搜档网
当前位置:搜档网 › 北理工数值分析大作业

北理工数值分析大作业

北理工数值分析大作业
北理工数值分析大作业

数值分析上机作业

第 1 章

1.1计算积分,n=9。(要求计算结果具有6位有效数字)

程序:

n=1:19;

I=zeros(1,19);

I(19)=1/2*((exp(-1)/20)+(1/20));

I(18)=1/2*((exp(-1)/19)+(1/19));

for i=2:10

I(19-i)=1/(20-i)*(1-I(20-i));

end

format long

disp(I(1:19))

结果截图及分析:在MATLAB中运行以上代码,得到结果如下图所示:当计算

到数列的第10项时,所得的结果即为n=9时的准确积分

值。取6位有效数字可得.

1.2分别将区间[-10.10]分为100,200,400等份,利用mesh或surf

命令画出二元函数

z=

的三维图形。

程序:

>> x = -10:0.1:10;

y = -10:0.1:10;

[X,Y] = meshgrid(x,y);

Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);

subplot(2,2,1);

mesh(X,Y,Z);

title('步长0.1')

>> x = -10:0.2:10;

y = -10:0.2:10;

[X,Y] = meshgrid(x,y);

Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);

subplot(2,2,1);

mesh(X,Y,Z);

title('步长0.2')

>>x = -10:0.05:10;

y = -10:0.05:10;

[X,Y] = meshgrid(x,y);

Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);

subplot(2,2,1);

mesh(X,Y,Z);

title('步长0.05')

结果截图及分析:由图可知,步长越小时,绘得的图形越精确。

第 2 章

试用MATLAB 编程实现追赶法求三对角方程组的算法,并考虑梯形电

路电阻问题:电路中的电流128{,,,}i i i 满足下列线性方程组:

12123

234

345

456

567

6787822/25202520252025202520

2520

250

i i V R i i i i i i i i i i i i i i i i i i i i -=-+-=-+-=-+-=-+-=-+-=-+-=-+=

设220,27V V R ==Ω,求各段电路的电流量。

处理思路:观察该方程的系数矩阵可知,它是一个三对角矩阵,故可运用追赶法对其进行求解。 程序:

for i=1:8

a(i)=-2;b(i)=5;c(i)=-2;d(i)=0; end

a(1)=0;b(1)=2;c(8)=0;d(1)=220/27; for i=2:8

a(i)=a(i)/b(i-1); b(i)=b(i)-c(i-1)*a(i); d(i)=d(i)-a(i)*d(i-1); end

d(8)=d(8)/b(8); for i=7:-1:1

d(i)=( d(i)-c(i)*d(i+1) )/b(i); end for i=1:8 x(i)=d(i); end

x

结果截图及分析:在MATLAB 中运行以上代码,得到结果如下图所示:图中8

个值依次为128{,,

,}i i i 的数值。

第 3 章

试分别用(1)Jacobi 迭代法;(2)Gauss-Seidel 解线性方程组

123451012

34121912327217351432312117435

11512x x x x x ??????

??????---???

???

??????--=???

???--??????

?????

?---??????

迭代初始向量取(0)(0,0,0,0,0)T x =. 3.1 Jacobi 迭代法 程序:

>> A=[10 1 2 3 4;

1 9 -1

2 -3; 2 -1 7

3 -5; 3 2 3 12 -1;

4 -3 -

5 -1 15]; b=[12;-27;14;-17;12]; x0=[0;0;0;0;0];

D=diag(diag(A)); I=eye(5); L=-tril(A,-1); B=I-D\A; g=D\b; y=B*x0+g; n=1;

while norm(y-x0)>=1.0e-6 x0=y;

y=B*x0+g; n=n+1; end

fprintf('%8.6f\n',y); n

得到此结果时迭代次数为67次,达到精度要求。

3.2 Gauss-Seidel迭代法:

程序:

>> A=[10 1 2 3 4;

1 9 -1

2 -3;

2 -1 7

3 -5;

3 2 3 12 -1;

4 -3 -

5 -1 15];

b=[12;-27;14;-17;12];

x0=[0;0;0;0;0];

D=diag(diag(A));

U=-triu(A,1);

L=-tril(A,-1);

M=(D-L)\U;

g=(D-L)\b;

y=M*x0+g;

n=1;

while norm(y-x0)>=1.0e-6

x0=y;

y=M*x0+g;

n=n+1;

end

fprintf('%8.6f\n',y);

Gauss-Seidel迭代法只需要迭代38次即可满足精度要求。

第 4 章

设A=???

?

?

?????--162621666612,取先用幂法迭代3次,得到

A 的按模最大特征值的近似值,取为其整数部分,再用反幂法计算A

的按模最大特征值的更精确的近似值,要求误差小于

.

程序:

A=[12 6 -6;

6 16 2; -6 2 16]; x0=[1;1;1];

y=x0;b=max(abs(x0));k=1; while ( k<4 )

x=A*y;b=max(abs(x));y=x./b; k=k+1;

fprintf('eig1 equals %6.4f\n',b); end

>> bb0=fix(b); I=eye(3,3); x0=[1;1;1];

y=x0;l=0;bb=max(abs(x0));k=1; while ( abs(bb-l)>=1.0e-10 ) l=bb;

x=(A-bb0*I)\y;bb=max(abs(x));y=x./bb; eig=l+b;

>> fprintf('eig2(%d) equals %12.10f\n',k, eig); k=k+1; end

实验截图及分析:

由图可知,由幂法3次迭代后得到的特征值为19.4,而由反幂法得到的特征值为20.3999999999.误差小于

第 5 章

试编写MATLAB函数实现Newton插值,要求能输出插值多项式。对函数f(x)=在区间[-5,5]上实现10次多项式插值。要求:

(1)输出插值多项式。

(2)在区间[-5,5]内均匀插入99个节点,计算这些节点上函数f(x)的近似值,并在同一张图上画出原函数和插值多项式的图形。

(3)观察龙格现象,计算插值函数在各节点处的误差,并画出误差图。

5.1输出插值多项式

程序:

x=-5:1:5;

y=1./(1+4*(x.^2));

newpoly(x,y)

function [c,d]=newpoly(x,y)

n=length(x);

d=zeros(n,n);

d(:,1)=y';

for j=2:n

for k=j:n

d(k,j)=(d(k,j-1)-d(k-1,j-1))/(x(k)-x(k-j+1));

end

end

c=d(n,n);

for k=(n-1):-1:1

c=conv(c,poly(x(k)));

m=length(c);

c(m)=c(m)+d(k,k);

end

end

结果及分析:

ans =

Columns 1 through 2

-0.000049595763049

Columns 3 through 4

0.002740165908483 0.000000000000000

Columns 5 through 6

-0.051421507076720 0.000000000000000

Columns 7 through 8

0.392014985282312 0.000000000000000

Columns 9 through 10

-1.143284048351025 0.000000000000001

Column 11

1.000000000000000

10次插值多项式由高到低系数为Columns 1至Column 11 5.2原函数与插值多项式的图形

程序:

x=-5:1:5;

y=1./(1+4*(x.^2));

n=newpoly(x,y);

x0=-5:0.1:5;

y0=1./(1+4*(x0.^2));

vn=polyval(n,x0);

plot(x0,vn,'-r',x0,y0,'--b');

xlabel('x');ylabel('y');

实验结果截图:

y

x

原函数与插值多项式的图形如上图所示,蓝色为原函数的图形,红色为插值多项式的图形。

5.3各节点的误差及误差图

程序:

format long;

x=-5:1:5;

y=1./(1+4*(x.^2));

n=newpoly(x,y);

x0=-5:0.1:5;

y0=1./(1+4*(x0.^2));

vn=polyval(n,x0);

plot(x0,y0-vn,'-r');

xlabel('x');ylabel('y');

实验结果截图:

y

x 误差图如上图所示。

第 6 章

炼钢厂出钢时所用的盛钢水的钢包,在使用过程中由于钢液及炉渣对包衬耐火材料的腐蚀,使其容积不断加大。经试验,钢包的容积与相应的使用次数的数据列表如下:

选用双曲线x

b a y

11+=对数据进行拟合,使用最小二乘法求出拟合函数,作出拟合曲线图。

处理思路:用Y 替代1/y ,用X 替代1/x ,原曲线化为Y=a+bx ,双曲线转化为一次线性方程,使用最小二乘法求出该一次方程的系数。

程序:

x=[2 3 5 6 7 9 10 11 12 14 16 17 19 20];

y=[106.42 108.26 109.58 109.5 109.86 110 109.93 110.59 110.60 110.72 110.9 110.76 111.1 111.3];

k1=0; k2=0; k3=0; k4=0;

for i=1:14

k1=k1+1/x(i);

end

for i=1:14

k2=k2+1/y(i);

end

for i=1:14

k3=k3+1/(x(i))^2;

end

for i=1:14

k4=k4+1/(x(i)*y(i));

end

b=(k1*k2-14*k4)/(k1^2-14*k3)

a=k2/14-k1*b/14

plot(x,y,'r*')

hold on

x=2:0.01:20;

y=1./(a+b./x);

plot(x,y)

xlabel('x')

ylabel('y')

grid on

实验结果截图与分析:

即最小二乘法求出拟合函数为:

=0.008973+0.000842拟合曲线图为:

第 7 章

考纽螺线的形状象钟表的发条,也称回旋曲线,它在直角坐标系中的

参数方程为???

???

?

==

??s

s

dt at s y dt at s x 0

2

2

21sin )(21cos

)( 曲线关于原点对称,取a=1,参数s 的变化范围[-5,5],容许误差限分别是

。选取适当的节点个数,利用数值积分方法计算

曲线上点的坐标,并画出曲线的图形。

误差限为时:

程序:

x=zeros(101,1);

y=zeros(101,1);

f1=inline('cos(1/2*(t.^2))'); f2=inline('sin(1/2*(t.^2))'); i=1;

for s= -5:0.1:5

x(i,1)=quad(f1,0,s,1e-6); y(i,1)=quad(f2,0,s,1e-6); i=i+1; end

plot(x,y,'r-'); title('误差限-1e-6'); xlabel('x(s)'); ylabel('y(s)');

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

11:数值分析试题2009~2010

中国石油大学(北京)2009--2010学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(共30分,每空3分) 1、 已知x =0.004532是由准确数a 经四舍五入得到的近似值,则x 的绝对误差 界为_______________。 2、数值微分公式()() '()i i i f x h f x f x h +-≈ 的截断误差为 。 3、已知向量T x =,求Householder 变换阵H ,使(2,0)T Hx =-。 H = 。 4、利用三点高斯求积公式 1 1 ()0.5556(0.7746)0.8889(0)0.5556(0.7746) f x d x f f f -≈-++? 导出求积分 4 0()f x dx ?的三点高斯求积公式 。 5、4 2 ()523,[0.1,0.2,0.3,0.4,0.5]_____.f x x x f =+-=若则 6、以n + 1个互异节点x k ( k =0,1,…,n ),(n >1)为插值节点的 Lagrange 插值基函数为l k (x)( k =0,1,…,n ),则 (0)(1)__________.n k k k l x =+=∑ 7、已知3()P x 是用极小化插值法得到的cos x 在[0,4]上的三次插值多项式,则3()P x 的 截断误差上界为3()cos ()R x x P x =-≤_________. 8、已知向量(3,2,5)T x =-,求Gauss 变换阵L ,使(3,0,0)T Lx =。L =_________. 9、设3 2 ()(7)f x x =-, 给出求方程()0f x =根的二阶收敛的迭代格式_________。

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷) 一. 填空题(每小题2分, 共10分) 1. 设?????<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________. 2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________. 3. 已知),(cos 4422x o bx ax e x x ++=- 则_,__________=a .______________=b 4. 微分方程1cos 2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________. 二. (9分) 求极限 21 0)sin (cos lim x x x x x +→. 三. (9分) 求不定积分?+dx e x x x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值. 五. (8分) 判断2 12arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dx y d dx dy . 七. (10分) 求下列反常积分. (1);)1(1 22?--∞+x x dx (2) .1)2(1 0?--x x dx 八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受 到的水压力. (要求画出带有坐标系的图形) 九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解. 十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x a +=+?)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线 )(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,6 7π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(1 21 =?xdx x f 证明在)2,0(内存在ξ 使 .1)(='ξf

孙志忠北京理工大学偏微分方程数值解上机作业

偏微分方程数值解大作业

目录 第一题 (3) 第二题 (7) 第三题 (16) 第四题 (20) 第五题 (26) 第六题(附加题1) (39) 第七题(附加题2) (45) 第八题(附加题3) (51)

第一题 习题1 3. (1)解曲线图 图1 (2)误差曲线图

图2 (3)表格 表1 部分点处精确解和取不同步长时所得的数值解 表2 取不同步长时部分结点处数值解的误差的绝对值和数值解的最大误差

(4)MATLAB源代码 M=64; a=0; b=pi/2; h=(b-a)/M; x=[a+h:h:b-h]; u=zeros(M-1,M-1); u(1,1)=(2/h^2)+(x(1)-1/2)^2; u(1,2)=-(1/h^2); u(M-1,M-1)=(2/h^2)+(x(M-1)-1/2)^2; u(M-1,M-2)=-(1/h^2); for i=2:M-2 u(i,i-1)=-(1/h^2); u(i,i)=(2/h^2)+(x(i)-1/2)^2; u(i,i+1)=-(1/h^2); end f=zeros(M-1,1) f(1)=(x(1).*x(1)-x(1)+5/4).*sin(x(1)); f(M-1)=(x(M-1).*x(M-1)-x(M-1)+5/4).*sin(x(M-1))+1/h^2; for j=2:M-2 f(j)=(x(j).*x(j)-x(j)+5/4).*sin(x(j)); end

y=inv(u)*f; true=sin(x); plot(x,y'-true)

北京理工大学2017-2018学年工数上期末试题A及标准答案

课程编号:H0172103 北京理工大学2017-2018学年第一学期 工科数学分析(上)期末试题(A 卷) 座号 _______ 班级_____________ 学号_____________ 姓名_____________ (试卷共6页,十个大题. 解答题必须有过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.) 1.若 e x x kx x 1 )2( lim =-∞ → ,则=k . 2.已知,arctan 2111ln 41x x x y --+= 则=dx dy . 3. =-+?dx xe x e x x 1 02 ) 1() 1( . 4 . =?xdx x sin 2 . 5. 设x y y cos =+',则=y . 二、计算题(每小题5分,共20分) 1.求极限 ).2 sin 211(sin lim 3n n n n -∞→ 2. 设 x x y x 2sin sin +=,求dy . 3. 计算 dx x x x x ? -++1 1 2 211cos 2-. 4.求)cos(y x dx dy +=的通解. 三、(8分)已知0)-1(lim 2 =-+-+∞ →b ax x x x ,试确定常数a 和b 的值. 四、(6分)已知,...).2,1)((21,0,011=+= >>+n b b b b b b n n n 证明: 数列{}n b 极限存在;并求此极限. 五、(8分)求函数2) 1(42 -+= x x y 的单调区间和极值,凹凸区间和拐点,渐近线. 六、(8分)设曲线2x y =,x y =围成一平面图形D .

(1) 求平面图形D 的面积; (2) 求平面图形D 绕y 轴旋转所得旋转体的体积. 七、(8分)设一长为l 的均匀细杆,线密度为μ,在杆的一端的延长线上有一质量为m 的质点,质点与该端的距离为a . (1)求细杆与质点间的引力; (2)分别求如果将质点由距离杆端a 处移到b 处(b a >)与无穷远处时克服引力所 做的功. 八、(8分)设)(x f 在]1,1[-上具有三阶连续导数,且,0)0(,1)1(,0)1('===-f f f 证明在开区间)1,1(-内至少存在一点ξ,使3)()3(=ξf . 九、(8分)设?-+ =x x dt t f t x xe x f 0)()()(, 其中)(x f 连续,求)(x f 的表达式. 十、(6分)已知)(x f 在闭区间[]6,1上连续,在开区间)6,1(内可导,且 ,5)1(=f ,1)5(=f .12)6(=f 证明:存在)6,1(∈ξ,使 22)()(=-+'ξξξf f 成立. 北京理工大学2017-2018学年第一学期《工科数学分析》(上)期末试题(A 卷) 标准答案及评分标准 2018年1月12日 一、填空(每小题4分,共20分) 1. 21 2.42 1x x - 3. )(,不收敛+∞∞ 4 . C x x x x x +++-cos 2sin 2cos 2 5. x ce x x y -++= )cos (sin 2 1 二、计算题(每小题5分,共20分) 1. 解:)2 sin 211(sin lim 3x x x x -∞→ 3 12sin 211sin lim x x x x -=∞→ x t 1=令 30) 2sin(21 sin lim t t t t -=→ …………. 2分 2 0cos 1sin lim t t t t t -?=→21= …………. 4分 2 1 )2sin 211(sin lim 3=-∴∞→n n n n …………. 5分

北京理工大学数学专业数值计算方法Ⅰ期末试题2010级B卷(MTH17170)

一. (10分) 用三角分解(LU 分解)求解下方程组,要求写出L,U 矩阵: 1232644145361182x x x -?????? ? ? ? -= ? ? ? ? ? ?-???? ??. 二. (10分) 已知矩阵6 37398785A -?? ? =- ? ?--?? ,求1cond()A 和cond()A ∞,要求计算过程保留三位 有效数字,并简要分析所得结果. 三. (10分) 设矩阵1001005a A b b a ?? ? = ? ??? ,且0det()A ≠,试求用,a b 表示的求解线性方程组 Ax d =的Jacobi 及Gauss-Seidel 迭代法收敛的充分必要条件. 四. (10分) 试确定下求积公式中的待定参数,使求积公式的代数精确度尽量高,并指明所确定的求积公式具有的代数精确度 []20 002 '' ()()()()()h h f x dx f f h h f f h α??≈ ++-??? . 五. (10分) 已知非线性方程240x x +-=在014.x =附近有根,试构造一种收敛的迭代格式,并说明理由. 六. (10分) 求形如e (,)bx y a a b =为常数的经验公式,使它能和下表给出的数据相拟合 x 1 2 3 4 5 6 7 8 y 15.3 20.5 27.4 36.6 49.1 65.6 87.8 117.6 七. (10分) 分别用Euler 法和改进Euler 法求解下问题的数值解,取01.h =,计算过程保留四位小数. 00201',., (). y x y x y =+≤≤?? =? 八. (15分) 用下数据表构造不超过3次的插值多项式,建立导数型插值误差公式,并证明.

北京理工大学 离散数学I 期末测试

课程编号:MTH07034 北京理工大学2015-2016学年第二学期 2015级离散数学期末试题(A卷) 班级学号姓名成绩 1.选择题(共10题, 每题1分) 1)设p:我有时间,q:我去旅游,下面哪个命题可以符号化为p→q?( ) A. 除非我有时间,我才去旅游. B. 除非我去旅游,否则我没时间. C. 只有我有时间,我才去旅游. D. 我去旅游仅当我有时间. 2)设C(x)表示x是运动员,G(x)表示x是强壮的,则命题“没有运动员不是 强壮的”符号化为哪个公式?( ) A. ??x(C(x)∧?G(x)) B.??x(C(x)→?G(x)) C. ??x(C(x)∧?G(x)) D.??x(C(x)→?G(x)) 3)设F(x)表示x是火车,G(y)表示y是汽车,H(x,y)表示x比y快,则命题“有 的汽车比所有的火车快”符号化为下面哪个公式?( ) A. ?y(G(y)→?x(F(x)∧H(x,y))) B. ?y(G(y)∧?x(F(x)→H(y,x))) C. ?x?y(G(y)→(F(x)∧H(x,y))) D. ?y(G(y)→?x(F(x)→H(x,y))) 4)下列推理哪个是不正确的?( ) A. 前提:?p∨ (q→r), ?s∨p, q结论:s→r B. 前提:(p∨q)→ (r∧s), (s∨t)→u结论:p→u C. 前提:(p∧q) →r, r→s, ?s∧p结论:q D. 前提:p→ (q→r), p , q结论:r∨s 5)下面哪个命题公式是永真式?( ) A. (p∨q) →?r B. (q→p)∧q→p C. ?(?p∨q)∧q

北京理工大学2008级数值分析试题及答案

课程编号:12000044 北京理工大学2009-2010学年第二学期 2008级计算机学院《数值分析》期末试卷A 卷 班级 学号 姓名 成绩 注意:① 答题方式为闭卷。 ② 可以使用计算器。 请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。 一、 填空题(每空2分,共30分) 1. 设函数f (x )区间[a ,b]内有二阶连续导数,且f (a )f (b )<0, 当 时,用双点 弦截法产生的解序列收敛到方程f (x )=0的根。 2. n 个求积节点的插值型求积公式的代数精确度至少为______次,n 个求积节点的高斯 求积公式的代数精度为 。 3. 已知a =3.201,b =0.57是经过四舍五入后得到的近似值,则a ?b 有 位有 效数字,a +b 有 位有效数字。 4. 当x =1,-1,2时,对应的函数值分别为f (-1)=0,f (0)=2,f (4)=10,则f (x )的拉格朗 日插值多项式是 。 5. 设有矩阵?? ????-=4032A ,则‖A ‖1=_______。 6. 要使...472135.420=的近似值的相对误差小于0.2%,至少要取 位有效数字。 7. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列 {}() k X 收敛的充分必要条件是 。 8. 已知n=3时的牛顿-科特斯系数,8 3,81)3(1) 3(0 ==C C 则=) 4(2C ,=) 3(3C 。 9. 三次样条函数是在各个子区间上的 次多项式。 10. 用松弛法 (9.0=ω)解方程组??? ??=+-=++--=++3 1032202412 25322 321321x x x x x x x x x 的迭代公式是 。

北京理工大学数学专业数值计算方法Ⅰ期末试题2013级B卷,2015级A卷(MTH17170)

北京理工大学2014-2015学年第二学期 2013级数值代数与数值分析期末试题B 卷 一、(10 31.953=有5位有效数字,试求方程233204 x x -+ =的两个根,使它们至少有4位有效数字。 二、(10分)已知矩阵100024024A ?? ?= ? ?-?? ,求A 的1-范数,∞-范数,F-范数,2-范数。 三、(15分)用LU 分解求解方程组12321374321261513x x x ?????? ??? ?= ??? ? ??? ??????? ,要求写出LU 矩阵。 四、(15分)用迭代公式()1,0,1,k k k x x Ax b k α+=+-= 求解方程组12323121x x ??????= ? ? ?-???? ??,求α的范围使迭代收敛。 五、(10分)用插值多项式理论证明:00n n i k k i x k x i i k ==≠??- ?= ?- ???∑∏。 六、(10分)已知下面的数据表,写出用最小二乘法求形如2 y a bx =+的经验公式的正则方程组。 七、(15分)已知方程1552sin 0x x -+=在03x =附近有根,试构造一种收敛的迭代格式,并说明理由。 八、( 3次的插值多项式,建立导数型插值误差公式,并证明。 注:本课程自2014级起改为大二上学期必修和大三上学期选修两部分,名称分别为数值计算方法Ⅰ和数值计算方法Ⅱ。

北京理工大学2016-2017学年第一学期 2015级数值计算方法Ⅰ期末试题A 卷 一、(10 30.952=有5位有效数字,试求方程233104 x x -+ =的两个根,使它们至少有4位有效数字。 二、(10分)已知矩阵100024024A ?? ?= ? ?-?? ,求A 的1-范数,2-范数,1-条件数,2-条件数。 三、(15分)用LU 分解求解方程组123212124312261526x x x ?????? ??? ?= ??? ? ??? ??????? ,要求写出LU 矩阵。 四、(10分)已知{}k α收敛于a ,且1lim 0k k k a c a αα+→∞-=≠-,试构造一种收敛速度更快的序列。 五、(15分)用收敛的迭代法解下列线性方程组,要求写出迭代矩阵。 (1)12312251112022143x x x -?????? ??? ?= ??? ? ??? ??????? ; (2)12311116101210211012x x x --?????? ??? ?-= ??? ? ??? ?-??????。 六、(15分)用迭代公式()1,0,1,k k k x x Ax b k α+=+-= 求解方程组12323121x x ??????= ? ? ?-??????,求α的范围使迭代收敛。 七、(10分)用插值多项式理论证明:00n n i k k i x k x i i k ==≠??- ?= ?- ???∑∏。 八、(20分)用下表数据构造不超过3次的插值多项式,建立导数型插值误差公式,并证明。 2015级题目的分值不保证正确。

数值计算方法期末考精彩试题

1. 已知函数 21 1y x = +的一组数据: 求分段 线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 [] 0,1x ∈, ()1010.510.50110x x L x x --= ?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--% 所以分段线性插值函数为 ()[][]10.50,10.80.31,2x x L x x x ?-∈?=? -∈??% ()1.50.80.3 1.50.35 L =-?=% 4. 写出梯形公式和辛卜生公式,并用来分别计算积分1 01 1dx x +?. 计算题4.答案 4 解 梯形公式 ()()()2b a b a f x dx f a f b -≈ ?+???? 应用梯形公式得 1 01111 []0.75121011dx x ≈+=+++? 辛卜生公式为

确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度 ()()()() 1010h h f x dx A f h A f A f h --=-++? 证明题答案

故 ( )()()()40333h h h h f x dx f h f f h -= -++? 具有三次代数精确度。 1.设 3 2 01219 (), , 1, 44f x x x x x ==== (1)试求()f x 在 19,44???? ??上的三次Hermite 插值多项式()x H 使满足''11()(), 0,1,2,... ()()j j H x f x j H x f x === () x H 以升幂形式给出。 (2)写出余项()()()R x f x H x =-的表达式 计算题1.答案 1、(1) ()32142632331 22545045025x x x x H =- ++- (2) ()522191919()(1)(),()(,) 4!164444R x x x x x ξξξ-=---=∈ 3.试确定常数A ,B ,C 和 a ,使得数值积分公式 有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的? 计算题3.答案

北京理工大学 级数值分析试题及答案

课程编号:12000044 北京理工大学2010-2011学年第一学期 2009级计算机学院《数值分析》期末试卷A 卷 班级 学号 姓名 成绩 注意:① 答题方式为闭卷。 ② 可以使用计算器。 请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。 一、 填空题 (2 0×2′) 1. 设x =0.231是精确值x *=0.229的近似值,则x 有 位有效数字。 2. 设 ?? ????-=? ?????-=32,1223X A ,‖A ‖∞=___ ____,‖X ‖∞=__ _____, ‖AX ‖∞≤____ ___ (注意:不计算‖AX ‖∞的值) 。 3. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 ,则使用该迭代函 数的迭代解法一定是局部收敛的。 4. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= , f [20,21,22,23,24,25,26,27,28]= 。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 (填写前插公式、后插公式或中心差分公式),若 所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 (填写前插公式、后插公式或中心差分公式);如果要估计结果的舍入误差,应该选用插值公式中的 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( ;所以当 系数a i (x )满足 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于0.1%,至少要取 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 。 10. 由下列数据所确定的插值多项式的次数最高是 。

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

北理工数值分析大作业

数值分析上机作业

第 1 章 1.1计算积分,n=9。(要求计算结果具有6位有效数字) 程序: n=1:19; I=zeros(1,19); I(19)=1/2*((exp(-1)/20)+(1/20)); I(18)=1/2*((exp(-1)/19)+(1/19)); for i=2:10 I(19-i)=1/(20-i)*(1-I(20-i)); end format long disp(I(1:19)) 结果截图及分析:在MATLAB中运行以上代码,得到结果如下图所示:当计算到数列的第10项时,所得的结果即为n=9时的准确积分值。取6位有效数字可得.

1.2分别将区间[-10.10]分为100,200,400等份,利用mesh或surf 命令画出二元函数 z= 的三维图形。 程序: >> x = -10:0.1:10; y = -10:0.1:10; [X,Y] = meshgrid(x,y); Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1); subplot(2,2,1); mesh(X,Y,Z); title('步长0.1') >> x = -10:0.2:10; y = -10:0.2:10; [X,Y] = meshgrid(x,y); Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1); subplot(2,2,1); mesh(X,Y,Z); title('步长 0.2') >>x = -10:0.05:10; y = -10:0.05:10; [X,Y] = meshgrid(x,y); Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1); subplot(2,2,1); mesh(X,Y,Z); title('步长0.05')

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n

北京理工大学2019年成教期末考试题

2016-2017第一学期模拟题一 闭卷120分钟,每题2分,满分100分。 1. 单选:图灵在计算机科学方面的主要贡献有两个:一是建立图灵机模型,奠定了()理论的基础;二是提出图灵测试,阐述了机器智能的概念。 A 可计算; B 可推导; C 可进化; D 可预知 2. 单选:冯.诺依曼在EDVAC中采用了()的概念,以此为基础的各类计算机统称为冯.诺依曼计算机。 A 存储数据; B 核心计算; C 存储程序; D 进程 3. 单选:目前,大家公认的第一台电子计算机是在1946年2月由宾夕法尼亚大学研制的()。 A ALPHA; B BETA; C ENIAC; D FAST 4. 单选:第三代电子计算机是()计算机。 A 电子管; B 晶体管; C 逻辑管; D 集成电路 5. 单选:1971年intel公司的马西安.霍夫,制成世界上第一片4位微处理器intel ()。 A 4004; B 8086; C 6800; D 8051 6. 单选:计算机由5个基本部分构成:运算器、()、存储器、输入设备、输出设备。 A 控制器; B 计时器; C 寄存器; D 计数器 7. 单选:运算器的主要功能是进行算术和()运算。 A 关系; B 逻辑; C 布尔; D 顺序 8. 单选:各种内存储中,断电后,RAM中的信息将全部消失,而()中的信息不会丢失。 A CACHE; B HDD; C SSD; D ROM 9.

单选:外部存储器,又称为外存或者辅存,主要用来存放()的程序和数据。 A 暂时不用; B 正在执行; C 容量较大; D 格式复杂 10. 单选:()既属于输入设备,又属于输出设备。 A 显示器; B 扫描仪; C 触摸屏; D 打印机 11. 单选:一台计算机的所有指令的集合称为该计算机的()。 A 程序系统; B 指令系统; C 运算系统; D 核心系统 12. 单选:某进制数数制中每一固定位置对应的单位值称为()。 A 幂; B 位权; C 指数; D 尾数 13. 单选:不同数制都使用()表示法,即处于不同位置的数码所代表的值不同,与它所在位置的权值有关。 A 位置; B 补码; C 内码; D 反码 14. 单选:1001B转换为十进制数为()。 A 7; B 8; C 9; D 10 15. 单选:11010111B转换为十进制数为()。 A 127; B 215; C 512; D 217 16. 单选:1011.11B转换为十进制数为()。 A 113; B 0B.3; C 47; D 11.75 17. 单选:操作系统将裸机改造成一台(),使用户无需了解软硬件细节就能使用计算机,提高工作效率。 A 虚拟机; B 家用机; C 商用机; D 超级计算机 18. 单选:windows操作系统属于()操作系统。 A 命令行; B 单任务; C 图形用户界面; D 单机 19. 单选:unix操作系统属于()操作系统。 A 单用户单任务; B 多用户多任务; C 单用户多任务; D 多用户单任务

北理工考博数值分析——试卷

一、填空题:(共20分) 1.非奇异矩阵的条件数为,条件数的大小反映了方程组的 。 2.的相对误差和的相对误差之间的关系是。 3.给出一个求解对任意初值都收敛的迭代公式 ,说明如何获得及收敛理由。 4. 设为互异节点,为对应节点上的拉格朗日插值基函数,则, 。 5.设互异,则当时,;。 6.数值积分公式的代数精确度 是,____ Gauss型求积公式。 二、(10分)设阶矩阵对称正定,用迭代公式 求解。问实数取何值时迭代收敛? 三、(13分)设有线性方程组, (1)将系数矩阵A分解为 ,求;(2)求解方程组。

四、(10分)用最小二乘法确定中的参数和,使该函数曲线 拟合于下 列形式的数据(推导满足的正则方程组)。 五、(10分)求四次插值多项式,使其满足条件 ,并写出插值余项。 六、(10分)设,考虑方程,证明求解该方程的牛 顿法产生的序列(其中)是收敛的;并求,使得 。 七、(15分)对于积分,当要求误差小于时,用复化梯 形公式及 复化抛物线公式计算近似值时,所需节点数及步长分别为多少?计算满足精度要求的 近似值。 八、(12分)试求系数,使3步公式 的阶数尽可能高,并写出其局部截断误差的主项。

一、(12分)设有线性方程组, (1)将系数矩阵A分解为L和U的乘积,其中L是单位下三角阵,U是上三角阵; (2)解线性方程组。 二、(18分) (1)已知数据: 试分别用线性及二次插值计算的近似值,并估计误差。 (2)设,试求三次插值多项式使得 , 并对任一写出误差估计式。 三、(20分) (1)设线性方程组的系数矩阵

试写出收敛的迭代计算公式; (2)若线性方程组的系数矩阵,用表示 迭代法和迭代法收敛的充分必要条件。四、(15分) (1)若用复化梯形、复化辛普森公式计算积分的近似值,要求计算结果有5位有效数字,分别应取多大? (2)选一复化求积公式计算积分的近似值,要求截断误差小于。 五、(10)确定,使求积公式 的代数精确度尽可能高,并指出是否是型求积公式。 六、(15分)试用法推导出求近似值的迭代 格式, 并用导出的公式计算的近似值,要求误差不超过。 七、(10分)已有求解常微分方程的二步公式: 欲使此格式的整体截断误差达到最高阶,应取何值,并说明公式是几阶方法。

数值分析试题及答案

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以 当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

数值分析

2008级计算机学院《数值分析》期末试卷A 卷 班级 学号 姓名 成绩 一、 填空题(每空2分,共30分) 1. 设函数f (x )区间[a ,b]内有二阶连续导数,且f (a )f (b )<0, 当 时,用双点 弦截法产生的解序列收敛到方程f (x )=0的根。 2. n 个求积节点的插值型求积公式的代数精确度至少为______次,n 个求积节点的高斯 求积公式的代数精度为 。 3. 已知a =3.201,b =0.57是经过四舍五入后得到的近似值,则a ?b 有 位有 效数字,a +b 有 位有效数字。 4. 当x =1,-1,2时,对应的函数值分别为f (-1)=0,f (0)=2,f (4)=10,则f (x )的拉格朗 日插值多项式是 。 5. 设有矩阵?? ????-=4032A ,则‖A ‖1=_______。 6. 要使...472135.420=的近似值的相对误差小于0.2%,至少要取 位有效数字。 7. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列 {}() k X 收敛的充分必要条件是 。 8. 已知n=3时的牛顿-科特斯系数,8 3,81)3(1) 3(0 ==C C 则=) 4(2 C ,=) 3(3C 。 9. 三次样条函数是在各个子区间上的 次多项式。 10. 用松弛法 (9.0=ω)解方程组??? ??=+-=++--=++3 1032202412 25322 321321x x x x x x x x x 的迭代公式是 。 11. 用牛顿下山法求解方程03 3 =-x x 根的迭代公式是 ,下山条件是 。

北理工考研复试班-北京理工大学电子与通信工程考研复试经验分享

北理工考研复试班-北京理工大学电子与通信工程考研复试经验分享北京理工大学1940年诞生于延安,是中国共产党创办的第一所理工科大学,是新中国成立以来国家历批次重点建设的高校,首批进入国家“211工程”和“985工程”,首批进入“世界一流大学”建设高校A类行列。毛泽东同志亲自题写校名,李富春、徐特立、李强等老一辈无产阶级革命家先后担任学校主要领导。在英国QS教育集团公布的2018世界大学排行榜中,学校位居世界第389名、亚洲第76名、中国大陆第17名。学校现隶属于工业和信息化部,全体师生员工正对标国家“两个一百年”奋斗目标,全力朝着中国特色世界一流大学的建设目标迈进。 启道考研复试班根据历年辅导经验,编辑整理以下关于考研复试相关内容,希望能对广大复试学子有所帮助,提前预祝大家复试金榜题名! 专业介绍 电子通信工程英文名为Electronics and Communication Engineering,是电子科学与技术和信息技术相结合,构建现代信息社会的工程领域,利用电子科学与技术和信息技术的基本理论解决电子元器件、集成电路、电子控制、仪器仪表、计算机设计与制造及与电子和通信工程相关领域的技术问题,研究电子信息的检测、传输、交换、处理和显示的理论和技术。其工程硕士学位授权单位培养从事信号与信息处理、通讯与信息系统、电路与系统、电磁场与微波技术、电子元器件、集成电路等工程技术的高级工程技术人才。研修的主要课程有:政治理论课、外语课、矩阵论、泛函分析、数值分析、半导体光电子学导论、半导体器件物理、固体电子学、电子信息材料与技术、现代材料分析技术、电路设计自动化、电路优化设计、数字信息处理、信息检测与估值理论、导波原理与方法、导波光学、微波电路理论、高等电磁场理论、应用信息论基础、数字通讯、系统通信网络理论基础、现代管理学基础等。 招生人数与考试科目 电子线路(含数电与模电两科内容)或C语言程序设计(上机)。 复试时间地点

数值分析试题及答案汇总

数值分析试题及答案汇 总 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

数值分析试题 一、填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数 的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当系数 a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 (B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

相关主题