地生成亚硝酸,亚硝酸会很快的将硅氧化,生成一氧化氮,一氧化氮又与硝酸、水反应,这样一系列化学反应最终的结果是造成硅的表面被快速氧化,硝酸被还原成氮氧化物。

二氧化硅的溶解

SiO2+4HF=SiF4+2H2O(四氟化硅是气体)

SiF4+2HF=H2SiF6

总反应

SiO2+6HF=H2SiF6+2H2O

最终反应掉的硅以氟硅酸的形式进入溶液。

2.清水冲洗

3.硅片经过碱液腐蚀(氢氧化钠/氢氧化钾),腐蚀掉硅片经酸液腐蚀后的

多孔硅

4.硅片经HF 、HCl 冲洗,中和碱液,如不清洗硅片表面残留的碱液,在烘

干后硅片的表面会有结晶

5.水冲洗表面,洗掉酸液

c.注意

制绒后的面相对于未制绒的面来说比较暗淡 d.现场图

奥特斯维电池厂采用RENA 的设备。

二、扩散

a.目的

提供P-N 结,POCl 3是目前磷扩散用得较多的一种杂质源。POCl 3液态源扩散方法具有生产效率较高,得到PN 结均匀、平整和扩散层表面良好等优点。

b.原理

POCl 3在高温下(>600℃)分解生成五氯化磷(PCl 5)和五氧化二磷(P 2O 5),其反应式如下:

5253O P 3PCl C 6005POCl +????→??>

但在有外来O 2存在的情况下,PCl 5会进一步分解成P 2O 5并放出氯气(Cl 2)

其反应式如下:

↑+????→?+2522510Cl O 2P 2O 过量5O 4PCl

在有氧气的存在时,POCl 3热分解的反应式为:

↑+?→?+252236Cl O 2P 5O 4POCl

生成的P2O5在扩散温度下与硅反应,生成二氧化硅(SiO 2)和磷原子,其反应式如下:

↓+=+4P 5S iO 5S i O 2P 252

c.结论

由此可见,在磷扩散时,为了促使POCl3充分的分解和避免PCl5对硅片表面的腐蚀作用,必须在通氮气的同时通入一定流量的氧气 。

POCl 3分解产生的P 2O 5淀积在硅片表面,P 2O 5与硅反应生成SiO 2和磷原子,并在硅片表面形成一层磷-硅玻璃,然后磷原子再向硅中进行扩散 。 d.现场图

SEVEVSTAR 扩散设备。

三、刻蚀去边

a.目的

由于在扩散过程中,即使采用背靠背的单面扩散方式,硅片的所有表面(包

括边缘)都将不可避免地扩散上磷。P-N结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到P-N结的背面而造成短路。此短路通道等效于降低并联电阻。经过刻蚀工序,硅片边缘带有的磷将会被去除干净,避免P-N结短路造成并联电阻降低。

b.原理

湿法刻蚀原理

大致的腐蚀机制是HNO3氧化生成SiO2,HF再去除SiO2。化学反应方程式如下:

3Si+4HNO3=3SiO2+4NO+2H2O

SiO2+4HF=SiF4+2H2O

SiF4+2HF=H2SiF6

中间部分有碱槽,碱槽的作用是为了抛光未制绒面,使其变得更加光滑;碱槽的主要溶液为KOH;H2SO4溶液的目的是为了使硅片在流水线上漂浮流动起来,不参与反应。

d.现场图

湿法刻蚀现场图

干法刻蚀现场图:

干法刻蚀是用等离子体进行薄膜刻蚀的技术。当气体以等离子体形式存在时,它具备两个特点:一方面等离子体中的这些气体化学活性比常态下时要强很多,根据被刻蚀材料的不同,选择合适的气体,就可以更快地与材料进行反应,实现刻蚀去除的目的;另一方面,还可以利用电场对等离子体进行引导和加速,使其具备一定能量,当其轰击被刻蚀物的表面时,会将被刻蚀物材料的原子击出,从而达到利用物理上的能量转移来实现刻蚀的目的。

四、镀膜

a.目的

光在硅表面的反射损失率高达35%左右。

一方面,减反射膜提高了对太阳光的利用率,有助于提高光生电流密度,起到提高电流进而提高转换效率的作用。

另一方面,薄膜中的氢对电池的表面钝化降低了发射结的表面复合速率,减小了暗电流,提升了开路电压,从而提高了光电转换效率;在烧穿工艺中的高温瞬时退火断裂了一些Si-H、N-H键,游离出来的H进一步加强了对电池的钝化。

由于太阳电池级硅材料中不可避免的含有大量的杂质和缺陷,导致硅中少子

寿命及扩散长度降低从而影响电池的转换效率。H能钝化硅中缺陷的主要原因是:H能与硅中的缺陷或杂质进行反应,从而将禁带中的能带转入价带或者导带。

b.原理

在真空、480摄氏度的环境温度下,通过对石墨舟的导电,使硅片的表面镀上一层Si x N y。

c.注意

根据镀膜在硅片上的氮化硅的厚度不同,反映出电池片不同的颜色;注意石墨舟的电机朝向;电池片周边显示的白点为镀膜石墨舟内的勾点。

d.现场图

五、印刷

a.目的

第一道背面银电极,第二道背面铝背场的印刷和烘干,主要监控印刷后的湿重;第二道铝浆;第三道正面银电极的印刷,主要监控印刷后的湿重和次栅线的宽度。第二道道湿重过大,一方面浪费浆料,同时还会导致其不能在进高温区之前充分干燥,甚至不能将其中的所有有机物赶出从而不能将整个铝浆层转变为金属铝,另外湿重过大可能造成烧结后电池片弓片。湿重过小,所有铝浆均会在后续的烧结过程中与硅形成熔融区域而被消耗,而该合金区域无论从横向电导率还是从可焊性方面均不适合于作为背面金属接触,另外还有可能出现鼓包等外观不良。第三道道栅线宽度过大,会使电池片受光面积较少,效率下降。

b.原理

物理印刷、烘干

c.注意

刮刀压力:刮刀压力越小,填入网孔的墨量就越多;

印刷速度:湿重在某一速度下达到最大值,低于此速度,速度增大湿重增大,高于此值,速度增大湿重较小;

印刷高度:印刷高度值越大,湿重越小;

丝网间距:丝网间距增大,油墨的转移量也增大,但随着刮刀压力的增加,丝网间距对油墨转移量影响趋小;

刮刀截面对刮刀的截面形状来说,刮刀边越锐利,线接触越细,出墨量就越大;边越圆,出墨量就越少。

d.现场图

六、烧结

a.目的

烧结就是把印刷到硅片上的电极在高温下烧结成电池片,最终使电极和硅片本身形成欧姆接触,从而提高电池片的开路电压和填充因子2个关键因素参数,使电极的接触具有电阻特性,达到生产高转效率电池片的目的.烧结过程中有利于PECVD工艺所引入-H向体内扩散,可以起到良好的体钝化作用。

b.原理

烧结方式:高温快速烧结

加热方式:红外线加热

c.注意

1、烧结是一个扩散、流动和物理化学反应综合作用的过程。在印刷状况稳定的前提下,温区温度、气体流量、带速是烧结的三个关键参数。

2、由于要形成合金必须达到一定的温度,Ag、Al与Si形成合金的稳定又不同,所以必须设定不同的温度来分别实现合金化。

3、将印刷好的上,下电极和背场的硅片经过网印刷机的传送带传到烧结炉中,经过烘干排焦、烧结和冷却烘干排焦、烘干排焦烧结和冷却过程来完成烧结工艺最终

达到上下电极和电池片的欧姆接触。

烧结要达到的效果

1、正面Ag穿过SiNH扩散进硅但不可到达P-N;

2、背面Ag、Al扩散进硅。

这样,Ag、Ag/Al、Al将与硅形成合金,建立了良好的电极欧姆接触,起到良好的收集电子的效果。

d.现场图

电池片工艺流程

电池片工艺流程 一、电池片工艺流程: 制绒(INTEX)---扩散(DIFF)----后清洗(刻边/去PSG)-----镀减反射膜(PECVD)------丝网、烧结(PRINTER)-----测试、分选(TESTER+SORTER)------包装(PACKING) 二、各工序工艺介绍: (一)前清洗 1.RENA前清洗工序的目的: (1) 去除硅片表面的机械损伤层(来自硅棒切割的物理损伤) (2) 清除表面油污(利用HF)和金属杂质(利用HCl) (3)形成起伏不平的绒面,利用陷光原理,增加对太阳光的吸收,在某种程度上增加了PN结面积,提高短路电流(Isc),最终提高电池光电转换效率。 2、前清洗工艺步骤: 制绒?碱洗?酸洗?吹干 Etch bath:刻蚀槽,用于制绒。所用溶液为HF+HNO3,作用: (1).去除硅片表面的机械损伤层; (2).形成无规则绒面。 Alkaline Rinse:碱洗槽。所用溶液为KOH,作用: (1).对形成的多孔硅表面进行清洗; (2).中和前道刻蚀后残留在硅片表面的酸液。 Acidic Rinse:酸洗槽。所用溶液为HCl+HF,作用: (1).中和前道碱洗后残留在硅片表面的碱液; (2).HF可去除硅片表面氧化层(SiO2),形成疏水表面,便于吹干; (3).HCl中的Cl-有携带金属离子的能力,可以用于去除硅片 1/13页 表面金属离子。 3. 酸制绒工艺涉及的反应方程式: HNO3+Si=SiO2+NOx?+H2O SiO2+ 4HF=SiF4+2H2O SiF4+2HF=H2[SiF6] Si+2KOH+H2O ?K2SiO3+2H2 4.前清洗工序工艺要求 (1)片子表面5S控制 不容许用手摸片子的表片,要勤换手套,避免扩散后出现脏片。 (2)称重 a.每批片子的腐蚀深度都要检测,不允许编造数据,搞混批次等。 b.要求每批测量4片。 c.放测量片时,把握均衡原则。如第一批放在1.3.5.7道,下一批则放在2.4.6.8道,便于检测设备稳定性以及溶液的均匀性。 (3)刻蚀槽液面的注意事项: 正常情况下液面均处于绿色,如果一旦在流片过程中颜色改变,立即通知工艺人员。 (4)产线上没有充足的片源时,工艺要求: a.停机1小时以上,要将刻蚀槽的药液排到tank,减少药液的挥发。 b.停机15分钟以上要用水枪冲洗碱槽喷淋及风刀,以防酸碱形成的结晶盐堵塞喷淋口及风刀。 c.停机1h以上,要跑假片,至少一批(400片)且要在生产前半小时用水枪冲洗风

太阳能电池片生产工艺常用化学品及其应用

太阳能电池片生产工艺常用化学品及其应用 一般来说,半导体工艺是将原始半导体材料转变为有用的器件的一个过程,太阳能电池工艺就是其中的一种,这些工艺都要使用化学药品。 1.常用化学药品 太阳能电池工艺常用化学药品有:乙醇(C2H5OH)、氢氧化钠(NaOH)、盐酸(HCl)、氢氟酸(HF)、异丙醇(IPA)、硅酸钠(Na2SiO3)、氟化铵(NH4F)、三氯氧磷(POCl3)、氧气(O2)、氮气(N2)、三氯乙烷(C2H3Cl3)、四氟化碳(CF4)、氨气(NH3)和硅烷(SiH4),光气等。 2.电池片生产工艺过程中各化学品的应用及反应方程式: 2.1一次清洗工艺 2.1.1去除硅片损伤层: Si + 2 NaOH + H2O = Na2SiO3 + 2 H2 ↑ 28 80 122 4 对125*125的单晶硅片来说,假设硅片表面每边去除10um,两边共去除20um,则每片去处的硅的重量为:△g=12.5*12.5*0.002*2.33 = 0.728g。(硅的密度为2.33g/cm3) 设每片消耗的NaOH为X克,生成的硅酸钠和氢气分别为Y和Z克,根据化学方程式有: 28 :80 = 0.728 :XX= 2.08g 28 :122 = 0.728 :Y Y=3.172g 28 :4 = 0.728 :Z Z= 0.104g 2.1.2制绒面: Si + 2 NaOH + H2O = Na2SiO3 + 2 H2 ↑ 28 80 122 4 由于在制绒面的过程中,产生氢气得很容易附着在硅片表面,从而造成绒面的不连续性,所以要在溶液中加入异丙醇作为消泡剂以助氢气释放。另外在绒面制备开始阶段,为了防止硅片腐蚀太快,有可能引起点腐蚀,容易形成抛光腐蚀,所以要在开始阶段加入少量的硅酸钠以减缓对硅片的腐蚀。 2.1.3 HF酸去除SiO2层 在前序的清洗过程中硅片表面不可避免的形成了一层很薄的SiO2层,用HF酸把这层SiO2去除掉。 SiO2 + 6 HF = H2[SiF6] + 2 H2O 2.1.4HCl酸去除一些金属离子,盐酸具有酸和络合剂的双重作用,氯离子能与Pt 2+、Au 3+、Ag +、Cu+、Cd 2+、Hg 2+等金属离子形成可溶于水的络合物。 2.2扩散工艺 2.2.1扩散过程中磷硅玻璃的形成: Si + O2=SiO2 5POCl3=3 PCl5 + P2O5(600℃) 三氯氧磷分解时的副产物PCl5,不容易分解的,对硅片有腐蚀作用,但是在有氧气的条件下,可发生以下反应: 4PCl5 + 5O2=2 P2O5 + 10Cl2↑(高温条件下) 磷硅玻璃的主要组成:小部分P2O5,其他是2SiO2·P2O5或SiO2·P2O5。这三种成分分散在二氧化硅中。 在较高温度的时候,P2O5作为磷源和Si反应生成磷,反应如下:

光伏组件生产工艺流程

光伏组件生产工艺流程: A、工艺流程: 1、电池检测—— 2、正面焊接—检验— 3、背面串接—检验— 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)—— 5、层压—— 6、去毛边(去边、清洗)—— 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)—— 8、焊接接线盒—— 9、高压测试——10、组件测试—外观检验—11、包装入库; B、工艺简介: 1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。(我们公司采用的是手工焊接) 3、背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)

焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。 4、层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。 5、组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA时,层压循环时间约为25分钟。固化温度为150℃。 6、修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。

电池片生产工艺流程汇总

电池片生产工艺流程 一、制绒 a.目的 在硅片的表面形成坑凹状表面,减少电池片的反射的太阳光,增加二次反射的面积。一般情况下,用碱处理是为了得到金字塔状绒面; 用酸处理是为了得到虫孔状绒面。不管是哪种绒面,都可以提高硅片的陷光作用。 b.流程 1.常规条件下,硅与单纯的HF、HNO3(硅表面会被钝化,二氧化硅与HNO3不反应)认为是不反应的。但在两种混合酸的体系中,硅则可以与溶液进行持续的反应。 硅的氧化 硝酸/亚硝酸(HNO2)将硅氧化成二氧化硅(主要是亚硝酸将硅氧化) Si+4HNO3=SiO2+4NO2+2H2O (慢反应 3Si+4HNO3=3SiO2+4NO+2H2O (慢反应 二氧化氮、一氧化氮与水反应,生成亚硝酸,亚硝酸很快地将硅氧化成二氧化硅。 2NO2+H2O=HNO2+HNO3 (快反应 Si+4HNO2=SiO2+4NO+2H2O (快反应(第一步的主反应)

4HNO3+NO+H2O=6HNO2(快反应 只要有少量的二氧化氮生成,就会和水反应变成亚硝酸,只要少量的一氧化氮生成,就会和硝酸、水反应很快地生成亚硝酸,亚硝酸会很快的将硅氧化,生成一氧化氮,一氧化氮又与硝酸、水反应,这样一系列化学反应最终的结果是造成硅的表面被快速氧化,硝酸被还原成氮氧化物。 二氧化硅的溶解 SiO2+4HF=SiF4+2H2O(四氟化硅是气体 SiF4+2HF=H2SiF6 总反应 SiO2+6HF=H2SiF6+2H2O 最终反应掉的硅以氟硅酸的形式进入溶液。 2.清水冲洗 3.硅片经过碱液腐蚀(氢氧化钠/氢氧化钾),腐蚀掉硅片经酸液腐蚀后的多孔硅 4.硅片经HF、HCl冲洗,中和碱液,如不清洗硅片表面残留的碱液,在烘干后硅片的表面会有结晶 5.水冲洗表面,洗掉酸液 c.注意

电池片生产工艺简介

培训资料 前道 一制绒工艺 制绒目的 1.消除表面硅片有机物和金属杂质。 2.去处硅片表面机械损伤层。 3.在硅片表面形成表面组织,增加太阳光的吸收减少反射。 工艺流程 来料,开盒,检查,装片,称重,配液加液,制绒,甩干,制绒后称重,绒面检查,流出。单晶制绒 基本原理 1#超声 去除有机物和表面机械损伤层。 目前采用柠檬酸超声,和双氧水与氨水混合超声。

3#4#5#6#制绒 利用NaOH溶液对单晶硅片进行各向异性腐蚀的特点来制备绒面。当各向异性因子((100)面与(111)面单晶硅腐蚀速率之比)=10时,可以得到整齐均匀的金字塔形的角锥体组成的绒面。绒面具有受光面积大,反射率低的特点。可以提高单晶硅太阳能电池的短路电流,从而提高太阳能电池的光转换效率。 化学反应方程式:Si+2NaOH+H2O=Nasio3+2H2↑ 影响因素 1.温度 温度过高,首先就是IPA不好控制,温度一高,IPA的挥发很快,气泡印就会随之出现,这样就大大减少了PN结的有效面积,反应加剧,还会出现片子的漂浮,造成碎片率的增加。可控程度:调节机器的设置,可以很好的调节温度。 2.时间 金字塔随时间的变化:金字塔逐渐冒出来;表面上基本被小金字塔覆盖,少数开始成长;金字塔密布的绒面已经形成,只是大小不均匀,反射率也降到比较低的情况;金字塔向外扩张兼并,体积逐渐膨胀,尺寸趋于均等,反射率略有下降。 可控程度:调节设备参数,可以精确的调节时间。 3.IPA 1.协助氢气的释放。 2.减弱NaOH溶液对硅片的腐蚀力度,调节各向因子。纯NaOH溶液在高温下对原子排列比较稀疏的100晶面和比较致密的111晶面破坏比较大,各个晶面被腐蚀而消融,IPA明显减弱NaOH的腐蚀强度,增加了腐蚀的各向异性,有利于金字塔的成形。乙醇含量过高,碱溶液对硅溶液腐蚀能力变得很弱,各向异性因子又趋于1。 可控程度:根据首次配液的含量,及每次大约消耗的量,来补充一定量的液体,控制精度不高。 4.NaOH 形成金字塔绒面。NaOH浓度越高,金字塔体积越小,反应初期,金字塔成核密度近似不受NaOH浓度影响,碱溶液的腐蚀性随NaOH浓度变化比较显著,浓度高的NaOH溶液与硅反映的速度加快,再反应一段时间后,金字塔体积更大。NaOH浓度超过一定界限时,各向异性因子变小,绒面会越来越差,类似于抛光。 可控程度:与IPA类似,控制精度不高。 5.Na2SiO3 SI和NaOH反应生产的Na2SiO3和加入的Na2SiO3能起到缓冲剂的作用,使反应不至于很剧烈,变的平缓。Na2SiO3使反应有了更多的起点,生长出的金字塔更均匀,更小一点Na2SiO3多的时候要及时的排掉,Na2SiO3导热性差,会影响反应,溶液的粘稠度也增加,容易形成水纹、花蓝印和表面斑点。 可控程度:很难控制。 4#酸洗 HCL去除硅片表面的金属杂质 盐酸具有酸和络合剂的双重作用,氯离子能与多种金属离子形成可溶与水的络合物。 6#酸洗 HF去除硅片表面氧化层,SiO2+6HF=H2[siF6]+2H2O。 控制点 1.减薄量 定义:硅片制绒前后的前后重量差。 控制范围

揭秘!锂电池制造工艺设计全解析

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 揭秘!锂电池制造工艺设计全解析 WORD 格式-可编辑揭秘!锂电池制造工艺全解析锂电池结构锂离子电池构成主要由正极、负极、非水电解质和隔膜四部分组成。 目前市场上采用较多的锂电池主要为磷酸铁锂电池和三元锂电池,二者正极原材料差异较大,生产工艺流程比较接近但工艺参数需变化巨大。 若磷酸铁锂全面更换为三元材料,旧产线的整改效果不佳。 对于电池厂家而言,需要对产线上的设备大面积进行更换。 锂电池制造工艺锂电池的生产工艺比较复杂,主要生产工艺流程主要涵盖电极制作的搅拌涂布阶段(前段)、电芯合成的卷绕注液阶段(中段),以及化成封装的包装检测阶段(后段),价值量(采购金额)占比约为(35~40%):(30~35)%:(30~35)%。 差异主要来自于设备供应商不同、进口/国产比例差异等,工艺流程基本一致,价值量占比有偏差但总体符合该比例。 专业知识--整理分享 1/ 7

WORD 格式-可编辑锂电生产前段工序对应的锂电设备主要包括真空搅拌机、涂布机、辊压机等;中段工序主要包括模切机、卷绕机、叠片机、注液机等;后段工序则包括化成机、分容检测设备、过程仓储物流自动化等。 除此之外,电池组的生产还需要 Pack 自动化设备。 锂电前段生产工艺锂电池前端工艺的结果是将锂电池正负极片制备完成,其第一道工序是搅拌,即将正、负极固态电池材料混合均匀后加入溶剂,通过真空搅拌机搅拌成浆状。 配料的搅拌是锂电后续工艺的基础,高质量搅拌是后续涂布、辊压工艺高质量完成的基础。 涂布和辊压工艺之后是分切,即对涂布进行分切工艺处理。 如若分切过程中产生毛刺则后续装配、注电解液等程序、甚至是电池使用过程中出现安全隐患。 因此锂电生产过程中的前端设备,如搅拌机、涂布机、辊压机、分条机等是电池制造的核心机器,关乎整条生产线的质量,因此前端设备的价值量(金额)占整条锂电自动化生产线的比例最高,约35%。 锂电中段工艺流程锂电池制造过程中,中段工艺主要是完成电池的成型,主要工艺流程包括制片、极片卷绕、模切、电芯卷绕成型和叠片成型等,是当前国内设备厂商竞争比较激烈的一个领域,占锂电池生产线价值量约 30%。 目前动力锂电池的电芯制造工艺主要有卷绕和叠片两种,对应的

(完整版)锂电池英文生产流程

Mixing(配料) Mix solvent and bound separately with positive and negative active materials. Make into positive and negative pasty materials after stirring at high speed till uniformity. Coating(涂布) Now, we are in coating line. We use back reverse coating. This is the slurry-mixing tank. The anode(Cathode)slurry is introduced to the coating header by pneumaticity from the mixing tank. The slurry is coated uniformly on the copper foil, then the solvent is evaporated in this oven. (下面的依据情况而定)There are four temperature zones, they are independently controlled. Zone one sets at 55 degree C, zone two sets at 65 degree C, zone three sets at 80 degree C, zone four sets at 60 degree C. The speed of coating is 4 meters per minute. You see the slurry is dried. The electrode is wound to be a big roll and put into the oven. The time is more than 2 hours and temperature is set at 60 degree C. Throughout the coating, we use micrometer to measure the electrode thickness per about 15 minutes. We do this in order to keep the best consistency of the electrode. Vocabulary: coating line 涂布车间back reverse coating 辊涂coating header 涂布机头 Al/copper foil 铝/铜箔degree C 摄氏度temperature zones 温区 wind to be a(big)roll 收卷evenly/uniformly 均匀oven 烘箱 evaporate 蒸发electrode 极片 Cutting Cut a roll of positive and negative sheet into smaller sheets according to battery specification and punching request. Pressing Press the above positive and negative sheets till they become flat. Punching Punching sheets into electrodes according to battery specification, Electrode After coating we compress the electrode with this cylindering machine at about 7meters per minute. Before compress we clean the electrode with vacuum and brush to eliminate any particles. Then the compressed electrode is wound to a big roll. We use micrometer to measure the compressed electrode thickness every 10 minutes. After compressing we cut the web into large pieces. We tape the cathode edge to prevent any possible internal short. The large electrode with edge taped is slit into smaller pieces. This is ultrasonic process that aluminum tabs are welded onto cathodes using ultrasonic weld machine. We tape the weld section to prevent any possible internal short. And finally, we clean the finished electrodes with vacuum and brush. Vocabulary: cylindering 柱形辊压vacuum 真空particle 颗粒 wound 旋紧卷绕micrometer 千分尺internal short 内部短路 slit 分切ultrasonic 超声波weld 焊接

太阳能电池生产工艺及关键设备

太阳能电池生产工艺及关键设备 目录 1 硅棒与硅锭铸造工艺及主要设备 (1) 1.1 硅棒铸造工艺及主要设备 (2) 1.1.1 工艺流程 (2) 1.1.2 工艺简介 (2) 1.1.3 主要设备介绍 (3) 1.2 硅锭铸造工艺及主要设备 (4) 1.2.1 工艺流程 (4) 1.2.2 工艺简介 (4) 1.2.3 主要设备介绍 (4) 2 硅片生产工艺及主要设备 (5) 2.1 工艺流程 (5) 2.2 工艺简介 (5) 2.3 主要设备介绍 (5) 2.3.1 切方机 (5) 2.3.2 多线切割机 (5) 3、电池片生产工艺及主要设备 (6) 3.1 工艺流程 (6) 3.2 工艺简介 (6) 3.3 主要设备介绍 (7) 3.3.1 清洗制绒设备 (7) 3.3.2 扩散炉 (7) 3.3.3 等离子刻蚀机 (8) 3.3.4 PECVD (8) 3.3.5 丝网印刷机 (8) 3.3.6 烧结炉 (9) 4 组件生产工艺及主要设备 (9) 4.1 工艺流程 (9) 4.2 工艺简介 (9) 4.3 主要设备介绍 (10) 4.3.1 层压机 (10) 4.3.2 太阳能电池分选仪 (10) 4.3.3 组件测试仪 (11)

1 硅棒与硅锭铸造工艺及主要设备 在硅锭和硅棒的制备中存在两种不同的技术路线,即多晶铸造和直拉单晶,两种生长技术相比,各有优劣。 直拉单晶棒中[C]杂质非常少,且基本无位错存在,所以制得的优质电池片最终转换效率在17%-23%之间。但由于一炉只能拉取一根硅棒,产量有限,能耗非常高,且圆形硅棒需要切除四个圆弧边才能继续使用。同时直拉单晶过程的自动化程度不高,晶棒的质量在很大程度上有赖于操作工的技能。由于坩埚和晶棒在这个拉制过程中处于旋转状态,强迫对流使得杂质和缺陷出现径向分布,极易引起氧诱导推垛层错环(OSF)和空隙或空位团的漩涡缺陷,这些因素会让单晶片质量直线下降。同时由于坩埚的原因,单晶棒中氧杂质的控制非常困难,使得单晶电池片的衰减非常厉害,影响使用寿命。 多晶铸造一次成锭16-36块,随着技术的发展该单锭所包含的块数也会随之增加,能耗也较之直拉单晶降低很多。且多晶铸造可以实现大规模全自动化的生产过程,极大减少了人力成本,且降低了误操作带来的风险。但是多晶在晶核生成阶段有很大的随机性,这就使得硅晶粒之间的边界形成各种各样的“扭折”,使位错的簇或线形式的结构缺陷成核。这些位错缺陷往往吸引硅中的杂质,并最终造成了多晶硅制成的光伏电池片中电荷载流子的快速复合,降低电池的转换效率。目前多晶硅制得的电池片转换效率16%-18%之间。 以下将对两种不同的制造工艺进行介绍: 1.1 硅棒铸造工艺及主要设备 1.1.1 工艺流程 装料与熔料——熔接——引细颈——放肩——转肩——等径生长——收尾 1.1.2 工艺简介 装料与熔料:将多晶硅料投入单晶炉中,加热使其溶化。 熔接:当硅料全部熔化后,调整加热功率以控制熔体的温度。按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。硅料全部熔化后熔体必须有一定的稳定时间达到熔体温度和熔体的流动的稳定。装料量越大,则所需时间越长。待熔体稳定后,降下籽晶至离液面3~5mm距离,使粒晶预热,以减少籽晶与熔硅的温度差,从而减少籽晶与熔硅接触时在籽晶中产生的热应力。预热后,下降籽晶至熔体的表面,让它们充分接触,这一过程称为熔接。在熔接过程中熔硅表面的温度适当,避免籽晶熔断(温度过高)或长出多晶

揭秘锂电池制造工艺标准全解析

揭秘!锂电池制造工艺全解析 锂电池结构 锂离子电池构成主要由正极、负极、非水电解质和隔膜四部分组成。目前市场上采用较多的锂电池主要为磷酸铁锂电池和三元锂电池,二者正极原材料差异较大,生产工艺流程比较接近但工艺参数需变化巨大。若磷酸铁锂全面更换为三元材料,旧产线的整改效果不佳。对于电池厂家而言,需要对产线上的设备大面积进行更换。

锂电池制造工艺 锂电池的生产工艺比较复杂,主要生产工艺流程主要涵盖电极制作的搅拌涂布阶段(前段)、电芯合成的卷绕注液阶段(中段),以及化成封装的包装检测阶段(后段),价值量(采购金额)占比约为(35~40%):(30~35)%:(30~35)%。差异主要来自于设备供应商不同、进口/国产比例差异等,工艺流程基本一致,价值量占比有偏差但总体符合该比例。 锂电生产前段工序对应的锂电设备主要包括真空搅拌机、涂布机、辊压机等;中段工序主要包括模切机、卷绕机、叠片机、注液机等;后段工序则包括化成机、分容检测设备、过程仓储物流自动化等。除此之外,电池组的生产还需要Pack 自动化设备。 锂电前段生产工艺 锂电池前端工艺的结果是将锂电池正负极片制备完成,其第一道工序是搅拌,即将正、负极固态电池材料混合均匀后加入溶剂,通过真空搅拌机搅拌成浆状。配料的搅拌是锂电后续工艺的基础,高质量搅拌是后续涂布、辊压工艺高质量完成的基础。 涂布和辊压工艺之后是分切,即对涂布进行分切工艺处理。如若分切过程中产生毛刺则后续装配、注电解液等程序、甚至是电池使用过程中出现安全隐患。因此锂电生产过程中的前端设备,如搅拌机、涂布机、辊压机、分条机等是电池制造的核心机器,关乎整条生产线的质量,因此前端设备的价值量(金额)占整条锂电自动化生产线的比例最高,约35%。

电池组件生产工艺流程及操作规范

电池组件生产工艺 目录 太阳能电池组件生产工艺介绍 (11) 晶体硅太阳能电池片分选工艺规范 (55) 晶体硅太阳能电池片激光划片工艺规范 (88) 晶体硅太阳能电池片单焊工艺规范 (1212) 晶体硅太阳能电池片串焊工艺规范 (1616) 晶体硅太阳能电池片串焊工艺规范 (1818) 晶体硅太阳能电池片叠层工艺规范 (2121) 晶体硅太阳能电池组件层压工艺规范 (2727) 晶体硅太阳能电池组件装框规范 (3232) 晶体硅太阳能电池组件测试工艺规范 (3535) 晶体硅太阳能电池组件安装接线盒工艺规范 (3838) 晶体硅太阳能电池组件清理工艺规范 (4141)

太阳能电池组件生产工艺介绍 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 1流程图: 电池检测——正面焊接—检验—背面串接—检验—敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试—外观检验—包装入库; 2组件高效和高寿命如何保证: 2.1高转换效率、高质量的电池片 2.2高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装 剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 2.3合理的封装工艺; 2.4员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 3太阳电池组装工艺简介:

动力电池pack生产工艺流程

动力电池pack生产工艺流程_动力电池PACK四大工艺介绍 2018-04-17 17:13 ? 885次阅读 动力电池PACK四大工艺 1、装配工艺 动力电池PACK一般都由五大系统构成。 那这五大系统是如何组装到一起,构成一个完整的且机械强度可靠的电池PACK呢?靠的就是装配工艺。 PACK的装配工艺其实是有点类似传统燃油汽车的发动机装配工艺。 通过螺栓、螺帽、扎带、卡箍、线束抛钉等连接件将五大系统连接到一起,构成一个总成。

2、气密性检测工艺 动力电池PACK一般安装在新能源汽车座椅下方或者后备箱下方,直接是与外界接触的。当高压电一旦与水接触,通过常识你就可以想象事情的后果。因此当新能源汽车涉水时,就需要电池PACK有很好的密封性。 动力电池PACK制造过程中的气密性检测分为两个环节: 1)热管理系统级的气密性检测; 2)PACK级的气密性检测; 国际电工委员会(IEC)起草的防护等级系统中规定,动力电池PACK 必须要达到IP67等级。

2017年4月份的上海车展,上汽乘用车就秀出了自己牛逼的高等级气密性防护技术。将充电状态下的整个PACK放到金鱼缸中浸泡7天,金鱼完好无损,且PACK内未进水。 3、软件刷写工艺 没有软件的动力电池PACK,是没有灵魂的。 软件刷写也叫软件烧录,或者软件灌装。 软件刷写工艺就是将BMS控制策略以代码的形式刷入到BMS中的CMU和BMU中,以在电池测试和使用过程中将采集的电池状态信息数据,由电子控制单元进行数据处理和分析,然后根据分析结果对系统内的相关功能模块发出控制指令,最终向外界传递信息。

4、电性能检测工艺 电性能检测工艺是在上述三个工艺完成后,即产品下线之前必做的检测工艺。 电性能检测分三个环节: 1)静态测试: 绝缘检测、充电状态检测、快慢充测试等; 2)动态测试; 通过恒定的大电流实现动力电池容量、能量、电池组一致性等参数的评价。 3)SOC调整; 将电池PACK的SOC调整到出厂的SOC SOC:StateOfCharge,通俗的将就是电池的剩余电量。 关于电池PACK的电性能检测参数,每个公司其实都有自己定义的标准,都不一样。但是国家对于新能源汽车动力的电性能要求是有规定的,国标如下: 《GB/T31484-2015电动汽车用动力蓄电池循环寿命要求及试验方法》《GB/T31486-2015电动汽车用动力蓄电池电性能要求及试验方法》

铅酸蓄电池制造工艺流程(精)

铅酸蓄电池制造工艺流程 1、极板的制造 包括:铅粉制造、板栅铸造、极板制造、极板化成等。 ⑴铅粉制造设备铸粒机或切段机、铅粉机及运输储存系统;⑵板栅铸造设备熔铅炉、铸板机及各种模具; ⑶极板制造设备和膏机、涂片机、表面干燥、固化干燥系统等;⑷极板化成设备充放电机; ⑸水冷化成及环保设备。 2、装配电池设备 汽车蓄电池、摩托车蓄电池、电动车蓄电池、大中小型阀控密封式蓄电池装配线、电池检测设备(各种电池性能检测)。 ⑴典型铅酸蓄电池工艺过程概述 铅酸蓄电池主要由电池槽、电池盖、正负极板、稀硫酸电解液、隔板及附件构成。 ⑵工艺制造简述如下 铅粉制造:将1#电解铅用专用设备铅粉机通过氧化筛选制成符合要求的铅粉。板栅铸造:将铅锑合金、铅钙合金或其他合金铅通常用重力铸造的方式铸造成符合要求的不同类型各种板板栅。 极板制造:用铅粉和稀硫酸及添加剂混合后涂抹于板栅表面再进行干燥固化即是生极板。 极板化成:正、负极板在直流电的作用下与稀硫酸的通过氧化还原反 应生产氧化铅,再通过清洗、干燥即是可用于电池装配所用正负极板。装配电池:将不同型号不同片数极板根据不同的需要组装成各种不同类型的蓄电池。3、板栅铸造简介 板栅是活性物质的载体,也是导电的集流体。普通开口蓄电池板栅一般用铅锑合金铸造,免维护蓄电池板栅一般用低锑合金或铅钙合金铸造,而密封阀控铅酸蓄电池板栅一般用铅钙合金铸造。 第一步:根据电池类型确定合金铅型号放入铅炉内加热熔化,达到工艺要求后将铅液铸入金属模具内,冷却后出模经过修整码放。 第二步:修整后的板栅经过一定的时效后即可转入下道工序。板栅主要控制参数:板栅质量;板栅厚度;板栅完整程度;板栅几何尺寸等; 4、铅粉制造简介 铅粉制造有岛津法和巴顿法,其结果均是将1#电解铅加工成符合蓄电池生产工艺要求的铅粉。铅粉的主要成份是氧化铅和金属铅,铅粉的质量与所制造的质量有非常密切的关系。在我国多用岛津法生产铅粉,而在欧美多用巴顿法生产铅粉。

太阳能电池片的生产工艺流程分为硅片检测

太阳能电池片的生产工艺流程分为硅片检测——表面制绒——扩散制结——去磷硅玻璃——等离子刻蚀——镀减反射膜——丝网印刷——快速烧结等。具体介绍如下: 一、硅片检测 硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术参数进行在线测量,这些参数主要包括硅片表面不平整度、少子寿命、电阻率、 P/N型和微裂纹等。该组设备分自动上下料、硅片传输、系统整合部分和四个检测模块。其中,光伏硅片检测仪对硅片表面不平整度进行检测,同时检测硅片的尺寸和对角线等外观参数;微裂纹检测模块用来检测硅片的内部微裂纹;另外还有两个检测模组,其中一个在线测试模组主要测试硅片体电阻率和硅片类型,另一个模块用于检测硅片的少子寿命。在进行少子寿命和电阻率检测之前,需要先对硅片的对角线、微裂纹进行检测,并自动剔除破损硅片。硅片检测设备能够自动装片和卸片,并且能够将不合格品放到固定位置,从而提高检测精度和效率。 二、表面制绒 单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 三、扩散制结 太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。 四、去磷硅玻璃 该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除

晶硅太阳能电池片的制作过程

晶硅太阳能电池片的制 作过程 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

晶硅太阳能电池板的制作过程 1、表面制绒单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 2、扩散制结太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。

锂离子电池生产工艺

目录 1.设计的目的与任务 (1) 1.1课程设计背景 (1) 1.2课程设计目的与任务 (1) 2.设计的详细内容 (2) 2.1原材料及设备的选取 (2) 2.2电池的工作原理 (3) 2.3电池的制备工艺设计 (3) 2.3.1制片车间的工艺设计 (3) 2.3.2装配车间的工艺设计 (6) 2.3.3化成车间工艺设计 (7) 2.3.4包装车间工艺设计 (9) 2.4厂房设计 (9) 3.经济效益 (10) 4.对本设计的评述 (11) 参考文献 (12)

1.设计的目的与任务 1.1课程设计背景 自从1990年SONY采用可以嵌锂的钴酸锂做正极材料以来,锂离子电池满足了非核能能源开发的需要,同时具有工作电压高、比能量大、自放电小、循环寿命长、重量轻、无记忆效应、环境污染少等特点,现成为世界各国电源材料研究开发的重点[1~3]。锂离子电池已广泛应用于移动电话、便携式计算机、摄像机、照相机等的电源,并在电动汽车技术、大型发电厂的储能电池、UPS电源、医疗仪器电源以及宇宙空间等领域具有重要作用[4~5]。 正极材料作为决定锂离子电池性能的重要因素之一,研究和开发更高性能的正极材料是目前提高和发展锂电池的有效途径和关键所在。目前,已商品化的锂电池正极材料有钴酸锂、锰酸锂、镍酸锂等,而层状钴酸锂正极材料凭借其电压高、放电平稳、生产工艺简单等优点占据着市场的主要地位,也是目前唯一大量用于生产锂离子电池的正极材料[6~8]。 18650电池是指外壳使用65mm高,直径为18mm的圆柱形钢壳为外壳的锂离子电池。自从上个世纪90年代索尼推出之后,这种型号的电池一直在生产,经久不衰。经过近20年的发展,目前制备工艺已经非常成熟,性能有了极大的提升,体积能量密度已经提高了将近4倍,而且成本在所有锂离子电池中也是最低,目前早已走出了原来的笔记本电脑的使用领域,作为首选电池应用于动力及储能领域。 1.2课程设计目的与任务 如前文所述,在目前商业化的锂离子电池中,很多厂家都选用层状结构的 作为正极材料。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有LiCoO 2 作为正极材料的18650锂电报道实际容量已达155mAh/g。本设计拟通过以LiCoO 2 池电芯器件作为模型,从原料选择、设计原理、制备工艺、封装条件、工作情况等方面进行系统调研,并设计出相应的电池器件。设计者将通过查阅资料、课题讨论、技术交流等方式,逐渐设计出合理、科学的18650锂电池电芯,培养初步的科研思维和科研能力;通过这一综合训练,使我对实际的新能源产品有初步的、

太阳能电池片生产制造工艺

太阳能电池(硅片)的生产工艺原理 太阳能电池片的生产工艺流程分为硅片检测——表面制绒——扩散制结——去磷硅玻璃——等离子刻蚀——镀减反射膜——丝网印刷——快速烧结等。具体介绍如下: 一、硅片检测 硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术参数进行在线测量,这些参数主要包括硅片表面不平整度、少子寿命、电阻率、P/N型和微裂纹等。该组设备分自动上下料、硅片传输、系统整合部分和四个检测模块。其中,光伏硅片检测仪对硅片表面不平整度进行检测,同时检测硅片的尺寸和对角线等外观参数;微裂纹检测模块用来检测硅片的内部微裂纹;另外还有两个检测模组,其中一个在线测试模组主要测试硅片体电阻率和硅片类型,另一个模块用于检测硅片的少子寿命。在进行少子寿命和电阻率检测之前,需要先对硅片的对角线、微裂纹进行检测,并自动剔除破损硅片。硅片检测设备能够自动装片和卸片,并且能够将不合格品放到固定位置,从而提高检测精度和效率。 二、表面制绒 单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 三、扩散制结 太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。 四、去磷硅玻璃 该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。

相关主题