搜档网
当前位置:搜档网 › 基于ADAMSCAR前悬架仿真模板

基于ADAMSCAR前悬架仿真模板

基于ADAMSCAR前悬架仿真模板
基于ADAMSCAR前悬架仿真模板

摘要

操纵稳定性是汽车的重要使用性能之一,它不仅影响到汽车驾驶的操纵方便程度,而且也是决定高速汽车行驶安全的一个重要性能,被称为“高速车辆的生命线”。因此操纵稳定性日益受到人们的重视。但是传统的研究分析方法已无法满足现代汽车的研究要求,现在虚拟样机技术作为一项新的产业技术,己经开始应用到各个领域。本文正是利用动力学仿真软件ADAMS研究探讨悬架系统对操纵稳定性的影响。

本文以汽车的前悬架系统为研究对象,应用ADAMS软件对汽车做仿真优化分析。第二章和第三章详细的介绍了汽车操纵稳定性在国内外发展状况及研究成果及ADAMS软件。然后利用ADAMS/Car模块建立汽车的前悬架系统并对该系统进行模拟仿真分析。

关键字 ADAMS/CAR 汽车操纵稳定前悬架运动学仿真

Abstract

Handling and stability is one of the important performance of the car, it not only affects the ease of manipulation of motorists, but also determine the performance of an important high-speed cars with security, known as "high-speed vehicles lifeline." Therefore, increasing handling stability people's attention. But the traditional analysis methods have been unable to meet the research requirements of modern car, and now virtual prototype technology as a new industrial technology, had begun applied to various fields. This article is the use of dynamic simulation software ADAMS study investigated the effect of steering stability of the suspension system.

In this paper, the car's front suspension system for the study, application software ADAMS simulation and optimization analysis of automobile do. The second and third chapters detailed description of the vehicle handling and stability at home and abroad and the research and development of ADAMS software. Then use ADAMS / Car module builds the front suspension system of the vehicle and the system simulation analysis.

Keywords ADAMS / CAR car front suspension kinematics simulation steering stability

目录

摘要............................................................... Abstract...........................................................

1 绪论............................................................

1.1 课题研究背景...............................................

1.2 课题的研究意义与内容.......................................

2 汽车操纵稳定性的介绍............................................

2.1 汽车操纵稳定的基本概念...................................

2.1 汽车操纵稳定的研究历史与现状.............................

3 ADAMS 软件介绍.................................................

3.1 软件简介...................................................

3.2 ADAMS 模块简介.............................................

4 基于ADAMS/Car 汽车前悬架系统模型的建立.........................

4.1 ADAMS/Car 建模原理..........................................

4.2 悬架系统介绍...............................................

4.2.1 双臂独立式悬架.......................................

4.2.2 麦佛逊式独立悬架.....................................

4.3 前悬架系统模型的建立.......................................

4.4 本章小结...................................................

5 前悬架系统的仿真................................................

5.1 运动学仿真目的.............................................

5.2 前悬架系统的运动学仿真.....................................

5.2.1

5.3 本章小结...................................................

6 总结与展望...................................................... 参考文献............................................................ 致谢................................................................

1 绪论

1.1 课题研究背景

当今世界汽车工业迅猛发展,汽车已经成为人们日常生活和工农业生产中不可缺少的重

要交通运输工具。随着汽车工业的发展和汽车的普及,人们对汽车的要求也越来越高,在获得良好的动力性和经济性的同时,还要求汽车具有良好的操纵稳定性和行驶平顺性。操纵稳定性是影响汽车安全性的主要因素之一,因此如何评价和设计汽车的操纵稳定性、获得良好的安全性,一直是汽车领域的重要课题。

在这一领域中,基础车辆动力学模型理论的研究和利用所得模型进行计算机仿真研究都

显得十分重要。尤其在计算机工业高度发达的今天,在计算机上进行仿真分析是一种既现实又经济的方法。而我们所建立的汽车模型也经历了一个从简单到复杂、从粗糙到精确的过程。这是因为汽车是一个包含惯性、弹性、阻尼等动力学特性的一个多自由度非线性连续体振动系统。而且由于组成汽车的各机械子系统如转向系统、悬架系统、轮胎等之间的相互祸合作用,使汽车的动态特性非常复杂。要想真实地描述汽车的动态特性,必须考虑尽可能多零件的运动,得到精确的数学模型。然而,太复杂的模型方程又给求解带来巨大困难,甚至得不到结果。因此,各国学者在这一领域中研究的传统方法是通过试验或人为地把汽车各子系统加以简化,抽取出能够代表系统或总成特性的本质因素,建立起较简单的数学、力学模型进行求解,并把求得的结果试验加以验证川。

理论研究的发展和计算机技术的进步,使得虚拟样机技术应运而生。以多体系统动力学理论为基础编写的大型通用软件为工程技术人员提供了方便的建模手段。应用大型通用软件能自动生成运动学和动力学方程,并利用软件内部的数学求解器准确的求解,不需要人工建立、求解方程,编写程序,因而能够节省大量的时间和人力物力,提高工作效率。这对于行业竞争逐渐加剧的汽车工业行业来说无疑是一大福音。在产品开发中采用虚拟样机分析的开发策略,成为各大汽车公司缩短产品开发周期、减少产品开发费用、提高产品开发质量,从而提高竞争能力的主要做法。

随着CAD/CAE/CAM在汽车产品设计开发中的广泛采用,人们逐渐意识到提高产品质量、缩短产品开发周期及降低产品开发最有效的途径应用数字化功能样机进行系统水平的设计。它可以有效地将三维实体模型及应用有限元FEA(Finite Element Analysis)软件描述的零部件模态有机地结合起来,准确地预测机械系统在虚拟实验室、虚拟场地上进行的各种模拟试验的性能。在这一领域美国MSC公司的ADAMS软件是目前无可基于的汽车操纵稳定性仿真

试验初步研究争议的领导者,是世界上市场占有率最高的机械系统仿真MSS(Mechanical System Simulation)软件。汽车的操纵稳定性是影响其主动安全性的主要性能之一,而且计算机仿真技术日益成熟,在这种背景下软件将越来越广泛的应用于汽车操纵稳定性研究中。

1.2 课题的研究意义与内容

SUV(运动型多功能车)通常采用非承载式车身结构,底盘有坚固的车架,使得 SUV

在碰撞或者翻车时对乘员有良好的保护作用;同时SUV离地间隙大使得汽车有良好的通

过性能和良好的视野。这些特点使得SUV具有很好的道路适应性和更多的驾驶乐趣,于

是越来越受到大家的欢迎。但是 SUV重心高非簧载质量大等缺点使得汽车的操纵稳定性

受到很大的影响,使得SUV的侧倾稳定性比较差在避让或转弯时侧翻的事故率很高,这

已经成为生产厂家和交通安全部门一个十分头疼的问题。据资料统计,在美国,2004

年SUV翻车造成的悲剧在SUV的各类车祸中占到61%,是一般轿车翻车事故死亡率的三倍,所以SUV的安全问题越来越受到人们的关注。

如果采用传统的设计方法来解决这一问题,也是国内目前普遍采用的方法,就是先分析 SUV 产生侧翻的原因主要为汽车重心高度、悬架侧倾角刚度、侧倾中心高度等,然后计算在某一状态下汽车的侧倾刚度、侧倾中心的一系列的参数,由于汽车的悬架系统是个很复杂的运动系统,整个运动过程的计算过于繁琐,这些参数都只能在很小的范围内保证其准确性,并且还没法考虑其系统中的橡胶衬套等元件的变形,往往通过多次试验才能达到设计要求,并且通过试验发现的问题也很难找到产生问题的原因。于是人们想到了如果利用计算机来解决这一问题会大大缩短开发周期,并能提高分析的准确性。

内容还没有完

2 汽车操纵稳定性的介绍

2.1 汽车操纵稳定的基本概念

汽车操纵稳定性,是指在驾驶员不感觉过分紧张、疲劳的条件下,汽车能按照驾驶员通过转向系及转向车轮给定的方向(直线或转弯)行驶;且当受到外界干扰(路不平、侧风、货物或乘客偏载)时,汽车能抵抗干扰而保持稳定行驶的性能。

操纵稳定性不仅影响到汽车驾驶的操纵方便程度,而且也是决定高速汽车安全行驶

的一个主要性能,所以被称为“高速车辆的生命线”。随着道路条件的不断改善,汽车在公路上的行驶速度也不断提高。因此汽车的高速操纵稳定性日益受到人们的重视,如何研究和评价汽车的操纵稳定性,以获得良好的汽车主动安全性也成为一个重要的课题。

2.2 汽车操纵稳定的研究历史与现状

汽车操纵稳定性的研究,是与汽车车速的不断提高分不开的。早期的低速汽车,还谈不上操纵稳定性问题,最早提出操纵稳定性的问题是在具有较高车速的赛车上。后来,随着车速的不断提高,在轿车、大客车和载重汽车上也都不同程度地出现了类似的问题。操纵稳定性不好的汽车通常会有“飘”、“反应迟钝”、“晃”、“丧失路感”和“失去控制”等现象。

在国外,二十世纪三十年代才开始对汽车的操纵稳定性进行系统的研究。并取得了不少有价值的研究成果。1925年法国工程师乔治·布劳海特发现了轮胎侧偏现象。同时,这一年也建立起了驱动力学的普遍原理。但由于缺乏对轮胎产生的横向力的理解,此项理论一直没有得到全面的应用。1935年Evans 给出了有关轮胎力学特性较为深入的结果,包括轮胎侧偏刚度随着侧偏角变化的规律。

随后的几年里,汽车操纵稳定性理论的一些重要的基本概念,如不足转向、过度转向、临界车速等已被汽车工程师们所熟悉。英国的Lanchester法国的Broulhet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。并月人们开始认识到了轮胎侧向力学的重要性。

1934年 Olley首先提出车速是一个关键因素。固特异轮胎公司根据他们的研究成

果,进行了转鼓实验,研究了轮胎特性。1935年,Evans发表了关于轮胎横向特性的文

章,并给出了转向力和回正力矩”。

1956年,Cornell Aeronautical实验室的William https://www.sodocs.net/doc/f510368563.html,liken,David W.Whitcomb和Leonard Segel

发表了一套较为完整的关于车辆操纵稳定性的理论和定量分析的文章。其中很多的理论到现在仍被引用。在Whitcomb的文章中,他利用两自由度模型得出了一系列汽车稳定性和操纵性方面的结论。由于不考虑侧倾自由度,Whitcomb把汽车简化成了相当于自行车的两自由度模型,研究了两自由度模型的稳态响应和瞬态响应。在研究汽车横摆响应时,引入了稳定性因数K的概念。

在二十世纪60年代以前,对操纵稳定性的研究主要以开环研究为主,所谓开环研究就是把汽车作为

一个开环控制系统,求出汽车曲线行驶的时域响应和频率响应特性,对系统进行稳态和瞬态分析,用横摆角速度频率响应特性、方向盘转角阶跃输入下的稳态响应、方向盘转角阶跃输入下的瞬态响应、不足转向特性和过度转向特性等来表征汽车的特性。按照这种方法研究汽车操纵稳定性,需要建立精确的汽车动力学模型。之前的开环研究取得了许多的研究成果,详细讨论了汽车的不足转向和过度转向特性分析了保持汽车行驶方向的稳定性条件是临界车速必须大于汽车最高车速等。其应用的基础是经典控制理论,依据汽车的稳态和瞬态分析,使用不足一过度转向特性和转向输入的阶跃响应特性,来对汽车的操纵稳定性进行评价。

Martin Goland和Frederick Jindra在1961年发表的文章中用两个自由度的模型研究了四轮汽车的操纵性和稳定性。他将侧倾自由度用作用于轮胎上的垂直载荷来近似模拟,考虑了轮荷转移效应,并分析轮胎的力学特性随着车轮载荷的变化而改变。结果表明操纵稳定性随着质心的变化而变化,并且轮胎压力和轮胎宽度都在改变。

1967年,通用公司的R.Thomas Bundorf在文章中讨论了汽车参数设计和不足转向以及特征车速的关系,并提出如何预测和实际测量车辆的不足转向特性。他指出特征车速是线性模型的产物;在正常行驶条件下(横向加速度小于1/3g),车辆可由线性模型模拟,并且需要建立大直径侧滑试验场来测量特征车速。Bundorf还推导出了在给定设计参数下预测特征车速的表达式。

在日本,自从近藤提出了关于驾驶员对车辆操纵动作的基本观点以来,藤井、井口、三川等人的研究中采用了各种传递函数来描述驾驶员的操纵和汽车的运动。因为有精确的数学模型,能够得出精确的数字解,这些研究工作对车辆的设计、分析和评价车辆性能是很有价值的。电子计算机的发展和对轮胎侧偏特性的深入研究,使得已经有可能对汽车的动态响应做出相当全面而逼真的仿真,人们提出了自由度越来越多的数学力学模型,同时也提出了各种评价指标来评价汽车的操纵稳定性。

七十年代初期,EVS研究计划开始实施,促使人们去研究实用的操纵稳定性设计方法。鉴于当时的驾驶员模型仍处于提高闭环跟踪响应的仿真精度的水平,各国研究人员主要采用系统工程学的方法去探索操纵稳定性的评价方法。依据大量的试验与理论分析,首先指出了稳态响应特性、瞬态响应特性、回正特性和侧向滑移特性的安全容许范围或极限,对操纵性进行了客观评价。从七十年代开始,计算机技术迅猛发展,操纵稳定性的研究和计算机紧密地结合起来,车辆仿真模型变得更加复杂和真实,对操纵稳定性的研究也更加逼真。先期的仿真工作都在模拟计算机上进行,它能解决实时动力学问题,但其致命缺点是不能解决非线性问题。70年代早期,工程师设计了在数字和模拟联合计算机上运行的代码,使车辆动力学模型既可实时仿真又可包含非线性因素。具有代表性的工程师有Murpphy Tiffany Hickner 。

七十年代中期以后,开始利用驾驶员对汽车直线行驶性能、转弯性能和转向轻便性等特性的感觉,进行主观评价。主观评价方法虽然没有经过理论推导,但是由于考虑了驾驶员因素和道路环境的特点,

所以在一定程度上体现了闭环设计的思想。但由于对汽车的瞬态响应等特性的主、客观评价不一致,难以有效地设计汽车的操纵稳定性。

八十年代初,人们从理论和试验两方面入手,重新开始深入研究人一车闭环系统。在理论方面,充分地考虑到人的学习性和适应性,建立了许多确定性驾驶员方向控制模型,有效地仿真了人一车闭环系统对给定路径的跟随过程。在试验方面,考虑到驾驶员模型的进展程度不能满足主动安全性闭环设计的要求以及安全试验设计方法只能在样车试制后采用并受自然条件限制等缺陷,研制了开发型驾驶模拟器。这种驾驶模拟器采用先进的实时仿真、数字成像、液压控制等技术,将真实的人和模型化的汽车相结合,通过室内计算机仿真代替场地试验,缓和了理论研究的发展程度与汽车主动安全性闭环设计要求之间的矛盾。

九十年代以来,利用开发型驾驶模拟器进行人一车闭环系统主动安全性研究,改进汽车运动性能是国际上近期主要的发展方向之一。1991年日本马自达汽车公司兴建了运动车型开发型驾驶员模拟器。1993年初,美国福特汽车公司也研制出开发型驾驶员模拟器。我国吉林大学汽车动态模拟国家重点实验室建设成功的开发型驾驶模拟器也投入使用,现属世界一流水平。

在我国,汽车操纵稳定性研究始于七十年代。清华大学和长春汽车研究所都同时系统地开展了这方面研究工作。我国开展汽车操纵稳定性研究的历史虽不太长,但吸取了国外的研究成果和经验,进展较快。其中,成就最突出的是吉林大学的郭孔辉院士。郭孔辉教授在驾驶员模型、人一车闭环系统特性及人一车闭环系统的定量评价方面做了大量研究工作。他在研究驾驶员一汽车一道路闭环操纵系统模型且考虑了影响汽车操纵性的诸多因素的基础上,提出了物理意义明确的各个单项总方差评价指标,并应用频率统计分析方法提出了闭环系统主动安全性的综合评价与优化设计方法,在工程实际中得到了广泛应用。

3 ADAMS 软件介绍

3.1 软件简介

ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国机械动力公司(Mechanical Dynamics Inc.)(现已并入美国MSC 公司)开发的虚拟样机分析软件。ADAMS已经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额,现已经并入美国MSC公司。

ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,

其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。

ADAMS一方面是虚拟样机分析的应用软件,用户可以运用该软件非常方便地对虚拟机械系统进行静力学、运动学和动力学分析。另一方面,又是虚拟样机分析开发工具,其开放性的程序结构和多种接口,可以成为特殊行业用户进行特殊类型虚拟样机分析的二次开发工具平台。

3.2 ADAMS 模块简介

ADAMS软件由基本模块、扩展模块、接口模块、专业领域模块及工具箱5类模块组成。用户不仅可以采用通用模块对一般的机械系统进行仿真,而且可以采用专用模块针对特定工业应用领域的问题进行快速有效的建模与仿真分析。

Adams是全球运用最为广泛的机械系统仿真软件,用户可以利用Adams在计算机上建立和测试虚拟样机,实现实时在线仿真,了解复杂机械系统设计的运动性能。

MD Adams(MD代表多学科)是在企业级 MSC SimEnterprise仿真环境中与MD Nastran相互补充,提供了对于复杂的高级工程分析的完整的仿真环境, SimEnterprise是当今最为完整的集成仿真和分析技术。

MD Adams的发布完全支持运动-结构耦合仿真,与MD Nastran的双向集成可以释放便利地将Adams 的模型输出到Nastran进行更为详细的NVH分析或应力恢复,继而进行寿命/损伤计算。

MD Adams/Car

应用MD Adams/Car,技术团队可以快速建立和测试整车和子系统的功能化虚拟样车。

这可以帮助在车辆研发过程中节省时间、降低费用和风险,提升新车设计的品质。通过

MD Adams/Car的仿真环境,汽车工程师们可以在虚拟环境中对于不同的路面、不同的

实际条件反复测试他们的设计,从而得到满意的结果。

MD Adams/Car包含许多的功能模块用于多学科仿真。

Multidiscipline Value多学科价值

多学科的价值在于大大地拓广了数字分析的能力,MSC的MD技术是优化的涵盖跨学科/多学科的集成,可以充分利用现有的高性能计算技术解决大量大规模的问题。多学科技术聚焦于提升仿真效率、保证设计初期设计的有效性、提升品质、加速产品投放市场。

4 基于ADAMS/Car 汽车前悬架系统模型的建立

4.1 ADAMS/Car 建模原理

DAMS/Car模块通常的建模程序是:设计人员首先在“Template Budider”(模板)下创建所需的模板,或对已有的模板进行修改以适应建模要求;然后根据建立的模板在“Standard Interface”(标准界面)下建立子系统模型,并将子系统模型组装成系统总成或整车模型;最后根据研究目标对组装好的悬架或整车模型给出不同的分析命令,即可进行不同工况下的仿真分析或优化设计[8]。

由于ADAMS/Car模板采用的是自下而上的建模顺序(即悬架整车总成模型都是建立于子系统模型基础之上,而不同的子系统则需要建立不同的模板),因此,在“Template Builder”中建立模板是ADAMS/Car 仿真分析首要的关键步骤。

(1)物理模型的简化

根据物理模型中各零件之间的相对运动关系,定义出各零件的拓扑结构,把没有相对运动关系的零件进行整合,定义为“General Part”。

(2)确定“Hard Point”(硬点)

硬点即为各零件间连接处的几何定位点,确定硬点就是在模板坐标系内给出零件之间连接点的几何位置。

(3)创建零件

根据硬点位置或零件质心的绝对坐标创建零件,并将实际零件的参数(如质量、转动惯量、质心位置等)输入到相应的对话框中。注意,零件的三个坐标轴方向必须与绝对坐标系的相应坐标轴平行。

(4)定义“Mount”(组装)

系统总成或整车模型都是由多个子系统装配而成,因而要在各子系统中定义“Mount”(组装),以方便各子系统模型之间的装配连接。

(5)创建零件的“Geometry”(几何形体)

在硬点的基础上建立零件的几何形体。由于零件的动力学参数已经确定,因此几何形体对动力学仿真结果实际上没有影响[4]。但在运动学分析中,零件的外形轮廓直接关系到机构的运动干涉。考虑到模型的直观性,零件的几何形状应尽可能地贴近实际结构。

(6)定义“Attachment”(连接)

按照各个零件间的运动关系确定约束类型,通过“Joint”(约束)或“Bushing”(衬套)等将各零件连接起来,从而构成子系统模板的结构模型。定义连接是正确建模的重要步骤,它直接关系着系统自由度的合理性。

(7)定义“Parameter Variable”(参数变量)

对不同的子系统模板,通常还需定义相应的参数变量,例如悬架模型中通常需对前轮定位参数进

行定义。

(8)定义、测试通讯器(Communicator)。

创建、核对与外部连接的通讯器的类型、名称、对称性。

4.2 越野车前悬架模型的建立

4.2.1 简化模型

设悬架模型的绝对坐标系的坐标原点为两侧车轮接地印迹中心点连线之中点,车辆行驶方向为x 轴负向,y轴由坐标原点指向驾驶员右侧,z轴符合右手螺旋法则垂直向上。假设前悬架关于整车纵向中心对称面对称,这样在建模过程中将type选为left,只需建立半个前悬架模型,另一半模型(包括零件、硬点、约束)可由ADAMS/Car自动生成。忽略导向杆件的柔性和变形,假设前悬架是一个多缸体系统,除了在减振器与车身及控制臂与副车架等连接处定义了“Bushing”(衬套)的弹性特性之外,系统各零件及车身均假定为缸体。假设所研究的越野车前后部符合不耦合力学条件,即前后悬架弹簧上质量的垂向运动相互独立,无轴荷纵向转移。簧上质量根据质心位置安比例分配与前、后车架上。

表4-1 前悬架简化模板的约束情况

类型约束自由度个数

万向副 4 2

圆柱副 4 2

球形副 3 2

移动副 5 1

转动副 5 2

固定副 6 1

点线约束 2 1

由表4-1可知,汽车前悬架的约束方程数目为:

m=4*2+4*2+5*1+5*2+6*1+2*1=45 (4.1)

汽车前悬架的自由度为:

DOF=6*8-m=48-45=3 (4.2)

汽车悬架共有 3 个自由度,分别为车轮绕车轴的转动、车轮绕主销的转动和车轮的上下跳动。

4.2.2 确实硬点坐标

表 4-2 前悬架定位参数

序号硬点Hard Point x/mm y/mm z/mm

1 驱动轴内支点drive_shaft_inr 0 -200 280

2 下控制臂前支点lca_front -169 -327 233

3 下控制臂外支点lca_outer 0 -690 220

4 下控制臂后支点lca_rear 230 -342 233

5 上控制臂前支点uca_front 15 -345 636

6 上控制臂外支点uca_outer 23 -604 661

7 上控制臂后支点uca_rear 139 -375 622

8 减振器下安装点lwr_strut_mount 0 -517 226

9 减振器上安装点top_mount 0 -517 636

10 转向横拉杆内支点tierod_inner 200 -420 336

11 转向横拉杆外支点tierod_outer 150 -720 336

12 车轮中心wheel_center 0 -750 336

13 副车架前支点subframe_front -400 -380 233

14 副车架后支点subframe_rear 400 -380 233

将硬点坐标输入到 Hardpoint Table 中如图所示

图4-1 硬点(hardpoint)坐标

4.2.3 生成悬架系统模型

在ADAMS/Car 中建立的部件主要包括一般部件和安装部件。一般部件是指确定了初始位置、方向、质量、惯量和质心的刚性体,所建模型中主要包含:下控制臂(lower_control_arm)、转向节(upright)、加强臂(yoke)、减振器(strut)、转向横拉杆(tierod)等;安装部件用于模型内部部件与其他子系统、试验台或地面连接,所建模型中主要包含:减振器与车身子系统连接件(strut_to_body)、转向横拉杆与转向子系统连接(tierod_to_steering)、下摆臂与车身子系统连接件(lca_to_body)等。在ADAMS/Car 中建立的前悬架系统仿真模型如图所示。

图 4-2 前悬架仿真模型

4.4 本章小结

5 前悬架系统的仿真

5.1 运动学仿真的目的

悬架系统可以用来传递车轮与车架之间的力与力矩,它的运动学特性影响着汽车

的使用性能,特别是汽车的操纵稳定性、转向轻便性和轮胎的磨损。所以对前悬架系统进行运动学仿真的目的是考察随着车轮的跳动,车轮定位参数前轮前束角、车轮外倾角、主销内倾角、主销后倾角、轮距变化等相关参数的变化是否合理。

5.2 前悬架系统的运动学仿真

5.2.1 悬架双轮同向跳动试验

对于悬架来说,可以进行很多种仿真,如:双轮同向跳动(Parallel Wheel Travel);双轮反向跳动(Oppssite Wheel Travel);单轮跳动(Single Wheel Travel);转向

(Steering);静载(Static Load);侧倾和垂向力(Roll & Vertical Force)等。在这里我进

行的是双轮同向跳动试验,这是悬架最常做的试验之一。仿真过程参数的设置如图

图 5-1 仿真过程参数

5.2.2 仿真结果分析

仿真前定义的测量函数—前轮的定位参数,在ADAMS/PostProcessor模块中以曲线图形或表格数据的形式输出,可以清楚的看出车轮上下轮跳动时各种参数的变化。

5.2.2.1 主销内倾角

主销内倾有利于主销横向偏移距的减小,从而可减少转向时驾驶员加在方向盘上的力,使转向操纵轻便,同时也可减少从转向轮传到方向盘上的冲击力。内倾角不宜过大,否则在转向时,车轮绕主销转动的过程中,轮胎与路面之间将产生较大的滑动,增加了轮胎与路面间摩擦阻力,这不仅使转向发沉,而且加速了轮胎的磨损。实际设计时,大致范围为:7°- 13°,希望取较小的数值。从图可以看出,在车轮跳动过程中,主销内倾角变化幅度不大,其变化范围也较为理想。

图 5-2 主销内倾角曲线

The kingpin inclination curve

5.2.2.2 主销后倾角

主销后倾角对转向时的车轮外倾变化影响较大。假若主销后倾角设计较大,则外侧转向轮的外倾角会向负方向变化。因此,当前轮主销后倾角较大时,需增加前轮转向所必须的横向力,以抵消外倾推力,这样不足转向弱,最大横向加速度会增大。一般认为2°-- 3°。是合理的范围。图为车轮跳动时主销后倾角的变化曲线。可以看出,主销后倾角在2.54°附近变化,满足设计要求。

图 5-3 主销后倾角曲线

The caster angle curve

5.2.2.3 前轮外倾角

除上述主销后倾和内倾两个角度保证汽车稳定直线行驶外,前轮外倾角也具有定位作用。如果空车时车轮的安装正好垂直于路面,则满载时,车桥将因承载变形,而可能出现车轮内倾。这样将加速汽车轮胎的偏磨损。另外,路面对车轮的垂直反作用力沿轮毅的轴向

分力将使轮毅压向轮毅外端的小轴承,加重了外端小轴承及轮毅紧固螺母的负荷,降低它们的使用寿命。因此,为了使轮胎磨损均匀和减轻轮毅外轴承的负荷,安装车轮时预先使车轮有一定的外倾角,以防止车轮内倾。同时,车轮有了外倾角也可以与拱形路面相适应。但是外倾角也不宜过大,否则也会使轮胎产生偏磨损。

另外,车轮跳动时的外倾变化对车辆的稳态响应特性等有很大影响I11,应尽量减少车轮相对车身跳动时的外倾角变化,一般上跳时,对车身的外倾变化为一2°-- 0.5°/50mm。图4.6为左右车轮同步上下跳动时车轮外倾角的变化曲线。可以看出,在车轮上跳过程(横坐标0--50mm)中,车轮外倾角在1.0 -- 1.1°之间变化,变化范围约为0.1° /50mm,满足设计要求。

图 5-4 前轮外倾角曲线

The camber angle curve

5.2.2.4 前轮前束角

车轮跳动时的前束变化对车辆的直线稳定性,车辆的稳态响应特性有很大的影响,是汽车悬架的重要参数之一。设计时希望在车轮跳动时,前束不变或变化幅度较小。图为车轮上下跳动时前束角的变化曲线。可以看出,车轮上下跳动时前轮的前束角变化范围为0.04°一 0.25 °/50mm,变化范围合理且幅度较小,满足设计要求。

图 5-5 前轮前束角曲线 The toe angle curve

5.3 本章小结

法学虚拟仿真实训平台软件

法源法律实务综合模拟软件 一、产品名称及规格型号 法源法律实务综合模拟软件V1.0 二、产品说明 (一)系统介绍 法源法律实务综合模拟软件是完全模拟诉讼实务中的程序和标准的法律案件审理程序的整个过程的一套训练系统。系统覆盖现今所有法律机构办案流程,通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。系统内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解的四十余种诉讼与非讼业务流程。 (二)系统价值 1、通过软件的案件和流程设置,学生通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。 2、软件内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解等。 3、软件内置的教学案例为真实的案例,并且在教师端可以进行自由添加删除修改。所谓的真实案例是该案件要求附带整套证据扫描件。 4、教师端可以进行实时庭审的监控以及对实验的所有学生进行实验进度的监控和评分。 5、管理员端可以进行班级、账号的添加,可以对软件的数据进行添加修改(如添加视频)。 6、学生端可以完成老师安排的实验也可以自行添加实验进行练习(实验的业务详见参数),可以进行单人多角色模式和多人互动模式进行操作,庭审中即可用语言视频操作也可以用文字录入模式进行操作。 7、业务流程以流程图式和 flash两种方式嵌入,即让学生和教师快速清楚了解诉讼侦查等业务的整个概况,又增加了趣味性。

8、考核功能:具有主观与自动评分相结合来(实验完成的时间、完成程度、教师预先设定的实验要求)考核学生的整个实验。 9、诉讼流程:系统用流程图跟踪颜色变动方式来显示,可以清楚直观的显示学生的实验情况,以及教师对其的监控。 10、实验数据:实验数据可以在教师端口导出所有学生的所有已完成实验的案件文书,可保存WORD打印。 11、软件数据: (1)真实案件 50 例; (2)文书模版:内置 1400 份各类型的法律文书模板; (3)司法案例,内置上千例司法案例、两高公报等; (4)合同模板:内置上千份合同模板库。 (5)法律法规:内置40余万的法律法规、司法解释等 12、软件为B/S架构网络版,客户端没有站点限制。 三、系统优势 A功能: 1、操作模式: 单人模式:单帐号扮演案件中的所有角色,让学生独立完成实验,方便其熟悉诉讼中的每个环节。 多人模式:多帐号互动扮演案件中的角色,让学生之间互动操作来配合完成实验,可根据分析案情、证据、焦点等全面提高法律技能。 2、实验流程: (1)法院: 民事诉讼 A民事一审程序、B民事一审反诉程序、C民事二审程序、D民事非诉特别程序:督促程序、E民事非诉特别程序:公示催告程序F民事非诉特别程序:企业破产程序、G民事特别程序:选民资格案件程序H民事特别程序:宣告公民失踪和宣告公民死亡案件程序、I民事特别程序:认定公民无行为能力或者限制行为能力案件程序、J民事特别程序:认定财产无主案件程序K民事特别程序:宣告婚

最新汽车悬架双质量系统的传递特性仿真研究

实例13 汽车悬架双质量系统的传递特性仿真研究 根据汽车理论可知悬架双质量系统微分方程为 0)()()(0)()(1212111121222=-+-+-+=-+-+q z k z z k z z c z m z z k z z c z m t (13-1) 对式(13-3)和式(13-4)进行拉氏变换并整理,可得 t t qk k cs z k k cs s m z k cs z k cs s m z ++=++++=++)()()()(22 111222 (13-2) 由上式可得2z 和1z 之间的传递函数为 k cs s m k cs z z s G +++== 2 2121)( (13-3) 另,,,2 132221t t k k cs s m A k k cs s m A k cs A +++=+++=+=将(13-3)代入(13-2),可得到 1z 与路面激励q 的传递函数为 N k A A A A k A q z s G t t 2212321 2)(=-== (13-4) 13.1 车身位移z 2与路面激励位移q 的传递函数 现在可分析车轮与车身双质量系统的传递函数。由式(13-3)(13-4)相乘可以得到车 身位移z 2与路面激励位移q 的传递函数为 N k A s G s G q z s G t 1212 )()()(=== (13-5) 由于传递函数分母为高阶多项式相乘,计算量比较大,因此可利用MATLAB 多项式计算函 数求出分母N 的系数。具体程序如下:

m2=317.5; m1=45.4; k=22000; kt=192e3; c=1.5e3; a1=[c k]; a2=[m2 c k]; a3=[m1 c k+kt]; n1=conv(a3,a2); N1=poly2sym(n1); n2=conv(a1,a1); N2=poly2sym(n2); nn=N1-N2; pretty(nn); a1=[c*kt k*kt]; den=[28829/2,544350,68943800,288000000,4224000000]; sys=tf(a1,den); w=0.1:.1:100; >> figure(1) >> [h,w1]=freqs(a1,den,w); >> freqs(a1,den,w); 运行可得到传递函数表达式以及传递函数的频率响应特性图: Transfer function: 2.88e008 s + 4.224e009 ------------------------------------------------------------------- 1.441e004 s^4 + 544350 s^3 + 6.894e007 s^2 + 2.88e008 s + 4.224e009 10 10 10 10 Frequency (rad/s) P h a s e (d e g r e e s ) 10 10 10 10 10 10 10 10 1 Frequency (rad/s) M a g n i t u d e

中型汽车用麦弗逊式前独立悬架设计与仿真分析

修稿日期! 基金项目!国家部委预研项目( C )作者简介!吴志成( ) 男 讲师.文章编号! " # 中型汽车用麦弗逊式前独立悬架 设计与仿真分析 吴志成!陈思忠!林程!张斌 (北京理工大学机械与车辆工程学院 北京 ) 摘要!回顾了麦弗逊式前独立悬架的发展以及在中型汽车上应用现状 通过仿真分析研究了麦弗逊式悬架的刚 度特性及其对行驶平顺性的影响 并以某中型越野汽车为例探讨了中型汽车用麦弗逊式前独立悬架的结构设计方法 总结了中型汽车用麦弗逊式前独立悬架的设计分析经验.关键词!麦弗逊式;独立悬架;仿真分析中图分类号! . 文献标识码!A Research on t he S i mul ati on and D es i g n of M acpherson Front lnde p endent S us p ens i on f or M i ddle Truck W Zhi-chen g CHEN S i-zhon g I N Chen g Z HANG B i n (S chool of M echanical and v ehicul ar En g i neeri n g Bei i n g Instit ute of T echnol o gy Bei i n g Chi na ) Abstract :An over vi e w of t he devel o p m ent and a pp li cati on of M ac pherson sus p ensi on i n m edi u m tr uck are p resent ed.The i nfl uence of t he stiff ness charact er of M ac pherson sus p ensi on on ri ddi n g co m f ort i s si mul at ed w it h M atl ab.The desi g n p r ocedure of M ac pherson sus p ensi on str uct ure f or m edi u m off-r oad vehi cl es i s di scussed.The ex p eri m ents i n M ac pherson sus p ensi on desi g n and si mul ati on f or m edi u m vehi cl e are su mm ari zed. Ke y words :M ac pherson ;i nde p endent sus p ensi on ;si mul ati on anal y si s 麦弗逊式独立悬架自 年代面世以来 由于构造简单 占用空间小 操纵稳定性良好等优点 在轿车和轻型越野车上得到了广泛的应用.但由于典型的麦弗逊式独立悬架使用减振器兼做主销 减振器活塞杆在相对减振器筒往复运动的同时 又受到侧向力的作用 减振器受力状态不好 因此一些麦弗逊式独立悬架将减振器移出 代之以专用的滑柱结构确定主销轴线 此类结构又被称为滑柱摆臂 式独立悬架. 目前麦弗逊式独立悬架在中 重型汽车上的应用还较少 其原因一方面是中 重型汽车的车速较低 结构尺寸较大 对空间的要求宽松 麦弗逊式独立悬架的优点体现不明显;另一方面是麦弗逊式独立悬架技术在中 重型汽车上的应用不多 设计人员在设计新车型时往往尽量避免尝试新技术 以回避技术风险. 年第 期车辆与动力技术 v ehicl e po wer T echnol o gy 总第 期

普通级轿车前悬架(麦弗逊式)设计

摘要 悬架是现代汽车上的重要总成之一,它把车架(或车身)与车轴(或轮胎)弹性地连接起来。它的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。 本文完成的是东方之子轿车前悬架设计,重点从东方之子轿车前悬架的选型、减振器的计算及选型、弹性元件形式的选择计算及选型和横向稳定杆的设计计算。首先,我把形式不同的悬架的优缺点进行了比较,然后定下东方之子轿车前悬架的形式—麦弗逊式悬架,最后围绕麦弗逊式悬架的部件进行设计。先是弹簧的设计计算,再是减振器的计算选型,最后是横向稳定杆的设计。 关键词:悬架;麦弗逊式;设计

Abstract Suspension is an important element of one of the modern automobile, it flexibly to link the chassis (orbody) and axle (or tires) . Its main role is the role of transmission in the bodybetween the wheels and all the power and moment, such as support of, system dynamics anddriving force, and easing the road to the whole body impact load, decay resulting vibration,ensure the comfort of the crew, cargo and vehicles reduce their moving load. The main stress is front suspension design,Training emphasis from the former car models,and models Absorber calculations, flexible choice of components and models and forms ofstabilizer bar design data.First of all, I have a different form of a suspension of the advantages and disadvantagescompared to the previous suspension of the car and then set form Eastar on suspension.Then design around Eastar suspension components. First, the spring-loaded design terms,to be absorber calculation models, a horizontal stabilizer bar final calculation. stabilizer bar. Keyword : Suspension, Macpherson ,Design

底盘-10-麦弗逊式悬架的构造及拆装实训

底盘-10-麦弗逊式悬架的构造及拆装实训

汽修专业理实一体教案 课题项目七麦弗逊式悬架的结构、工作原理及拆装实训 教学目标一、知识目标 了解麦弗逊式悬架的工作原理原理二、技能目标 拆卸安装悬架 三、情感目标 培养团队合作能力 培养不怕脏不怕累的劳动精神 教学重点一、实训车间的行为规范 二、悬架及减震的工作原理 教学难点一、悬架的运动原理 二、规范的使用各种工具 教学准备一、转向系统实训台 二、拆装作业台 三、120件套工具箱 作业布置一、作业 二、实训报告 教学考核一、现场提问(30%) 二、现场实践操作(70%)

教学反思 教学内容或教学流程教法设计 一、课前三分钟 1.强调车间内不允许玩手机,督促班干部收缴手机 2.保持车间干净整洁,不准带入饮料零食等物 3.未经老师允许,不得擅自操作各个机械 4.检查教材、笔记本、笔 二、复习旧知与导入新课 1.复习旧知 底盘构成 2.导入新课 颠簸路面上,车辆如何减少震动,吸收能量? (1)弹簧延时,缓冲 (2)减震吸收能量 三、悬架的结构

『悬挂在汽车底盘安放位置的示意 图』 ●悬挂的概念和分类 首先让我们来了解一下什么 是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减

震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。根据结构不同可分为非独立悬挂和独立悬挂两种。 『奥迪S4前后均采用了独立悬挂』 非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左

车辆悬架模型的仿真与分析

车辆悬架模型的仿真与分析 目前,关于汽车模型的研究很多。詹长书等人研究了二自由度懸架模型的频域响应特性。李俊等人模拟了不同车速和路况下二自由度车辆模型的动力学。郑兆明研究了二自由度车轮动载荷的均方值。基于Matlab建立了更加复杂的悬架模型,分析了其在模拟路面作用下的响应,分析了系统阻尼参数和刚度参数变化对车身动态响应的影响。 标签:汽车悬架;模型;模拟 据公安部交通管理局统计,截至2019年3月底,全国机动车保有量达3.3亿辆,其中汽车达2.46亿辆,驾驶人达4.1亿,机动车、驾驶人总量及增量均居世界第一。随着汽车数量的迅速增加,人们开始越来越重视汽车的乘坐舒适性,平顺性是舒适性的重要组成部分。振动是影响平顺性的主要因素,因此车身系统参数的合理设计对提高汽车的舒适性和安全性具有重要意义。 1车辆悬架模型 传统的悬架系统一般由弹性元件和参数固定的阻尼元件组成。本文选择汽车后轮的任意悬架系统建立四分之一模型。该模型的简图如下图1所示。其中,1是螺旋弹簧,2是纵向推力杆,3是减震器,4是横向稳定器,5是定向推力杆。 2悬架刚度分析 2.1悬架垂直刚度分析 悬架系统的垂直刚度可以通过分析悬架两个车轮在同一方向上的运行情况来获得。因为装有发动机的车辆的前轴载荷变化很大,所以前悬架通过调节螺旋弹簧的刚度和自由长度来确保车身姿态。后悬架的轴重变化不大,只有螺旋弹簧的自由长度略有调整,后悬架螺旋弹簧的刚度没有调整。这导致带有发动机的B 车型前悬架刚度略有增加。 除了悬架结构和参数的匹配外,前后悬架固有频率的正确匹配是降低车辆振动耦合度、有效提高车辆乘坐舒适性的重要方法之一。由于B型前悬架的轴重变化很大,通过调整前悬架螺旋弹簧的刚度,前悬架和后悬架的偏置频率比几乎不变。 2.2悬架倾角的刚度分析 一般来说,乘用车的前后侧倾刚度比要求在1.4和2.6之间,以满足略微不足的转向特性的要求。B车型前悬架的侧倾刚度略高于C车型,这是由前悬架刚度的增加引起的。前悬架侧倾刚度的增加有助于减小侧倾角度,但变化很小。

麦弗逊前悬架学位毕业设计

摘要 随着汽车工业技术的发展,人们对汽车的行驶平顺性,操纵稳定性以及乘坐舒适性和安全性的要求越来越高。汽车行驶平顺性反映了人们的乘坐舒适性,而舒适性则与悬架密切相关。因此,悬架系统的开发与设计具有很大的实际意义。 本次设计主要研究的是比亚迪F3轿车的前、后悬架系统的硬件选择设计,计算出悬架的刚度、静挠度和动挠度及选择出弹簧的各部分尺寸,并且通过阻尼系数和最大卸荷力确定了减振器的主要尺寸,最后进行了横向稳定杆的设计以及汽车平顺性能的分析。本设计在轿车前后悬架的选型中均采用独立悬架。其中前悬架采用当前家庭轿车前悬流行的麦弗逊悬架。前、后悬架的减振器均采用双向作用式筒式减,后悬则采用半拖曳臂式独立悬架振器。这种结构的设计,有效的提高了乘座的舒适性和驾驶稳定性。 关键词:悬架;平顺性;弹性元件;阻尼器;

1绪论: 1.1悬架的功用 悬架是车架(或承载式车身)与车桥(或车轮)之间弹性连接装置的总称。 1.传递它们之间一切的力(反力)及其力矩(包括反力矩)。 2.缓和,抑制由于不平路面所引起的振动和冲击,以保证汽车良好的平 顺性,操纵稳定性。 3.迅速衰减车身和车桥的振动。 悬架系统的在汽车上所起到的这几个功用是紧密相连的。要想迅速的衰减振动、冲击,乘坐舒服,就应该降低悬架刚度。但这样,又会降低整车的操纵稳定性。必须找到一个平衡点,即保证操纵稳定性的优良,又能具备较好的平顺性。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。 1.2 悬架的组成 现代汽车,特别是乘用车的悬架,形式,种类,会因不同的公司和设计单位,而有不同形式。 但是,悬架系统一般由弹性元件、减振器、缓冲块、横向稳定器等几部分组成等。

麦弗逊式悬架设计说明书

前言 悬架是现代汽车的重要组成部分之一。虽然并非汽车在行进必不可少的装备,但如果没有悬架,将极大的影响汽车的操纵稳定性和平顺性。悬架对整车性能有着重要的影响。在汽车市场竞争日益加剧的今天,人们对汽车的性能的认识更多的靠更为直接的感观感受,而非他们不太懂得的专业术语。 因此,对汽车操纵稳定性﹑平顺性的提升成为了各大汽车厂商的共识。与此关系密切的悬架系统也被不断改进,主动半主动悬架等具有反馈的电控系统在高端车辆上的应用日趋广泛。无论定位高端市场,还是普通家庭的经济型轿车,没有哪个厂家敢忽视悬架系统及其在整车中的作用。这一切,都是因为悬架系统对乘员的主观感受密切联系。悬架系统的优劣,乘员在车上可以马上感受到。 “木桶理论”,很多人都知道,整车就好比是个“大木桶”,悬架是它的一片木板。虽然,没有悬架的汽车还是可以跑动的,但是坐在上面是很不舒服的。坐过农用车货厢的人,对此应该是颇有些体会的,即便是较好的路况,在上面也是颠来颠去的。因为它的悬架很简单,对平顺性和操纵稳定性考虑的很少。只有当悬架这块木板得到足够重视,才能使整车性能得以提升。否则,只能是句空话。 正因为悬架在现代汽车上的重要重要作用,应该重视汽车悬架的设计。只有认真,严谨的设计才能确保其与整车的完美匹配。而要做到这一点,就必须,查阅大量相关书籍,图册,行业和国家标准。

这些是对我们这些将来要从事汽车设计,制造工作的工科出身的大学毕业生的必须经历的一个必不可少的训练。没有经过严格的训练的洗礼,是不可能具备这种专业精神和素质的。 目录

前言 (1) 第一章悬架的功用 (4) 第二章悬架系统的组成 (6) 第三章悬架的类型及特点 (7) §3.1非独立悬架的分类及特点 (8) §3.2独立悬架分类及特点 (9) 第四章匹配车型的选择 (13) 第五章悬架主要参数的确定 (15) §5.1悬架静挠度 f (15) c §5.2悬架的动挠度 f (16) d 第六章弹性元件的计算 (19) §6.1弹簧形式、材料的选择 (19) §6.2确定弹簧直径及刚度 (19) §6.3其他参数的计算 (20) §6.4弹簧的校验 (21) 第七章减振器的设计 (21) 第八章独立悬架导向机构的设计 (26) §8.1导向机构的布置参数 (26) §8.2 麦弗逊式悬架导向机构设计 (28) 第九章悬架系统的辅助元件 (31) 第十章展望—未来的汽车悬架 (33) 小结 (34) 参考文献 (36)

前悬架分析报告

前悬架力学计算、建模及仿 真分析 关键词:前悬架力学计算建模仿真分析 概述:

本课题内容共两项: 1.计算、分析或测量系列前独立悬架中前梁在静载条件下,其外力大小和方 向 2.针对汽车的前梁与独立悬架总成设计、开发中的实际问题,利用机械系统 自动动力学仿真软件,开发汽车前悬架系统设计模块,模拟汽车的实际工 况,建立力学分析模型,分析影响汽车前轮定位参数的结构因素为测量前 悬架设计提供理论依据,为汽车前悬架提供最佳的结构尺寸。 1 前悬架力学计算 1.1.前悬架受力分析 前悬架的结构为双横臂带扭杆弹簧,且扭杆弹簧上置。静载时分析悬架受力如下图1-1所示:

图1-1 悬架受力图 (1) 在轮胎中心线oo ’接地点o ’受垂直载荷Fz 和横向力Fy (2) 上摆臂在球头A 处受横向和纵向力分别为F2y 和F2z(作用力方向假设为图示方向),在D 处受扭杆产生的扭矩m (3) 下摆臂在球头B 处受力为F1(由于扭杆上置,下摆臂为二力杆,F1的方向与下摆臂两节点的连线共线)。 由静力平衡建立方程可得: ()12322**cos **y z F F h F a ωω-=- --------------------------(1-1) 211*cos y y F F F ω=- ----------------------- (1-2) 211*sin z z F F F ω=+ -------------------------- (1-3) 233233**cos **sin z y F F m ωω-= ------------------------- (1-4) 式中 2 ----------------------为主销长度,由图纸尺寸可得约为264mm 3 ----------------------为上摆臂长度,由图纸尺寸可得为270mm 2ω----------------------为主销内倾角,由图纸尺寸可得为6.5度 13,ωω--------------------为下、上摆臂角

基于ADAMS的汽车麦弗逊悬架计算机仿真分析

第9卷第4期2011年 12 月 Vo1.9 No.4December. 2011 工业技术与职业教育 Industrial Technology & Vocational Education 基于ADAMS 的汽车麦弗逊悬架计算机仿真分析 刘 博,范永海 (河北联合大学轻工学院,河北 唐山 063000) 摘 要:汽车麦弗逊悬架动力学性能计算机仿真分析是分析麦弗逊悬架动力学性能的有效方法。从某电动汽车麦弗逊悬架的实际结构抽象出虚拟模型的设计点和悬架数据,并对模型进行仿真,得出了仿真模型各个定位参数随时间变化的曲线。 关键词:汽车麦弗逊悬架;计算机仿真;ADAMS 中图分类号:TP302 文献标志码:B 文章编号:1674-943X(2011)04-0013-02 The Computer Simulation Analysis Based on Automobile McPherson Suspension of ADAMS LIU Bo,FAN Yonghai (Light Industry College of Hebei United University,Tangshan 063000,China) Abstract:Dynamics computer simulation analysis of automobile McPherson suspension is an effective way to analyze the dynamic functions of McPherson suspension. We abstracted the design points and suspension data of the virtual model from the actual structure of an electric automobile McPherson suspension. By simulating the virtual model, the computer worked out each positioning parameter curve which changed with time. Key Words:automobile McPherson suspension;computer simulation;ADAMS 采用多刚体动力学仿真软件ADAMS 建立四分之一麦弗逊悬架和双横臂悬架车辆的动力学模型的虚拟样机,在建模过程中对悬架进行了必要的假设。利用ADAMS 软件对两种悬架虚拟样机模型进行了仿真,绘制并分析了主销内倾角、主销后倾角、前轮前束角、前轮外倾角和车轮横向滑移量随车轮跳动量的变化曲线,分析了车轮定位参数在车轮跳动过程中对车轮横向滑移量的影响。 1 麦弗逊式悬架结构及特点 麦弗逊式悬架是独立悬架的一种于1947年由当时任职福特汽车公司的麦弗逊(Earl S.MacPherson)发明。麦弗逊式悬架首先于1950年在福特汽车公司的车型上采用,从此以后,麦弗逊式悬架以其节约空间和成本较低成为最为流行的汽车独立悬架系统之一。 麦弗逊悬挂是因应前置发动机前轮驱动(FF)车型的出现而诞生的。FF 车型不仅要求发动机要横向放置,而且还要增加变速箱、差速器、驱动机构、转向机,以往的前悬挂空间不得不加以压缩并大幅删掉,因此工程师才设计出节省空间、成本低的麦弗逊悬挂,以符合汽车需求。麦弗逊悬架采用空间机构,麦弗逊式悬架结构如图1所示。 收稿日期:2011 - 07 - 25 作者简介:刘 博(1975 -) ,男,河北唐山人,本科,河北联合大学讲师,主研方向为计算机和网络教学。 图1 麦弗逊悬架机构简图 2 悬架模型的建立 本文以某电动汽车底盘麦弗逊悬架为研究对象,其结构如图2所示。 图2 麦弗逊悬架结构简图 其连接方式是:车架与横摆臂是转动副(R)连接;横摆臂与转向节总成(包括减振器筒体)是球副(S)连接;减振器杆与转向节总成(包括减振器筒体)是圆柱副(C);减振器杆与车架是球副(S)连接。在此电动汽车中,经观察只有一支下控制臂,减去了与副车架相连接的一支存在虚约束的下控 制臂。

麦弗逊式悬架的课程设计

前言: 悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。典型的悬架结构由弹性元件、导向机构以及减震器等组成,个别结构则还有缓冲块、横向稳定杆等。弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬架多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,因此悬架与车辆的行驶平顺性、操控稳定性具有极大的关系。悬架设计的好坏直接影响到整车的性能。因此开发出高品质的悬架是车辆工程师的一项重要任务。而悬架部分涉及的专业知识也比较高深,本文期望通过对悬架进行初级设计以达到对悬架有进一步了解的目 的。 关键词:悬架;减震器;弹簧计算

1悬架 1.1悬架的功用 汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力;保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。 1.2 悬架的组成 一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。 1.弹性元件 弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元

麦弗逊悬架的结构设计毕业设计

毕业设计 卓越工程师培养(海格班) 麦弗逊悬架的结构设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

基于ADAMS的麦弗逊式独立悬架的运动仿真设计说明

本科毕业设计设计说明 题目:1.8MT轿车前悬架运动学仿真及设计 学院: 专业: 班级: 学号: 学生姓名: 指导老师: 提交日期: 2011年 4 月 11 日

初始说明: 1.设计原始参数: 满载质量:1579kg,前轴荷:799kg ,后轴荷:780kg ,前轮距:1470 mm ,后轮距:1470mm,轴距:2610 mm,前悬架弹簧刚度:24.7N/mm,后悬架弹簧刚度16.56N/mm,轮胎型号205/50 R16。 2.ADADS建模硬点数据: 初始: loc_x loc_y loc_z hpl_arm_front -200.0 -400.0 225.0 hpl_arm_out 0.0 -700.0 200.0 hpl_arm_rear 200.0 -390.0 240.0 hpl_spring_lower 0.0 -650.0 500.0 hpl_strut_lower 0.0 -650.0 450.0 hpl_strut_upper 0.0 -600.0 800.0 hpl_tierod_inner 200.0 -400.0 300.0 hpl_tierod_outer 150.0 -690.0 3000.0 hpl_wheel_center 0.0 -800.0 300.0 优化后: loc_x loc_y loc_z hpl_arm_front -200.0 -400.0 205.0 hpl_arm_out -30.0 -700.0 180.0 hpl_arm_rear 200.0 -390.0 220.0 hpl_spring_lower 0.0 -650.0 500.0 hpl_strut_lower 0.0 -650.0 450.0 hpl_strut_upper 0.0 -600.0 800.0 hpl_tierod_inner 200.0 -400.0 287.0 hpl_tierod_outer 180.0 -720.0 270.0 hpl_wheel_center 0.0 -800.0 300.0

麦弗逊式前悬架的设计改进及分析

麦弗逊式前悬架的设计改进及分析 艾维全 高世杰 王 承 廖 芳 (上汽集团汽车工程研究院) =摘要> 麦弗逊式独立悬架是减振器作滑动支柱并与下控制臂组成的悬架形式,与其它悬架系统相比, 结构简单、性能好、布置紧凑,占用空间少。因此对布置空间要求高的发动机前置前驱动轿车的前悬架几乎全部采用了麦式悬架。文章针对汽车悬架的设计发展趋势,论述了当前麦弗逊前悬架的主要设计改进,并对改进原理进行了分析。 =主题词> 麦弗逊悬架 汽车 分析 1 前言 麦弗逊式独立悬架是减振器作滑动支柱并与下控制臂组成的悬架形式,其结构简图如图1所示。与其它悬架系统相比,麦式悬架具有结构简单、性能好、布置紧凑,占用空间少等特点,因此对布置空间要求高的发动机前置前驱动轿车的前悬架几乎全部采用了麦式悬架。随着汽车用户对汽车操控性能的日益增加,麦式前悬架的设计也在不断改进,其主要变化体现在抗前倾能力提高和下控制臂纵向/0偏移0L 形设计两个方面。 图1 麦弗逊式前悬架简图 收稿日期:2004-06-11 2 提高抗前倾能力的设计 一般独立悬架的设计都要利用其几何布置(杆系的位置关系)来控制车轮定位角、主销倾角、轮距等参数的变化来保证汽车姿态的平稳。但随着对汽车性能要求的不断提高,现在还需要充分利用悬架的几何布置来控制汽车的动态性能,如侧倾、前倾和后倾等。 汽车在制动时由于惯性力的作用引起前后负荷的移动,前轮负荷增加会使汽车出现前部下沉的前倾现象,即所谓的制动/点头0。由于发动机前置前驱动的轿车质心靠前,因此制动/点头0现象会较其它发动机布置形式的汽车明显,而这无论是对保持汽车行驶的稳定性、还是操控性来说,都是应该尽量避免的。因此现在麦弗逊式前悬架在设计时都体现了抗/点头0的几何特征,下面先介绍一下悬架纵倾中心的概念。 如图2所示,减振支柱上部A 点和悬架下控制臂球铰接头B 点是决定麦式悬架主销轴线的两个点,因此它们的位置变化决定了减振支柱和车轮的运动。支柱上部A 点根据支柱的伸缩运动进行上下移动,可以认为其侧视图上的回转中心(纵倾中心)位于与支柱中心成直角方向的无限远处点C A 上。悬架控制臂球铰接头B 点的侧视图回转中心 位于下控制臂摇动轴DE 的延长线与通过B 点的宽 设计研究

虚拟仿真实验教学中心平台建设方案

湖北警官学院虚拟仿真实验教学建设方案 一、方案背景 虚拟仿真实验教学是高等教育信息化建设和实验教学示范中心建设的重要内容,是学科专业与信息技术深度融合的产物。为贯彻落实《教育部关于全面提高高等教育质量的若干意见》(教高〔2012〕4号)精神,根据《教育信息化十年发展规划(2011-2020年)》,教育部决定于2013年启动开展国家级虚拟仿真实验教学中心建设工作。其中虚拟仿真实验教学的管理和共享平台是中心建设的重要内容之一。 目前,大多数高校都有针对课程使用实验教学软件,但由于每个专业或课程的情况不同,购买的软件所采用的工作环境、体系结构、编程语言、开发方法等也各不相同。由于学校管理工作的复杂性,各校乃至校内各专业的实验教学建设大都自成体系,各自为政,形成了“信息孤岛”。主要面临如下问题:? 管理混乱,各种实验教学软件缺乏统一的集中管理。 ? 使用不规范,缺乏统一的操作模式和管理方式; ? 可扩展性差,无法支持课程和相应实验的扩展; ? 各系统的数据无法共享,容易形成“信息孤岛”; ? 缺乏足够的开放性; ? 软件部署复杂,不同的软件不能运行在同一台服务器上; 二、方案目标 该方案的目标就是高效管理实验教学资源,实现校内外、本地区及更广范围内的实验教学资源共享,满足多地区、多学校和多学科专业的虚拟仿真实验教学的需求。平台要实现学校购置的所有实验软件统一接入和学生在平台下进行统一实验的目的,通过系统间的无缝连接,使之达到一个整体的实验效果,学校通过该平台的部署,不仅可以促进系统的耦合度,解决信息孤岛的问题,还可以使学校能够迅速实施第三方的实验教学软件。 平台提供了全方位的虚拟实验教学辅助功能,包括:门户网站、实验前的理论学习、实验的开课管理、典型实验库的维护、实验教学安排、实验过程的智能指导、实验结果的自动批改、实验成绩统计查询、在线答疑、实验教学效

悬架_麦弗逊式_设计

摘 要 悬架是现代汽车上的重要总成之一,它把车架(或车身)与车轴(或轮胎)弹性地连接起来。它的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。 本文主要讲的是爱丽舍轿车前悬架设计,重点从爱丽舍轿车前悬架的选型、减振器的计算及选型、弹性元件形式的选择计算及选型和横向稳定杆的设计计算。首先,我把形式不同的悬架的优缺点进行了比较,然后定下爱丽舍轿车前悬架的形式—麦弗逊式悬架。然后围绕麦弗逊式悬架的部件进行设计。先是弹簧的设计计算,再是减振器的计算选型,最后是横向稳定杆的计算。 关键词:悬架,麦弗逊式,设计 目录 1 绪论 (2) 1.1 悬架重要性 (2) 2 已知参数 (3) 3 悬架的结构分析及选型 (3) 3.1 悬架的分类 (3) 4 辅助元件选择 (6) 5 悬架挠度f 的计算 (7) 6 弹性元件的设计 (8) 7 导向机构设计 (10) 7.1 导向机构设计要求 .............................1.0 7.2 麦弗逊式独立悬架导向机构设计 (10) 8 减振器的结构类型与主要参数的选择 ..11 9 横向稳定杆的设计 (12) 9.1 横向稳定杆作用 (16) 10 悬架的结构元件 (17) 10.1 控制臂与推力杆 (18) 11 结论 (19) 参考文献 (20) 致谢 (21)

1 绪论 1.1 悬架重要性 现代汽车除了保证其基本性能,即行驶性、转向性和制动性等之外,目前正致力于提高安全性与舒适性,向高附加价值、高性能和高质量的方向发展。对此,尤其作为提高操纵稳定性、乘坐舒适性的轿车悬架必须进行相应的改进。舒适性是汽车最重要的使用性能之一。 舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。悬架是现代汽车上的重要总成之一,它把车架(或车身)与车轴(或轮胎)弹性地连接起来。 1.1悬架图 1.2 悬架的作用及功能 悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。其主要任务是传递作用在车轮和车架(或车身)之间的一切力和力矩;缓和路面传给车架(或车身)的冲击载荷,衰减由此引起的承载系统的振动,保证汽车的行驶平顺性;保证车轮在路面不平和载荷变化时有理想的运动特性,保证汽车的操纵稳定性,使汽车获得高速行驶能力。 汽车在不平路面上行驶时,由于悬架的弹性作用,使汽车产生垂直振动。为了迅速衰减这种振动和抑制车身、车轮的共振,减小车轮的振幅,悬架应装有减振器,并使之具有合理的阻尼。利用减振器的阻尼作用,使汽车振动的振幅连续减小,直至振动停止。 1.3 悬架的设计要求 为了满足汽车具有良好的行驶平顺性,要求由簧上质量与弹性元件组成的振动系统的固有频率应在合适的频段,并尽可能低。前、后悬架固有频率的匹配应合理,对乘用车,要求前悬架固有频率略低于后悬架的固有频率,还要尽量避免悬架撞击车架(或车身)。在簧上质量变化的情况下,车身高度变化要小,因此,应采用非线性弹性特性悬架。 要正确地选择悬架方案和参数,在车轮上、下跳动时,使主销定位角变化不大、车轮运动与导向机构运动要协调,避免前轮摆振;汽车转向时,应使之稍有不足转向特性。 悬架与汽车的多种使用性能有关,为满足这些性能,对悬架提出的设计要求有: 1)保证汽车有良好的行驶平顺性。 2)具有合适的衰减振动的能力。 3)保证汽车具有良好的操纵稳定性。

运用MatlabSimulink对主动悬架动力学仿真与分析

运用Matlab/Simulink对主动悬架动力学仿真与分析 摘要:基于主动悬架车辆1/4动力学模型,采用LQG最优调节器理论确定了主动悬架的最优控制方法,利用matlab软件建立了主动悬架汽车动力学仿真模型,并用某一车型数据进行了动力学分析和仿真,仿真输出量可作为评价主动悬架的控制方法和与平顺性有关的车辆结构参数的依据。 关键词:主动悬架仿真 Matlab Dynamics Simulation Of Vehicle Active-suspension By Using MATLAB Abstract: Linear-Quadratic-Gaussian(LQG) optional regulator theory is applied to optional control of active-suspension based on quarter vehicle dynamics model of active-suspension. Using MATLAB software,dynamics on model of vehicle of active-suspension is established to make analysis and simulation according to some actual data .Simulation output can be used to evaluate the control method of active-suspension and structure parameters of vehicle in relation to ride performance. Key words: active-suspension simulation MATLAB

相关主题