搜档网
当前位置:搜档网 › 人教版高中数学选修2-2教学案2.3数学归纳法(教师版)

人教版高中数学选修2-2教学案2.3数学归纳法(教师版)

人教版高中数学选修2-2教学案2.3数学归纳法(教师版)
人教版高中数学选修2-2教学案2.3数学归纳法(教师版)

数学归纳法

__________________________________________________________________________________

__________________________________________________________________________________

1、数学归纳法的原理及应用.

2、数学归纳法的思想实质及在归纳推理中发现具体问题的递推关系.

一、数学归纳法:

数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。

一般地,证明一个与正整数n有关的命题,可按下列步骤进行:

(1)(归纳奠基)证明当n取第一个值n= n0时命题成立;

(2)(归纳递推)假设n=k()时命题成立,证明当时命题也成立。

只要完成这两个步骤,就可以断定命题对从开始的所有正整数n都成立。上述证明方法叫做数学归纳法。

数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。

题型一、用数学归纳法证明恒等式

例1、例1数学归纳法证明13+23+33+…+n 3=4

1 n 2

(n +1)2 证明:① 当n =1时,左边=13=1,右边=

()11114

12

2=+??, 故等式成立.

② 假设n =k (N ∈k ,且k ≥1)时等式成立。

即13+23+33+…+k 3+=

4

1k 2

(k +1)2成立.

则当n =k +1时,13+23+33+…+k 3+(k +1)3 =

322

)1()1(4

1+++k k k =[]

)1(4)1(4122+++k k k ()()22114

1++=k k ()[]221)1(141+++=k k . 即当n =k +1 时等式也成立.

综合①,②,对一切N ∈n ,等式都成立. 题型二、用数学归纳法证明不等式 例2、归纳法证明

++++++3

12111n n n …n 31>109

(n >1,且N ∈n ).

证明:① n =2时,左边=

201961514131=

+++>10

9

=右边,不等式成立. ② 假设n =k (N ∈k , k ≥2)时不等式成立,

++++2

111k k …k 31+

>109

成立. 则当 n =k +1时,

++++3

121k k …k 31+131++k 331231++

++k k =(++++2111k k …k 31+)+(131+k 3

31231++

++k k -11+k )>109

+(131+k 331231++

++k k -1

1+k ) >109+(331+k 331331++++k k -11+k ) =10

9即当n =k +1时不等式也成立. 综合①,②,对一切大于1的自然数n ,不等式都成立. 题型三、用数学归纳法证明几何问题

例4.平面内有n )(*

N n ∈个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求

证:这n 个圆把平面分成22

+-n n 个部分.

题型四、用数学归纳法证明整除问题

例4、 用数学归纳法证明32n +2-8 n -9()N ∈n 能被64整除. 证明:① 当n =1时,32+2-8×1-9=64 显然能被64整除,命题成立. ② 假设n =k ( k ≥1,N ∈k )时命题成立.

即32k +2-8k -9能被64整除.则当n =k +1时, 32(k +1)+2-8(k +1)-9=9·32k +2-8 k -8-9 =9(32k +2-8 k -9)+64 k +64. ∵ 32k +2-8 k -9与64均能被64整除, ∴ 32(k +1)+2-8( k +1)-9能被64整除. 即当n =k +1时命题也成立.

综合①,②,对一切N ∈n ,32n +2-8n -9能被64整除. 题型五 归纳、猜想、证明

例8:是否存在常数a ,b ,c 使等式

对一切自然数n 都成立,并证明你的结

论。 分析:可先把条件式对

分别列出方程,试求a ,b ,c 值,再用数学归纳法证明。

解:假设存在a ,b ,c 使题设等式成立,那么令

得到下面方程组:

解得

下面用数学归纳法证明当

时,题设等式成立,即有:

(1)当时,①式成立

(2)假设

成立,即:

那么当

故当时①式成立。

综上,可知当

时,等式成立。

一、选择题

1.用数学归纳法证明1+12+13+…+1

2n -11)时,第一步应验证不等式( )

A .1+1

2<2

B .1+12+1

3<2

C .1+12+1

3<3

D .1+12+13+1

4<3

[答案] B

[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=1

3

,故选B.

2.用数学归纳法证明1+a +a 2+…+a n +1=1-a

n +2

1-a

(n ∈N *,a ≠1),在验证n =1时,左边所得

的项为( )

A .1

B .1+a +a 2

C .1+a

D .1+a +a 2+a 3 [答案] B

[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.

3.设f (n )=1n +1+1n +2+…+1

2n (n ∈N *),那么f (n +1)-f (n )等于( )

A.1

2n +1 B.12n +2 C.12n +1+12n +2

D.12n +1-12n +2

[答案] D

[解析] f (n +1)-f (n )

=??????1(n +1)+1+1(n +1)+2+…+12n +12n +1+12(n +1) -??????1

n +1+1n +2+…+12n =12n +1+12(n +1)-1n +1 =

12n +1-1

2n +2

. 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )

A .当n =6时该命题不成立

B .当n =6时该命题成立

C .当n =4时该命题不成立

D .当n =4时该命题成立 [答案] C

[解析] 原命题正确,则逆否命题正确.故应选C.

5.用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步的证明时,正确的证法是( )

A .假设n =k (k ∈N *),证明n =k +1时命题也成立

B .假设n =k (k 是正奇数),证明n =k +1时命题也成立

C .假设n =k (k 是正奇数),证明n =k +2时命题也成立

D .假设n =2k +1(k ∈N ),证明n =k +1时命题也成立 [答案] C

[解析] ∵n 为正奇数,当n =k 时,k 下面第一个正奇数应为k +2,而非k +1.故应选C. 6.凸n 边形有f (n )条对角线,则凸n +1边形对角线的条数f (n +1)为( ) A .f (n )+n +1 B .f (n )+n C .f (n )+n -1

D.f(n)+n-2

[答案] C

[解析]增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.

7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证()

A.n=1时命题成立

B.n=1,n=2时命题成立

C.n=3时命题成立

D.n=1,n=2,n=3时命题成立

[答案] D

[解析]假设n=k时不等式成立,即2k>k2-2,

当n=k+1时2k+1=2·2k>2(k2-2)

由2(k2-2)≥(k-1)2-4?k2-2k-3≥0

?(k+1)(k-3)≥0?k≥3,因此需要验证n=1,2,3时命题成立.故应选D.

8.已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为()

A.30

B.26

C.36

D.6

[答案] C

[解析]因为f(1)=36,f(2)=108=3×36,f(3)=360=10×36,所以f(1),f(2),f(3)能被36整除,推测最大的m值为36.

9.已知数列{a n}的前n项和S n=n2a n(n≥2),而a1=1,通过计算a2、a3、a4,猜想a n=()

A.2

(n+1)2

B.2

n(n+1)

C.2

2n-1

D.2

2n-1 [答案] B

[解析] 由S n =n 2a n 知S n +1=(n +1)2a n +1 ∴S n +1-S n =(n +1)2a n +1-n 2a n ∴a n +1=(n +1)2a n +1-n 2a n ∴a n +1=n

n +2

a n (n ≥2).

当n =2时,S 2=4a 2,又S 2=a 1+a 2,∴a 2=a 13=1

3

a 3=24a 2=16,a 4=35a 3=110.

由a 1=1,a 2=13,a 3=16,a 4=110

猜想a n =2

n (n +1)

,故选B.

10.对于不等式n 2+n ≤n +1(n ∈N +),某学生的证明过程如下: (1)当n =1时,12+1≤1+1,不等式成立.

(2)假设n =k (k ∈N +)时,不等式成立,即k 2+k

D .从n =k 到n =k +1的推理不正确 [答案] D

[解析] n =1的验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.

二、填空题

11.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步的验证为________. [答案] 当n =1时,左边=4,右边=4,左≥右,不等式成立 [解析] 当n =1时,左≥右,不等式成立, ∵n ∈N *,∴第一步的验证为n =1的情形.

12.已知数列11×2,12×3,13×4,…,1n (n +1),通过计算得S 1=12,S 2=23,S 3=3

4,由此可猜测S n

=________.

[答案]

n n +1

[解析] 解法1:通过计算易得答案. 解法2:S n =11×2+12×3+13×4+…+1

n (n +1)

=????1-12+????12-13+???

?13-14+…+? ??

??1

n -1n +1 =1-1n +1=n n +1

.

13.对任意n ∈N *,34n +2+a 2n +1都能被14整除,则最小的自然数a =________. [答案] 5

[解析] 当n =1时,36+a 3能被14整除的数为a =3或5,当a =3时且n =3时,310+35不能被14整除,故a =5.

14.用数学归纳法证明命题:1×4+2×7+3×10+…+n (3n +1)=n (n +1)2.

(1)当n 0=________时,左边=____________,右边=______________________;当n =k 时,等式左边共有________________项,第(k -1)项是__________________.

(2)假设n =k 时命题成立,即_____________________________________成立.

(3)当n =k +1时,命题的形式是______________________________________;此时,左边增加的项为______________________.

[答案] (1)1;1×(3×1+1);1×(1+1)2;k ; (k -1)[3(k -1)+1]

(2)1×4+2×7+3×10+…+k (3k +1)=k (k +1)2 (3)1×4+2×7+…+(k +1)[3(k +1)+1] =(k +1)[(k +1)+1]2;(k +1)[3(k +1)+1] [解析] 由数学归纳法的法则易知. 三、解答题

15.求证:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *). [证明] ①n =1时,左边=12-22=-3,右边=-3,等式成立.

②假设n =k 时,等式成立,即12-22+32-42+…+(2k -1)2-(2k )2=-k (2k +1)2.

当n =k +1时,12-22+32-42+…+(2k -1)2-(2k )2+(2k +1)2-(2k +2)2=-k (2k +1)+(2k +1)2

-(2k +2)2=-k (2k +1)-(4k +3)=-(2k 2+5k +3)=-(k +1)[2(k +1)+1],所以n =k +1时,等式也成立.

由①②得,等式对任何n ∈N *都成立.

16.求证:12+13+14+…+12n -1>n -2

2(n ≥2).

[证明] ①当n =2时,左=1

2>0=右,

∴不等式成立.

②假设当n =k (k ≥2,k ∈N *)时,不等式成立. 即12+13+…+12k -1>k -22成立. 那么n =k +1时,12+13+…+12k -1

12k -1

+1+…+1

2k -1+2k -1

>k -22+12k -1+1+…+12k >k -22+12k +12k +…+12k =k -22+2k -12k =(k +1)-22,

∴当n =k +1时,不等式成立.

据①②可知,不等式对一切n ∈N *且n ≥2时成立.

17.在平面内有n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点. 求证:这n 条直线将它们所在的平面分成n 2+n +22

个区域.

[证明] (1)n =2时,两条直线相交把平面分成4个区域,命题成立.

(2)假设当n =k (k ≥2)时,k 条直线将平面分成k 2+k +2

2

块不同的区域,命题成立.

当n =k +1时,设其中的一条直线为l ,其余k 条直线将平面分成k 2+k +2

2块区域,直线l 与其

余k 条直线相交,得到k 个不同的交点,这k 个点将l 分成k +1段,每段都将它所在的区域分成两部分,故新增区域k +1块.

从而k +1条直线将平面分成k 2+k +22+k +1=(k +1)2+(k +1)+2

2块区域.

所以n =k +1时命题也成立. 由(1)(2)可知,原命题成立.

18. 试比较2n +2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论. [分析] 由题目可获取以下主要信息:

①此题选用特殊值来找到2n +2与n 2的大小关系; ②利用数学归纳法证明猜想的结论.

解答本题的关键是先利用特殊值猜想.

[解析]当n=1时,21+2=4>n2=1,

当n=2时,22+2=6>n2=4,

当n=3时,23+2=10>n2=9,

当n=4时,24+2=18>n2=16,

由此可以猜想,

2n+2>n2(n∈N*)成立

下面用数学归纳法证明:

(1)当n=1时,

左边=21+2=4,右边=1,

所以左边>右边,

所以原不等式成立.

当n=2时,左边=22+2=6,

右边=22=4,所以左边>右边;

当n=3时,左边=23+2=10,右边=32=9,

所以左边>右边.

(2)假设n=k时(k≥3且k∈N*)时,不等式成立,

即2k+2>k2.那么n=k+1时,

2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.

又因:2k2-2-(k+1)2=k2-2k-3

=(k-3)(k+1)≥0,

即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.

根据(1)和(2),原不等式对于任何n∈N*都成立.

_________________________________________________________________________________ _________________________________________________________________________________

基础巩固

一、选择题

1.用数学归纳法证明1+12+13+…+1

2n -11)时,第一步应验证不等式( )

A .1+1

2<2

B .1+12+1

3<2

C .1+12+1

3<3

D .1+12+13+1

4

<3

[答案] B

[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=1

3,故选B.

2. 用数学归纳法证明1+a +a 2+…+a n +1=1-a n +2

1-a (n ∈N *,a ≠1),在验证n =1时,左边所得

的项为( )

A .1

B .1+a +a 2

C .1+a

D .1+a +a 2+a 3 [答案] B

[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B. 3.设f (n )=1n +1+1n +2+…+1

2n (n ∈N *),那么f (n +1)-f (n )等于( )

A .1

2n +1

B .1

2n +2

C .12n +1+12n +2

D .12n +1-12n +2

[答案] D

[解析] f (n +1)-f (n )=??????1n +1+1+1n +1+2+…+12n +12n +1+12n +1 -??????1

n +1+1n +2+…+12n =12n +1+12n +1-1

n +1

12n +1-1

2n +2

. 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )

A .当n =6时该命题不成立

B .当n =6时该命题成立

C .当n =4时该命题不成立

D .当n =4时该命题成立

[答案] C

[解析] 原命题正确,则逆否命题正确.故应选C.

5.用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步的证明时,正确的证法是( )

A .假设n =k (k ∈N *)时命题成立,证明n =k +1时命题也成立

B .假设n =k (k 是正奇数)时命题成立,证明n =k +1时命题也成立

C .假设n =k (k 是正奇数)时命题成立,证明n =k +2时命题也成立

D .假设n =2k +1(k ∈N )时命题成立,证明n =k +1时命题也成立 [答案] C

[解析] ∵n 为正奇数,当n =k 时,k 下面第一个正奇数应为k +2,而非k +1.故应选C. 6.凸n 边形有f (n )条对角线,则凸n +1边形对角线的条数f (n +1)为( ) A .f (n )+n +1 B .f (n )+n C .f (n )+n -1 D .f (n )+n -2

[答案] C

[解析] 增加一个顶点,就增加n +1-3条对角线,另外原来的一边也变成了对角线,故f (n +1)=f (n )+1+n +1-3=f (n )+n -1.故应选C.

二、填空题

7. 用数学归纳法证明(n +1)(n +2)…(n +n )=2n ·1·3…(2n -1)(n ∈N *)时,从“n =k 到n =k +1”左边需增乘的代数式为( )

A .2k +1

B .2(2k +1)

C .2k +1k +1

D .2k +3k +1

[答案] B

[解析] n =k 时,等式为(k +1)(k +2)…(k +k )=2k ·1·3·…·(2k -1),

n =k +1时,等式左边为(k +1+1)(k +1+2)…(k +1+k +1)=(k +2)(k +3)…(2k )·(2k +1)·(2k +2),右边为2k +1·1·3·…·(2k -1)(2k +1).左边需增乘2(2k +1),故选B.

8.已知数列11×2,12×3,13×4,…,1n n +1,通过计算得S 1=12,S 2=23,S 3=34,由此可猜测

S n =________.

[答案]

n n +1

[解析] 解法1:通过计算易得答案. 解法2:S n =11×2+12×3+1

3×4+…+

1

n

n +1

=????1-12+????12-13+????13-14+…+? ????1n -1n +1 =1-1n +1=n

n +1

.

9.用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+1

2n ,第一步应验证的

等式是________.

[答案] 1-12=1

2

[解析] 当n =1时,等式的左边为1-12=12,右边=1

2,∴左边=右边.

三、解答题

10. 数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1、a 2、a 3,并猜想a n 的通项公式; (2)用数学归纳法证明(1)中的猜想.

[证明] (1)当n =1时,a 1=S 1=2-a 1,∴a 1=1; 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=3

2;

当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=7

4.

由此猜想a n =2n -1

2

n -1(n ∈N *)

(2)证明:①当n =1时,a 1=1结论成立, ②假设n =k (k ≥1,且k ∈N *)时结论成立, 即a k =2k -1

2k -1,

当n =k +1时,

a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,∴2a k +1=2+a k ∴a k +1=2+a k 2=2k +1-1

2k

∴当n =k +1时结论成立,于是对于一切的自然数n ∈N *,a n =2n -1

2

n -1成立.

一、选择题

11.用数学归纳法证明1+2+3+…+n 2=n 4+n 2

2

,则当n =k +1时左端应在n =k 的基础上加上

( )

A .k 2+1

B .(k +1)2

C .

k +1

4

+k +12

2

D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2

[答案] D

[解析] n =k 时,左边=1+2+3+…+k 2,n =k +1时,左边=1+2+3+…+k 2+(k 2+1)+(k 2

+2)+…+(k +1)2,故选D.

12.设凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+________.( ) A .2π B .π C .π2

D .π3

[答案] B

[解析] 将k +1边形A 1A 2…A k A k +1的顶点A 1与A k 相连,则原多边形被分割为k 边形A 1A 2…A k 与三角形A 1A k A k +1,其内角和f (k +1)是k 边形的内角和f (k )与△A 1A k A k +1的内角和π的和,故选B.

13. 用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( )

A .(k +3)3

B .(k +2)3

C .(k +1)3

D .(k +1)3+(k +2)3 [答案] A

[解析] 因为从n =k 到n =k +1的过渡,增加了(k +1)3,减少了k 3,故利用归纳假设,只需将(k +3)3展开,证明余下的项9k 2+27k +27能被9整除.

14. 观察下列各式:已知a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则归纳猜测a 7+b 7=( )

A .26

B .27

C .28

D .29 [答案] D

[解析] 观察发现,1+3=4,3+4=7,4+7=11,7+11=18,11+18=29,∴a 7+b 7=29. 二、填空题

15.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步的验证为________. [答案] 当n =1时,左边=4,右边=4,左≥右,不等式成立 [解析] 当n =1时,左≥右,不等式成立,

∵n ∈N *,∴第一步的验证为n =1的情形.

16.对任意n ∈N *,34n +2+a 2n +1都能被14整除,则最小的自然数a =________. [答案] 5

[解析] 当n =1时,36+a 3能被14整除的数为a =3或5,当a =3时且n =3时,310+35不能被14整除,故a =5.

三、解答题

17.在平面内有n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点. 求证:这n 条直线将它们所在的平面分成n 2+n +2

2

个区域.

[证明] (1)n =2时,两条直线相交把平面分成4个区域,命题成立.

(2)假设当n =k (k ≥2)时,k 条直线将平面分成k 2+k +2

2

块不同的区域,命题成立.

当n =k +1时,设其中的一条直线为l ,其余k 条直线将平面分成k 2+k +2

2块区域,直线l 与其

余k 条直线相交,得到k 个不同的交点,这k 个点将l 分成k +1段,每段都将它所在的区域分成两部分,故新增区域k +1块.

从而k +1条直线将平面分成k 2+k +22+k +1=

k +1

2+

k +1+2

2

块区域.

所以n =k +1时命题也成立. 由(1)(2)可知,原命题成立.

18.试比较2n +2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论. [分析] 由题目可获取以下主要信息:

①此题选用特殊值来找到2n +2与n 2的大小关系; ②利用数学归纳法证明猜想的结论. 解答本题的关键是先利用特殊值猜想. [解析] 当n =1时,21+2=4>n 2=1, 当n =2时,22+2=6>n 2=4, 当n =3时,23+2=10>n 2=9, 当n =4时,24+2=18>n 2=16, 由此可以猜想, 2n +2>n 2(n ∈N *)成立 下面用数学归纳法证明: (1)当n =1时,

左边=21+2=4,右边=1,所以左边>右边,

所以原不等式成立.

当n=2时,左边=22+2=6,

右边=22=4,所以左边>右边;

当n=3时,左边=23+2=10,右边=32=9,

所以左边>右边.

(2)假设n=k时(k≥3且k∈N*)时,不等式成立,

即2k+2>k2.那么当n=k+1时,

2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.

又因:2k2-2-(k+1)2=k2-2k-3

=(k-3)(k+1)≥0,

即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.

根据(1)和(2),原不等式对于任何n∈N*都成立.

课程顾问签字: 教学主管签字:

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

高中数学教师培训心得体会-心得体会模板

高中数学教师培训心得体会 数学是一们基础学科,也是是高考科目之一.高中数学知识的难度相对初 中数学来说比较大,内容比较多,有一部分同学由于不适应这种变化,数学成绩总是不如人意,甚至影响到学习的积极性,产生厌学心理.出现这样的情况,下面是本人整理的关于高中数学教师培训心得体会,欢迎阅读! 高中数学教师培训心得体会一 我很荣幸地参加了河北省20XX年中小学教师省级培训项目学习。培训的内容丰富多彩,培训的方式多种多样,既有专家的报告,又有特级教师的核心理念,还有视频观摩研讨。为期十天的培训,我感觉每天都是充实的,因为每天都要面对不同风格的讲师,每天都能听到不同类型的讲座,每天都能感受到思想火花的冲击。在培训中,我进一步认识了新课程的发展方向和目标,反思了自己以往在工作中的不足。作为一名中青年教师,我深知自己在教学上是幼稚而不成熟的,在教学过程中还存在太多的问题,但是,经过一段时间的学习,我相信我还是有收获的。一些对教育教学工作很有见解的专家以鲜活的案例和丰富的知识内涵,给了我具体的操作指导,使我的教育观念进一步得到了更新,真是受益匪浅。在千万教师中,能参加这样的培训,我想我是幸运的、是幸福的。 现将学习培训情况总结于后,呈请上级领导审阅,不当之处恳请批评指正。 一、学习收获: 此次培训学习河北师范大学领导非常重视,从授课人员安排来看:安排的大学教师全是教授级别的老师,中学全是全省以及全国知名的特级和优秀教师。从授课时间任务来看:时间紧任务重,但是河北师范大学的领导、老师(特别是班主任闫老师和张老师)特别尽职,安排具体,服务到位,一些细节工作落实得好,如我们的住宿安排,组织班级学员的交流活动等,大家比较满意,评价很高,

高中数学新课标学习心得体会1

高中数学新课标学习心得体会 高中数学课程是义务教育或普通高级中学的一门主要课程,它从国际意识、时代需求、国民素质、个性发展的高度出发,是对于数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题,分析问题、解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。 高中数学课程力求将教育改革的基本理念与课程的框架设计、内容确定以及课程实施有机结合起来。 一、课程的基本理念 总体目标中提出的数学知识(包括数学事实、数学活动经验)本人认为可以简单的这样表述:数学知识是“数与形以及演绎”的知识。所谓数学事实指的是能运用数学及其方法去解决的现实世界的实际问题,数学活动经验则是通过数学活动逐步积累起来的。 1、基本的数学思想 基本数学思想可以概括为三个方面:即“符号与变换的思想”、“集合与对应的思想”和“公理化与结构的思想”,这三者构成了数学思想的最高层次。 2、重视数学思维方法 高中数学应注重提高学生的数学思维能力,着是数学教育的基本目标之一。数学思维的特性:概括性、问题性、相似性。数学思维的结构和形式:结构是一个多因素的动态关联系统,可分成四个方面:数学思维的内容(材料与结果)、基本形式、操作手段(即思维方法)以及个性品质(包括智力与非智力因互素的临控等);其基本形式可分为逻辑思维、形象思维和直觉思维三种类型。 3、应用数学的意识 这个提法是以前大纲所没有的,这几年颇为流行,未见专门的说明。结合当前课改的实际情况,可以理解为“理论联系实际”在数学教学中的实践,或者理解为新大纲理念的“在解决问题中学习”的深化。 4、注重信息技术与数学课程的整合 高中数学课程应提倡实现信息技术与课程内容的有机整合,整合的基本原则是有利于学生认识数学的本质。在保证笔算训练的全体细致,尽可能的使用科学型计算器、各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。 二、课程设置 1、高中数学课程分为必修课程与选修课程两部分. 2、设置了数学探究、数学建模、数学文化内容 3、模块的逻辑顺序 必修课程是选修课程的基础,学校应在保证必修课程,选修系列1、2开设的基础上,开设其他系列课程,以满足学生的基本选择需求,并积极开发、利用校外课程资源。教师也应根据自身条件制定个人发展计划。 三、内容标准 高中课程的内容是数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程、和实际应

数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k+1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k 这一步,当n=k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k+1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n},使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+n an =n(n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来{a n },然后再证明一般性. 解:将n=1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a1+2a 2+3a3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k+1)(k +2) 那么当n=k +1时, a1+2a 2+3a 3+…+ka k +(k+1)ak +1 = k(k +1)(k +2)+ (k +1)[3(k+1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n=k +1时,也存在一个等差数列an =3n +3使a 1+2a 2+3a 3+…+n an=n (n +1)(n+2)成立. 综合上述,可知存在一个等差数列an =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n=n(n+1)(n +2)都成立.

高中数学骨干教师培训总结

高中数学骨干教师培训总结 高中数学骨干教师培训总结年6月24日7月4日,我有幸参加了广东省教育局厅主办,师范大学承办的高中数学骨干教师培训。来自全省各地市的高中数学骨干教师进行了为期10天的培训,主要采用专题报告、讲座等形式进行理论学习。让我们得以与众多教授、名师面对面地座谈、交流,倾听他们对数学教学的理解,感悟他们的教育教学思想方法。这次培训内容丰富,安排合理,使我们受益匪浅。 (一)一流专家讲座,提升思想理念我们这次培训班听了与二师的知名教授及部分学校的名校长、名师的讲座,从师德、当前教育教学改革动向、教科研、课堂教学专题、教材解读、现代教育技术应用等多方面进行,各位知名专家、学者、特级教师从自己切身的经验体会出发,畅谈了他们对师德以及教学等教育教学各个领域的独特见解。让我们更清晰地意识到作为一个线的中学教师该如何看待自己所处的位置,该如何去提升自己的专业水平。在知识方面,我们深感知识学问浩如烟海,也深深地体会到教学相长的深刻内涵。教师要有精深的学科专业知识,广博的科学文化知识,丰富的教育和心理科学知识。知识结构要合理,当今的自然科学,社会科学和人文科学互相渗透,相互融合,只懂自己专业的知识是远远不够的,这一点我们在学习中体会很深。精深的专业知识是教师担任教学工作的基础。这就要求教师要扎

实的掌握本学科的基础理论,基础知识以及相应的技能,并运用自如。熟悉本学科的学习方法和研究方法,同时还要具备一定的与本学科相关的知识。学员们在这次培训中发现自己专业知识还很欠缺。只有掌握全面的学科知识才能在教学过程中高屋建瓴的处理好教材,把握住教材的难点,才能有对教材内容深入浅出的讲解。从而保证教学流畅地进行,使学生既学到知识,又掌握学习方法和发展能力。 (二)优秀学员论坛,提升学员理论水平在理论培训阶段,为了提升每位学员自身的理论水平,专家们都会预留一定的时间与学员们交流,学员们畅所欲言,许多提出的观点和问题,这些数学教学中的实际问题,引起全体学员的一致共鸣的同时,也得到专家们的重视,他们的回答也给了我们很好的启示,对于我们今后的教学有着积极的促进作用。 (三)答疑解困,理论水平提高的源泉这次培训要求每个学员每天都要做笔记,在自己的博客上写反思,写心得体会,提出困惑。也为我们学习和交流提供了一平台。 这次理论培训,就自身更新优化而言,使学员们树立了终身学习的思想。通过培训,感觉以前所学的知识太有限了,看问题的眼光也太肤浅了。教师只有树立"活到老,学到老"的终身教育思想,才能跟上时代前进和知识发展的步伐,才能胜任复杂而又富有创造性的教育工作。只有不断学习,不断充实自己的知识,

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

人教版高中数学选修2-1优秀全套教案

高中数学人教版选修2-1全套教案 第一章常用逻辑用语 日期: 1.1.1命题 (一)教学目标 1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式; 2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力; 3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 (二)教学重点与难点 重点:命题的概念、命题的构成 难点:分清命题的条件、结论和判断命题的真假 教具准备:与教材内容相关的资料。 教学设想:通过学生的参与,激发学生学习数学的兴趣。 教学时间 (三)教学过程 学生探究过程: 1.复习回顾 初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析 下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线a∥b,则直线a与直线b没有公共点. (2)2+4=7. (3)垂直于同一条直线的两个平面平行. (4)若x2=1,则x=1. (5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断 学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。 教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。 4.抽象、归纳 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句. 在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

用数学归纳法证明不等式

人教版选修4—5不等式选讲 课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512,…… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n< b n,即 n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2k+1 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│

高中数学骨干教师培训总结

( 校园活动总结) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-072309 高中数学骨干教师培训总结A summary of the training of high school mathematics backbone

高中数学骨干教师培训总结 XX年6月24日——7月4日,我有幸参加了广东省教育局厅主办,xx师范大学承办的高中数学骨干教师培训。来自全省各地市的高中数学骨干教师进行了为期10天的培训,主要采用专题报告、讲座等形式进行理论学习。让我们得以与众多教授、名师面对面地座谈、交流,倾听他们对数学教学的理解,感悟他们的教育教学思想方法。这次培训内容丰富,安排合理,使我们受益匪浅。 (一)一流专家讲座,提升思想理念! 我们这次培训班听了xx与二师的知名教授及部分学校的名校长、名师的讲座,从师德、当前教育教学改革动向、教科研、课堂教学专题、教材解读、现代教育技术应用等多方面进行,各位知名专家、学者、特级教师从自己切身的经验体会出发,畅谈了他们对师德以及教学等教育教学各个领域的独特见解。让我们更清晰地意识到作为一个线的中学教师该如何看待自己所处的位置,该如何去提升自己的专业水平。在知识方面,我们深感知识学问浩如烟海,也深深地体会到教学相长的深刻内涵。教师要有精深的学科专业知识,广博的科学文化知识,丰富的教育和心理科学知识。知识结构要合理,当今的自然科学,社会科学和人文科学互相渗透,相互融合,只懂自己专业的知识是远远不够的,这一点我们在学习中体会很深。精深的专业知识是教师担任教学工作的基础。这就要求教师要扎

高中教师培训总结

高中教师培训总结 高中教师培训总结现将学习培训情况总结于后,呈请上级领导审阅,不当之处恳请批评指正。 一、学习收获: 此次培训学习广西师范大学领导非常重视,从授课人员安排来看:安排的大学教师全是教授级别的老师,中学全是全省以及全国知名的特级和优秀教师。从授课时间任务来看:时间紧任务重,但是广西师范大学的领导、老师特别尽职,安排具体,服务到位,一些细节工作落实得好,如我们的住宿安排,组织班级学员的交流活动等,大家比较满意,评价很高,数学学院范院长多次来教师看望关照我们,我们从心底非常感谢。 此次培训课程设置合理,促进了教师素质的提高。此次培训以讲座和观摩教学,互动讨论相结合的方式进行,互为促进,相得益彰。 首先是让我们进一步加深了对高中数学新课改的转变观念的重要性和紧迫性的认识,特别是人教数学教材主编章建跃教授《高中数学新课程理念及实验教材编写意图解读》和南宁二中徐华老师《数学课能走多远——高中数学有效教学的技能与艺术案例分析》及广西师范大学唐剑岚博士《高中数学有效教学的技能与艺术案例分析——课件设计与应用》三次讲座,让我受益匪浅。

其次,广西师范大学的教授们及邀请的大牌数学教育家的各个专题讲座让我们进一步理解了高中数学新课程改革的理念和要求,强调教师学习的重要性,分析了新课程背景下的高中数学课堂教学方式方法、讲解了数学教育心理学及其在高中数学教学中的应用,中学数学学生探究性思维培养方法对策,数学教学与多媒体技术等等。 第三,增进学员之间的交流,加深了友谊与感情,特别是关于高中参与教育教学科研的体会的探讨,班主任管理中的感悟与体会的交流,促进了大家的进步与提高。 二、学习体会 通过近两周多的学习培训,感悟良多。 首先是广西师范大学老师的敬业精神,令人敬佩,为我们上课的每一位老师都是精心准备,深入浅出,尽心尽职,特别是唐剑岚教授为了准备上课素材,开班后每天只睡过5个小时,体现了一种高尚的职业操守和精湛的业务水平,对促进教师专业发展起了极其重要的作用。 其次,我们的教学观念有所改变,教学思想有所更新。 1、倡导探究学习,培养学生的探究能力和深入思考的能力。这是一个漫长而艰巨的工程,需要各方面共同的努力。首先需要我们大力转变观念,下大工夫改变长期以来习惯了的单纯接受学习的方式,大力开展探究学习,让学生在这样的学习中增强探究兴趣,养成探究意识和习惯。二是要了解

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

最新高中数学教师培训总结

高中数学教师培训总结 高中数学教师培训总结7月21-22日,XX县全体高中物理教师在XX县教师教育中心进行了暑期培训。培 训工作在候校长、李主任和刘主任的正确领导和精心指导下,在高中物理教学指导委员会全体成员的不懈努力下取得了 圆满成功。 本次教师培训的目的是构建适合XX研训一体的教师专 业成长的校本模式,让老师们重视教研、学会教研、应用教研。提高教师开展校本教研的主动性、创新性和执行力,有效提升XX教育发展水平和教师专业成长水平。 培训工作由教研员主持,首先进行的是教研员领导老师们认真学习了《高中物理课程标准》,物理学是一门基础自 然科学,它所研究的是物质的基本结构、最普遍的相互作用、最一般的运动规律以及所使用的实验手段和思维方法。与九年义务教育物理或科学课程相衔接,旨在进一步提高学生的科学素养。高中物理在课程目标上注重提高全体学生的科学素养。在课程结构上重视基础,体现课程的选择性;在课程 内容上体现时代性、基础性、选择性;在课程实施上注重自 主学习,提倡教学方式多样化;在课程评价上强调更新观念,促进学生发展。课程标准还详细提出了教学建议和评价建议,并着重指出教学评价的内容要多元化,要为学生有个性、有特色的发展提供空间;评价形式倡导评价方式的多样化;提 倡建立学生学习记录档案;提倡多主体评价;提倡评价方式 的多元化。 培训内容接下来进行的是由孙西革老师做了题为《高中基础年级课堂教学中存在的问题》的精彩报告,指出目前我县高中物理教学缺乏和探究;教师的教学设计直白,不能有 效的创设情境;解题示范性不强,有的教师没有读题、审题 等环节,不能及时拓展升华。教师要从重结果向重过程转变,要用教材教而不是教教材,要尝试现代化教学模式。教师角色要由知识的传授者向学生学习的合作者转换。 然后由陈辉老师进行了题为《XX届高三一轮复习备考意

高中数学培训心得体会

2010年高中新课程培训心得体会 地调中学程浩宇 我已经作为学校高三老师接手高三教学工作。由于今年是高中新课程高考第一年,所以有关新课程的高考理念可以说是一无所知,带着这么一份期待,自始至终我都很认真的学习新课程培训的内容。只有从这一次学习当中我才真正感受到了一些新课程的教学理念和新课程大纲下高考内容应该怎么样来考察知识点。新课程教学理念中,新课程标准是一条教学准绳。 洛阳二中教师程文给我们分析了07~10年高考趋势与数学复习对策,首先给我们展示了对以前的高考的回顾,并提出了2011年高考的新特点。更是给我们在一线的高三老师提供了很多宝贵的复习策略。作为每年的数学评卷组长给我们分析了高考解题当中应该注意的问题,并提出了2011年高考数学命题的趋势更是分析的非常精辟。其中给我们提到的选考内容更是进一步明确了有关选考内容究竟该怎么样来选考,为今后的高考提供了一个方向标的作用。选考内容文理有异,第一次明确提出了文科是二选一,理科是三选二的选修内容进行考察。并对所有数学老师提出了要求:提高推理运算求解能力和数据处理能力。希望老师在教学过程中围绕着新课程标准,抓住主干,推陈出新,集中精力,突出重点,研究新理念,抓住新内容。提到新内容的教学,程文说了“新内容肯定考察,但是难度不会太大,并以近三年高考题对新内容的考察比例进行说明,新内容的考察分值和难度有一个逐年提升的迹象。最后程教师对高考题的探索性问题(压轴题)的提出了自己独到的看法。要求高三老师指导考生克服紧张的情绪,以平和的心态参加考试,并合理支配考试时间,以实事求是的科学态度解决试题。 短短的几天紧张而又充实的新课程培训,让我结识了不少异地的有经验的数学老师,与他们相互学习和交流让我觉得自己学到了很多以前还做得不够的地方。新课程理念下的数学教学将由“关注学生学习结果”,转向“关注学生活动”,重塑知识的形成过程课程设计将由“给出知识”转向“引导活动”数学新教材倡导学生主动探索,自主学习,合作讨论,体现数学再发现的过程,数学教学不再是教师向学生传授知识的过程,而是鼓励学生“观察”“操作”“发现”,并通过合作交流,让学生发展自主学习的能力,个性品质的发展,从而激发学生的学习兴趣,提高学生学习数学的能力,那么新课程理念下要做好数学教育教学工作,我认为应该侧重以下几方面: 一、学习兴趣的培养 兴趣是最好的老师。浓厚的学习兴趣可以使人的大脑处于最活跃的状态,能够最佳地接受教学信息。浓厚的学习兴趣,能有效地诱发学习动机,促使学生自觉地集中注意力,全身心的投入学习活动中。在教学中可以通过介绍我国数学领域的卓越成绩,介绍数学在生活、生产和其他科学中的广泛应用,激发出学生学习数学的动机。通过设计情景,提出问题引导学生去探索,去发现,让学生从中体验成功的喜悦和快乐。运用适当的教学方法和手段引导他们的求知和好奇心,从而培养他们浓厚的学习兴趣。 二、注重数学思想方法教学 数学思想方法是数学思想和教学方法的总称。数学思想是对数学知识与方法形成的规律性的理论知识,是解决数学问题的根本策略。数学方法是解决数学问题的手段和工具,数学思想方法是数学的精髓,只有掌握了数学思想方法,才能 真正掌握数学,因而数学思想方法也是学生必须具备的基本素质之一,现行的教材当中蕴涵了多种数学思想方法,在教学中应当挖掘由数学基础知识所反映出来的教学思想和方法,设计教学思想方法的目标,结合教学内容适时渗透,反复强化,及时总结,用数学思想方法武装学生,使学生真正成为数学的主人。 三、思维能力的培养

人教版高中数学选修1-1知识点总结

高中数学选修1-1知识点总结 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ?,则q ?” 逆否命题:“若q ?,则p ?” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 利用集合间的包含关系: 例如:若B A ?,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件; 6、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ?. 7、⑴全称量词——“所有的”、“任意一个”等,用“ 全称命题p :)(,x p M x ∈?; 全称命题p 的否定?p :)(,x p M x ?∈?。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示;

特称命题p :)(,x p M x ∈?; 特称命题p 的否定?p :)(,x p M x ?∈?; 第二章 圆锥曲线 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于 12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

最新高中数学教师培训方案资料

数学教师培训方案 上海浦东教育发展研究院韩建宏 根据新疆建设兵团南疆地区教育局的要求,我将于7月26、27日对该区高中数学教师进行培训,为做好此项培训工作,特制定本实施方案。 一、培训目标 配合新的课程改革与实施,帮助教师准确理解和把握高中数学新课程的理念、目标、结构、内容定位和教学基本要求,了解高中新课程实施的情况,学习借鉴成功经验,促进教学观念和教学行为的转变,提高教师实施新课程的能力和水平。 二、培训对象 新疆建设兵团南疆地区高中数学教师 三、培训主题 高中数学教学的基本要求 四、培训内容 教学基本要求是教学必须遵循的基本原则,只有真正了解和掌握了这一基本要求,在教学中才可以有效避免“过度拔高”或“低层次重复”的现象,才能准确把握教学的重点和难点,才能有效地掌控教学内容的难度和深广度,才能真正落实新课程理念。为此,通过培训完成以下内容: 1、结合某一主体单元内容,研讨教学内容和课标,搞清楚它们的基本要求,切实把握教学的难度与深广度,根据这一要求,设计出适合的讨论问题,编制出匹配的例题、习题,设计出巩固练习题等。 2、结合新授课、习题课、复习课等常见课型,设计高质量的“主题单元教学”方案,落实高中数学教学基本要求。 3、针对同一内容,设计适合不同层次需要的教学方案。如以“集合”为例,分别设计出适合高一新生初学、高一单元复习、高三高考复习的教学方案。 各“主题单元教学”方案包括内容如下:

五、培训方式 采取集中的理论学习与分组合作指导相结合的方式。具体有: 1、头脑风暴----交流困惑与想法 2、合作研讨----探讨问题与方法 3、演练习得----展示收获与做法 六、培训管理 1、考勤:由专人负责考勤登记,教师全程参与培训,不得缺勤 2、准备:(1)培训教室有网络、多媒体投影条件(还可以同时使用实物投影仪),配备话筒和音响。A4纸2张/人·半天,黑色水笔粗、细各8支。 (2)教师带教材、课程标准、电脑(可无线上网)、移动硬盘 3、分组:事先管理者把参加培训的教师分好组,每组人数不超过7人,名单张贴在醒目位置,要求各组教师尽可能来自不同年级、不同学校。先不指定小组长。 4、座位:教室桌椅摆放最好是一个小组围成一个“圆桌”,几个“圆桌”均匀分布在教室里面,“圆桌”间要留有空间,便于走动。教师名单贴在座位上,教师对号入座,培训过程一般不予调换。 七、培训实施

《用数学归纳法证明不等式》参考教(学)案

课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512, …… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n<b n,即n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关 系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│ 当n=k+1时,

相关主题