搜档网
当前位置:搜档网 › 地震波反应谱对大跨径桥梁结构地震反应的影响研究

地震波反应谱对大跨径桥梁结构地震反应的影响研究

地震波反应谱对大跨径桥梁结构地震反应的影响研究
地震波反应谱对大跨径桥梁结构地震反应的影响研究

桥梁抗风抗震复习资料

第一讲 1、《中华人民共和国防震减灾法》的主要内容是什么? 答:主要内容包括:1.《防震减灾法》的立法目的2.《防震减灾法》的调整对象及适用范围3.防震减灾工作方针4.对各级人民政府的基本要求。5.政府各部门在防震减灾工作中的职责6.单位和个人的义务7.群测群防工作8.依靠科学进步提高防震减灾工作水平9.提高政府领导防震减灾工作能力10.提升地震监测能力和社会服务职能11.提高建设工程的抗震设防水平12.提高社会的非工程性地震预防能力13.及时完善地震应急救援等相关规定。 2、地震引起的地表破坏现象有哪几种? 答:1.地表断裂 2.滑坡 3.砂土液化 4.软土震陷 3、工程结构主要有哪些震害现象? 答:建筑结构软弱层机制破坏、钢筋混凝土柱压弯破坏和剪切破坏、梁柱节点破坏、框架填充墙剪切破坏、桥梁结构落梁、整体或部分倒塌、钢筋混凝土桥墩压弯破坏和剪切破坏、桥梁碰撞、节点破坏、现代斜拉桥震害现象等。 4、近年来结构震害的主要经验教训是什么? 答:⑴结构抗震设防应采用性能设计原则。即在综合考虑工程造价、结构遭遇地震作用水平、结构的重要性、耐久性和修复费用等因素下,定义结构允许的损坏程度(性能)。 ⑵结构抗震设计应同时考虑强度和延性,尤其注重提高结构整体及延性构件的延性能力。 ⑶重视采用减隔震的设计技术,以提高结构的抗震性能。 ⑷对体系复杂的结构,强调进行空间非线性动力时程分析的必要性。 ⑸对桥梁结构,应重视支座的作用及其设计,同时开发更有效的防落梁装置。 ⑹充分认识到按早期规范设计的旧结构的地震易损性,认识到对重要的旧结构进行抗震加固的紧迫性和必要性。 ⑺充分认识到城市生命线工程遭受地震破坏可能导致的严重社会后果,认识到保证城市生命线工程抗震安全性的意义。 ⑻充分认识到,地震区的一切新建工程都都必须严格按照国家颁布的抗震设计规范进行设防,为此而增加一些基建投资是值得的和必要的。 第二讲 1、构造地震的成因是什么? 答:构造地震主要是由于断层的错动而造成的。自板块构造学说提出后,人们已广泛接受这样的观点:断层错动是由全球性的大规模板块构造运动所造成的。可以说,板块构造运动是构造地震发生的宏观背景,而断层错动则是构造地震发生的局部机制。 2、什么是地震动的特性及其三要素? 答:特性:地震动是以运动方式出现。地震动是迅速变化的随机振动,地震动的这一特点,导致了抗震设计对地震作用峰值的关注。地震动对结构的作用效应与结构的动力特性和变形反应有关。地震动具有更大的不确定性,这使得抗震设计不能完全依靠强度安全储备。 三要素:地震动的幅值(最大振幅或叫峰值)、频谱(波形)和持续时间(简称持时), 3、什么是地震安全性评价? 答:地震安全性评价是指对具体建设工程场址及其周围地区的地震地质条件、地

大跨度【桥梁】地震反应分析时阻尼的取值模板

大跨度桥梁地震反应分析时阻尼的取值 Damping Value for Seismic Response Analysis of Long-span Bridges 贺佰冻 HE Baidong (中铁十二局三公司,山西 太原 841200) 摘 要:简单介绍了目前桥梁抗震中存在的关于阻尼的一些问题以及瑞利阻尼理论。在利用有限元软件ANSYS 对大跨度桥梁进行地震反应分析时,结构阻尼在其中的实现。文章以龙潭河大桥为例,建立了有限元模型,计算分析其动力特性获得桥梁结构的振型和频率,在此基础上求解出了Aplha 和Beta 。 关键词:大跨桥梁;地震反应分析;阻尼;瑞利阻尼 0 前言 桥梁结构的地震反应分析是一个抗震动力学问题。阻尼是结构的一个重要动力特性,也是结构地震反应中最为重要的参数之一。阻尼消耗能量,使振动衰减,对桥梁的安全是有利的。阻尼的大小直接关系到桥梁在动荷载作用下振动的强弱,因此研究桥梁的阻尼规律是提高桥梁动力计算精确度的关键之一。 我国现行的《公路工程抗震设计规范》(JTJ004-89)[1] 中关于桥梁的一章适用于跨径不超过150m 的钢筋混凝土和预应力混凝土梁桥、圬工或钢筋混凝土拱桥的抗震设计,结构的阻尼比取5%。根据美国、俄罗斯及我国的一些地震记录的统计结果,反应谱值大致与阻尼比的平方根成反比,公路钢桥的阻尼比小于5%,斜拉桥、悬索桥结构更为复杂,而且是非均值结构,各部分的能量耗散机理不同,阻尼比的确定更加困难,各国规范也没有给出参考值[2] 。因此,对桥梁进行地震反应分析时,如何更精确地计入阻尼的影响是值得深入探讨研究的课题。本文将以龙潭河大桥为工程背景具体研究地震反应分析中阻尼的取值。 1 瑞利阻尼理论 近百余年来,人们提出了多种阻尼理论来解释结构的阻尼现象,目前被广泛接受的是两种线性阻尼理论,复阻尼理论和粘滞阻尼理论。在桥梁抗震分析中,一般都采用粘滞阻尼理论。在一般桥梁结构的地震反应分析中,可以假定阻尼矩阵具有正交性,阻尼可用阻尼比的形式计入;对于明显非均质结构,阻尼矩阵的正交性假定不再适用,需要建立非比例阻尼矩阵。 采用粘滞阻尼理论,为使阻尼矩阵C 满足正交性,假设: C M α= 或 C K β= (1) 式中,α、β为比例常数。 则有: 2n n α ξω= 或 2 n n βωξ= (2) 瑞利阻尼矩阵假定阻尼矩阵为刚度矩阵和质量矩阵的线性组合。为了考虑由结构非均质性和各部分耗能机理不同而引起的阻尼非均质性,Clough 提出了非比例阻尼理论,该理论认为总阻尼矩阵可由分块的瑞利阻尼矩阵叠加而成。 采用瑞利阻尼假设: C M K αβ=+ (3)

大跨度桥梁的抗震分析与地震动输入

文章编号:1671-2579(2001)04-0032-03 大跨度桥梁的抗震分析与地震动输入 陈星烨1,余钱华2 (1.湖南大学,湖南长沙 410082;2.长沙交通学院) 摘 要:文中讨论了大跨度桥梁地震反应的发展与现状;对抗震分析的主要方法进行了 简介,并就存在的问题作了探讨;同时,简述了地震波的输入问题,并提出了笔者的观点;最 后,笔者就使用软件ANSYS应用于桥梁抗震分析谈了体会。 关键词:大跨度桥梁;地震反应;抗震分析;地震波;软件ANSYS Ξ 1 大跨度桥梁地震反应研究的发展与现状 桥梁地震反应研究的目的是为桥梁抗震设计提供科学依据和有效手段。早期主要采用简化静力法,50年代后发展了动力法的反应谱理论,近20年来对大跨度桥梁主要采用时程分析法。 1.1 静力法 早在1899年,日本大房森吉提出静力法的概念。它假设结构物各个部分与地面同步运动。因而可把惯性力视作静力进行抗震计算。 1951年,日本佐野倡导震度法,即根据静力法概念提出以结构的10%的重量作为水平地震荷载。 静力法把地震加速度看作是结构地震破坏的单一因素有极大的局限性,由于静力法抹掉了结构的动力特性,同时也就无法反映地震波的频谱特性对结构动力反应的影响。只有当结构物的基本周期比地面运动卓越周期小很多,从而结构物在振动时变形很小并可被当作刚体时,静力法才能成立。若超出这个范围就不能适用。因此它符合传统的力学模式,但对大跨度桥梁的抗震分析而言,静力法完全不适用。 1.2 反应谱方法 反应谱方法是动力分析的方法之一。目前在中小跨度的桥梁抗震设计中,广泛使用。它用于抗震设计主要包括两个基本的步骤:首先根据强震记录统计用于设计的地震反应谱;其次将结构振动方程进行振型分解,将物理位移用振型广义坐标表示,而广义坐标的最大值由前一步中的设计反应谱求得。最后,反应量的最大值可通过适当的方法将各振型反应最大值组合起来得到。 该方法的优点是一旦设计反应谱确定后,反应谱法的计算工作量主要就集中在振型分解及其反应的组合工作上。用该法做地震响应分析时,须充分重视振型数量的取值。由于大跨度桥梁的自振频率在一个相当宽的频带内密布,而地震波一般都是宽带激励,因此在用反应谱方法做大跨度桥梁的分析时,所取的振型数必须足够,否则极有可能漏掉对局部反应有重大贡献的振型。例如,在安庆斜拉桥的抗震分析时,所取的振型数应为前300阶,一般的作法是先取一定数量的振型试算,然后再增加振型数,进行结果比较,直到前后两次的结果比较接近为止。此外,由于规范给出的反应谱适用于周期小于或等于5s的结构,但大跨度桥梁尤其是大跨度斜拉桥、悬索桥的基本周期一般都超过了5s,因此在用反应谱方法分析大跨度桥梁时,必须研究长周期反应谱,正因如此,现在大跨度桥梁的抗震分析一般采用时程分析法。 反应谱法的最大缺点是原则上只适用于线性结构体系,但结构在强烈地震中一般都要进入非线性状态,弹性反应谱法不能直接使用。为解决这个问题,有两种方法:一种是研究弹塑性反应谱,另一种是在《公路工程抗震设计规范》中通过一个综合影响系数考虑非线性因素。另外,地震反应谱失掉相位信息,经叠加得到的结构反应最大值是一个近似值, 32 中 外 公 路 第21卷 第4期 2001年8月 收稿日期:2001-05-12 作者简介:陈星烨,男,长沙交通学院讲师,湖南大学在读硕士.

桥梁专业设计技术规定 第八章 桥梁震动及抗震

8 桥梁振动及抗震 8.1结构抗震体系 8.1.1结构应具有合理的地震作用传力途径和明确的计算简图。结构除了具有必要的承载能力以外,还应具有良好的变形能力和耗能能力,以保证结构的延性性能。 8.1.2结构的质量和刚度应均匀分布,避免因质量和刚度突变而造成地震时结构各部分相对变形过大。对于质量和刚度变化较大的部位,应采取有效措施予以加强。 8.1.3结构基础应建造在坚硬的地基上,尽可能避开活断层及地质条件不好的地基。当结构必须建造在软土地基或可能液化的地基上时,应对地基进行处理。 8.1.4上部结构应尽量采取连续的形式。当上部结构与下部结构之间的支座允许上部结构平动时,必须保证支承面宽度并采取相应的限位措施,防止落梁的发生。 8.1.5确定墩柱的截面尺寸时应避免墩柱的轴压比(墩柱所承受的轴向压力与抗压极限承载力之比)过大,以保证墩柱截面的延性性能。 8.1.6对于多跨连续结构,各中墩柱的截面尺寸和高度应使各柱的纵桥向刚度和横桥向刚度基本相同。跨径相差较大时,应考虑上部结构质量对横桥向频率的影响。对于地面高差较大的地形,可通过下挖地面来调整墩柱的高度。 8.1.7对于大跨度桥梁,应结合桥位处的地质条件和地震动特性等具体情况,对各种结构体系进行分析研究,选择抗震性能较好的结构体系。 8.2地震反应计算 8.2.1工程设计项目应按《地震安全性评价管理条例》(国务院令第323号)及各地方相应管理办法,要求业主对相应区域进行地震危险性分析,

并根据地震危险性分析进行结构的地震反应计算。在桥梁建设中尽量避开具有危险性的活动地震断层。活动性地震断层附近桥梁的地震反应计算要特别注意地面位移对结构的影响。按“条例”不需进行地震安全性评价的一般性工程,应按照《中国地震动参数区划图》(GB18306-xx)规定的设防要求进行抗震设防。 8.2.2应根据工程的重要性等级、场地的地质条件和地震烈度、结构的自振特性等情况,按照规范用反应谱方法进行结构的地震反应计算。对于大跨度桥梁,还应进行时程反应分析,并考虑地震动的空间不均匀性。 8.2.3对于地震作用的计算,应按公路桥梁相关规范执行,城市桥梁应根据道路等级和桥梁的重要性,按表8.1进行重要性系数修正。 表8.1 城市桥梁重要性修正系数Ci 考虑地震引起的位移,避免结构因位移过大而导致非强度破坏。 8.2.5对大跨度桥梁进行地震反应计算时,由于高阶振型的影响较大,必须计算足够多的振型。 8.2.6采用减震措施设计时,应结合具体桥型进行动力时程分析。 8.3构件抗震设计和抗震构造措施 8.3.1 应搜集桥位处地震基本烈度、地质构造、地震活动情况、工程地质及水文地质条件,并根据地震基本烈度及桥梁重要性等级采取相应的

地震工程学心得体会

精心整理《地震工程学》课程总结? 1.对所学内容的综述? 1.1结构地震反应分析的方法? 结构地震反应分析的方法很多,下面主要介绍反应谱理论和时程反应分析法? 绍。 也并不是一次地震动作用下的反应谱,而是不同地震反应的包线。 1.1.2?? 时程分析法? 时程分析法又称作动态分析法。它是将地震波段按时段进行数值化后,输入结构体系的振动微分方程,采用逐步积分法进行结构弹塑性动力反应分析,计算出结构在整个强震时域中的振动状态过程,给出各个时刻各杆件的内力和变形以及各杆

件出现塑性铰的顺序。? 时程分析法计算地震反应需要输入地震动参数,该参数具有概率含义的加速度时程曲线、结构和构件的动力模型考虑了结构的非线性恢复力特性,更接近实际情况,因而时程分析方法具有很多优点。它全面地考虑了强震三要素;比较确切地、具体地和细致地给出了结构弹塑性地震反应。? 1.1.3地震信号频域分析? ???? X(f), 1.2? 1.2.1 (1) ??(2 (3 ?(4 性和有效性;? ?? (5)验证抗震理论、结构地震反应分析方法、结构振动控制算法等的可靠性和适用性。? 1.2.2? 结构抗震试验的实施程序? ??

(1)确定研究目标和试验方法,含试验目的、试验设备和试件的采用、需要测量的物理量等;? ?? (2)荷载施加,含与试验设备相关的荷载施加方式和加载规则等;? ?(3)测点布置和数据采集,含各类传感器和数采设备的采用、测点数量的选择;? ??(4)数据分析,含测试数据的常规处理和特殊分析。? (1 ? (2 ????旨在 (3 ?? 入下结构或构件的地震反应,研究和验证结构地震破坏机理、破坏特征、抗震能力和抗震薄弱环节。 ?(4)振动台试验? ?????振动台试验是利用振动台装置进行的结构强迫振动试验,是地震工程研究中最重要的实验手段之一。?

桥梁抗风与抗震

桥梁抗风与抗震 1.桥梁抗震 1.1桥梁的震害及破坏机理 调查与分析桥梁的震害及其破坏机理是建立正确的抗震设计方法,采取有效抗震措施的科学依据。 国内外学者对桥梁震害的调查研究结果表明,桥梁震害主要表现为: (1)上部结构的破坏:桥梁上部结构本身遭受震害而被毁坏的情形不多,一般都是由于桥梁结构的其他部位的毁坏而引起的。如落梁,一种是由于弹性设计理论采用毛截面刚度,这样就会低估横向地震作用和位移。导致活动节点处所设置的支座长度明显不足以及相邻梁体之间因横向距离不足而引起的相互冲击,造成落梁及相邻结构的撞击破坏;另外一种是由于地基土的作用造成大的地震位移,这种桥梁震害主要发生在建在软土或者可能液化的地基土上的桥梁上。软土通常会使结构的振动反应放大,使得落梁的可能性增加。 (2)支座连接部位的破坏:这中破坏比较常见,由于连接部位的破坏会引起力传递方式的变化,从而对结构其他部位的抗震产生影响,进一步加重震害。这种破坏是抗震设计中最关注的问题之一。 (3)下部结构和基础的破坏:下部结构和基础的严重破坏是引起桥梁倒塌,并在震后难以修复使用的主要原因。除了地基毁坏的情况,桥梁墩台和基础的震害是由于受到较大的水平地震力,瞬时反复振动在相对薄弱的截面产生破坏而引起的,从大量震害实例来看,比较高柔的桥墩多为弯曲破坏,矮粗的桥墩多为剪切型破坏,介于两者之间的为混合型。地基破坏主要表现为砂土液化,地基失效,基础沉降和不均匀沉降破坏及由于其上承载力和稳定性不够,导致地面产生大变形,地层发生水平滑移,下沉,断裂。 (4)桥台沉陷,当地震加速度作用时,由于桥台填土与桥台是不完全固结的,桥台填土的纵向土压力增大,桥梁与桥台之间的冲撞会产生相当大的被动土压力,造成桥台有向桥跨方向移动的趋势。由于桥面的支撑作用,桥台将发生以桥台顶端为支点的竖向旋转,导致基础破坏。如果桥台基础在液化土上,又将引起桥台垂直沉陷,最终导致桥梁破坏。 以上所介绍桥梁的几种破坏形式是相互影响的,不同的地质条件和不同的抗震措施所造成的破坏程度和类型往往是不同的。这就要求我们在桥梁设计中尤其是不规则桥梁和大跨度桥梁,必须从整体分析桥梁的抗震性能。 1.2抗震分析理论

城市桥梁地震反应中防碰撞措施分析

Indust rial Const ruct ion V ol.37,Supplement,2007 工业建筑 2007年第37卷增刊 城市桥梁地震反应中防碰撞措施分析 孙 立 霍立飞 (北京中交桥宇科技有限公司 北京 100011) 摘 要:在地震过程中城市桥梁上部相邻结构的碰撞,不仅使结构受损,甚至发生倒塌,这是地震工程研究领域一个关键而又难以解决的问题。给出各国规范对于落梁防止装置的规定,通过对工程实践中常采用的防碰撞措施进行分析,改进了常用的拉杆装置、落梁防止装置的设计方法,给出了简化的计算方法,可以更好的应用到工程实践中。 关键词:碰撞 桥梁 地震反应 POUNDING EFFEC TS IN ELEVATED BRIDGES DURING EARTHQUAKES Sun L i H uo L ifei (Beijing Zho ng jiaoqiaoy u T echnique Co.L td Beijing 100011) Abstract:P ounding of adjacent super structur e seg ments in elev ated bridg es during sev er e earthquake can result in sig nificant str uctur al damage.T he influence o f pounding on the st ructur al respo nse is significant in t he longit udinal direction o f the bridg e and significantly depends on t he g ap size betw een superstr ucture segments.In the study,the Code for seismic desig n of building s are co mpa red and analyzed,the method fo r decreasing pounding respo nse ar e analyzed,the desig n method for pr eventing the po unding r esponse ar e amended,t he r esult can be a pplied in the bridge design w ell. Keywords:pounding elevated br idge seismic r esponse 第一作者:孙 立 男 1973年4月出生 工程师收稿日期:2007-01-10 0 前 言 地震作用下简支梁桥的碰撞对结构的地震响应具有重要的影响。结构发生碰撞后,墩底弯矩和剪力以及梁体位移都比没有碰撞的时候大很多,碰撞后的墩底弯矩有的超过了墩的屈服弯矩,使结构进入非线性状态,而且较大的碰撞力可能使梁体被撞坏,发生落梁,这些都在很大程度上改变了结构的地震响应状态。简支梁桥的梁间距提供了上部结构因温差、收缩、徐变等影响所需的伸长和缩短的距离,在地震作用下梁间距除了要满足正常情况下上部结构的伸缩长度外,还应考虑到梁发生碰撞的情况。梁间距取值较小(一般小于6cm )或者取得较大避免碰撞发生时,墩底弯矩和剪力、梁的位移以及梁体间的碰撞力都相对较小。对于简支梁桥来说,梁间距要是取值较小,就不能满足上部结构因温差、收缩、徐变等影响所需的伸长和缩短的距离,因而虽然从理论上讲缩小梁间距有利于减轻结构的碰撞响应,但是实际上并不是可取的;另一个方面,当梁间距取得足够大能避免碰撞时,墩底弯矩和剪力以及梁体 位移都趋于一个稳定的值,且比有碰撞发生时要小, 因而在理论上这也是一种减轻碰撞作用的较为有利的梁间距;但是在实际工程中,较大的梁间距对于桥梁这种结构形式并不一定可行,因为增大梁间距的同时也增大了路面的不平顺,另外从经济角度上考虑,这种一味地靠增大梁间距来避免或是减小桥梁结构的碰撞响应也是不可行的 [1] 。 1 各国规范对于落梁防止装置的规定 我国现行的 公路工程抗震设计规范 (JT J 004-89)[2](以下简称 规范 )仅在第4 4 4条、第4 4 5条和4 4 15条中极为简单地提到了应考虑防止落梁的措施。 我国 规范 对落梁防止装置的设计没有量化的规定,而国外,如美国、日本、新西兰等国都有支承宽度和落梁防止装置的设计方法。这些方法大都采用静力分析手段进行弹性设计,比较简单但不能准确 704

大跨度桥梁的抗震设计

1、概述 大跨度桥梁与中等跨径相比,因结构的空间性与复杂性,地震反应比较复杂,高阶振型的影响比较明显。目前大跨度桥梁的抗震设计还没有一个统一标准,国内规范没有对大跨度桥梁进行详细规定,抗震计算比较复杂。本文主要介绍了京津城际某大跨预应力混凝土连续梁墩身、基础部分的抗震计算。根据≤铁路工程抗震设计规范(修订)≥,运用midas有限元程序,采用反应谱分析方法计算地震力,以便为抗震设计提供依据。 本桥桥面系为无碴桥面预应力混凝土连续箱梁,其横截面为单箱单室截面,选取桥跨(40+64+40)m的预应力混凝土连续梁作为计算模型。混凝土采用C50,梁底下缘按二次抛物线变化;采双线圆端型桥墩,3号墩为制动墩,边墩简支梁固定支座设在4号墩。 图1 全桥模型 图2(a)边墩墩身尺寸图2(b)主墩墩身尺寸 2、动态反应分析 (一)有限元模型建立

结构分析的第一步就是建立模型,模型建立的正确与否,简化的模型是否能反映结构真实的受力情况,直接影响计算结果的正确性。本算例运用桥梁有限元计算软件Midas civil 建立全桥动力模型,模型中主梁、桥墩、承台均采用空间梁单元进行模拟,梁墩之间采用刚性连接释放约束模拟,承台底采用一般弹性支承模拟,将地基及桩基础对结构的作用简化成纵横向转动弹簧施加在承台底,平动刚度以刚性考虑。 转动弹簧计算参数列表 表1 转动弹簧计算参数() 计算模型 图3 计算模型 ㈡抗震验算荷载的选取 连续梁全联质量和桥墩、承台质量通过定义结构自重向X、Y,Z方向转化。边跨简支梁质量,采用施加集中质量单元实现,纵桥向集中施加在4墩墩顶,质量大小为一跨简支梁的质量和二期恒载质量之和;横桥向施加在两边墩墩顶,质量取一跨简支梁的质量和二期恒载质量之和的一半。全梁二期恒载184KN/m。 活载取ZK列车活载进行验算,根据≤铁路工程抗震设计规范(修订)≥要求,对于Ⅰ、Ⅱ 级铁路,应分别按有车、无车进行计算,当桥上有车时,顺桥向不计活载引起的地震力,横桥向只计50%活荷载引起的地震力,作用点在轨顶以上2m处。需要分别对桥梁顺桥向及横桥向进行单独验算。 验算荷载列表 表2 验算荷载(KN)

桥梁抗震构造措施

桥梁抗震的构造要求有哪些? 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接强度,对双曲拱桥应加强肋波间的连接。 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 13.拱桥宜尽量减轻拱上建筑的重量。 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。

大跨度桥梁抗震设计方法

大跨度桥梁抗震设计方法 发表时间:2018-05-22T10:44:07.397Z 来源:《基层建设》2018年第6期作者:赵明剑王斌 [导读] 摘要:地震灾害的发生往往造成房屋倒塌、道路中断、桥梁破坏、人员伤亡等严重破坏,产生的次生破坏造成的经济损失更是巨大。 潍坊市市政工程设计研究院有限公司山东省潍坊市 261061 摘要:地震灾害的发生往往造成房屋倒塌、道路中断、桥梁破坏、人员伤亡等严重破坏,产生的次生破坏造成的经济损失更是巨大。以目前科技水平而言,地震尚无准确预测和控制手段;而地震的发生又是不可避免的,而我国又处于世界上两个最活跃的地震带上,因此在大垮度桥梁结构设计中研究抗震分析对地震灾害的预防是有十分重要的意义。本文主要对大跨度桥梁抗震设计方法进行了总结,着重于工程的实际可操作性和细节的处理。 关键词:大跨度;桥梁抗震;设计方法 抗震设计在大跨度桥梁建设过程中是非常重要的一个环节,抗震设计的合理与否对桥梁的整体抗震性能有着决定的作用。所以,在抗震设计过程中,要善于总结相关经验,分析各种震害特点,不断加深对地震机理的认识和研究,结合建设桥梁的实际功能特点,努力探究大跨度桥梁的抗震设计方法,并应用桥梁抗震加固技术,进一步提高桥梁的抗震性能,以减轻或避免震害。 1大跨度桥梁抗震设计状况 与中等跨度桥梁相比,大跨度桥梁的地震反应相对比较复杂,所以其抗震设计的难度也不断增大。例如高阶振型的影响较大,同时还要对多点激振、行波效应等进行充分的考虑。对于大跨度桥梁的抗震设计,具有一定的复杂性、系统性和综合性。大跨度桥梁的反应存在多变性,因此,导致抗震设计也是多样性。在当前的桥梁设计规范和规定中,很多内容是针对中等桥梁制定的,而对于大跨度桥梁的抗震方面,尚属于发展的前期阶段,很多问题需要得到全面、积极的解决。JTJ004-89《公路工程抗震设计规范》规定地震烈度7度以上地区的新建桥梁都必须设计抗震设防,在桥梁抗震设计中普遍采用“小震不坏、中震可修、大震不倒”的分类设防原则。 2在地震中桥梁较易产生破坏的位置及其原因 2.1上部结构的震害 桥梁的上部结构在地震中出现损坏是比较常见的损坏主要有三种类型:分别是碰撞损坏、移位损坏和自身损坏。由于上部结构承受自身重力荷载和使用荷载,设计时按照弹性设计,在抗震设计中通常也设计为较强的环节。因此地震中上部结构基本上可以保持弹性。上部结构由于自身强度不足引起的破坏仅仅是局部的。就一般而言,上部结构的损伤引起桥梁倒塌的可能性不大。与主梁破坏相比之下,上部结构中支座破坏却是较为常见。上部结构的地震惯性力主要是通过支座传递到下部结构上,当支座传递的荷载超过支座的设计强度时就有可能产生支座破坏,即地震过程中,桥梁支座将承受很大的剪力和变形,当剪力超锚栓的强度后,描栓破坏,或者支座变位超过活动支座的允许值,使得桥梁倾斜或者支座错位。支座一旦发生破坏,梁体无约束活动节点处的位移极有可能超出支座长度范围,发生落梁破坏或者由于支座失效后,主梁横向震动时,抗震挡块设置不甚合理没能够有效的防止落梁发生。 2.2地基 地基土(如饱和粉细纱和饱和粘沙土)的地震液化影响,同样加大了地震位移的影响,进而放大了结构的振动反应,使落梁的可能性增大。当采用排架桩基础时,则使桩基的承载力降低,从而造成与地震反应无关的过大的竖向和横向位移,而简支梁桥对此尤为明显。另外,由于地基软弱,地震时当部分地基液化失效后引起了结构物的整体倾斜,下沉等严重变形,进而导致结构物的破坏,震害较重。 2.3墩柱破坏 墩柱是桥梁抗侧向力的主要构件,因此墩柱的破坏是最普遍的。墩柱破坏的主要表现形式有:弯曲强度不足、弯曲延性不足、纵筋搭接区的抗弯能力以及剪切强度不足等。墩柱的破坏往往引起一系列的连锁反应,如落梁、整个结构的倒塌等。而落梁对墩台侧壁的撞击又对下部结构造成新的破坏。 3大跨度桥梁的抗震设计方法 大跨度桥梁的抗震设计,具有实践性的要求,严格按照桥梁周围的环境及自身需求,规划抗震的方案。分析大跨度桥梁的抗震设计,如下: 3.1概念设计 大跨度桥梁工程中,涉及到锚固、索结构等多项技术,先要规划出大跨度桥梁的抗震设计,再安排抗震加固措施。概念设计在大跨度抗震中,有利于提高结构抗震的水平,决定了桥梁抗震的水平。概念设计与抗震计算,同属于大跨度桥梁抗震设计中的措施,而概念设计,起到关键性的作用,其可根据大跨度桥梁各部分的关系,设计出抗震的措施,促使桥梁抗震具有可实施的特性,而且概念设计还能评估大跨度桥梁对地震的评估能力,致力于设计出优质的抗震结构,设计人员可以根据概念设计,灵活的更改抗震设计的方式,促使抗震设计更加符合大跨度桥梁的实际情况。 3.2延性抗震设计 首先,结构延性定义:表示结构从屈服到破坏的后期变形能力,是结构能量耗散能力的主要度量。 其次,延性抗震设计的分类:a)上部、基础弹性,墩柱延性设计;b)墩柱、基础弹性,上部结构延性(钢桥);c)墩柱、基础、上部结构弹性,支座弹缩性――减隔震设计(在后节中介绍) 最后,墩柱结构构造措施:墩柱潜在塑性铰区域内加密箍筋的配置:a)加密区的长度:弯曲方向截面宽度的1.0倍,超过最大弯矩80%的范围;b)加密箍筋的最大间距:10cm或6ds或b/4;c)箍筋的直径不应小于:10mm;d)螺旋式箍筋的接头必须采用对接,矩形箍筋应有135度的弯钩,并深入核心混凝土之内6cm以上;e)加密区箍筋肢距:25cm;f)墩柱的纵筋应尽可能延伸至盖梁或承台的另一侧面,塑性铰加密区域的箍筋应该延续到盖梁和承台内,延伸到盖梁和承台的距离不应小于墩柱长边尺寸的1/2,并不小于50cm。 3.3桥梁减、隔震设计 减、隔震技术是简便、经济、先进的工程抗震手段。减、隔震装置是通过增大结构主要振型的周期使其落在地震能量较少的范围内或增大结构的能量耗散能力来达到减小结构地震反应的目的。在进行抗震设计时,要根据结构特点和场地地震波的频率特性,通过选用合适的减隔震装置、相应参数以及设置方案,合理分配结构的受力和变形。一方面,应将重点放在提高吸收能量能力从而增大阻尼和分散地震

桥梁抗震体系

桥梁抗震体系 内容摘要:在桥梁设计中,现行的通常做法是仅对桥粱进行简单抗震设防,桥粱结构设计工程师应努力掌握更多的结构抗震知识,提高抗震设防意识。本文分析了桥梁的震害特征和原因,阐述了桥梁抗震设计的具体原则和方法。 关键词:抗震设计;桥梁;地基与基础 一.概述 我国是世界上地震活动最为强烈的国家之一,今年5月份的四川汶川大地震造成了令人触目惊心的损失,作为结构设计工程师,必须充分认识到自己的职责所在,尽可能得利用自己掌握的专业知识,合理提高结构物的抗震能力。尽量减少地震带来的灾害。 二.桥梁的震害及特征 对国内外震害的调查表明,在过去的地震中,有许多桥梁遭受了不同程度的破坏,其主要震害有以下几点。 1.桥台震害 桥台的震害主要表现为桥台与路基一起向河心滑移,导致桩柱式桥台的桩柱倾斜、折断和开裂:霞力式桥台胸墙开裂,台体移动、下沉和转动;桥头引道沉降,翼墙损坏、开裂,施工缝错工、开裂以及因与主梁相撞而损坏。桥台的滑移与倾斜会进一步使主梁受压破坏,甚至使主梁坍毁。 2.桥墩震害 桥墩震害主要表现为桥墩沉降、倾斜、移位,墩身开裂、剪断,受压缘混凝土崩溃。钢筋裸露屈曲,桥墩与基础连接处开裂、折断等。 3.支座震害 在地震力的作用下,由于支座设计没有充分考虑抗震的要求,构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等.并由此导致结构力f专递形式的变化,进而对结构的其他部位产生不利的影响。 4.梁的震害

桥梁最严重的震害现象是主梁坠落。落梁主要是由于桥台、桥墩倾斜、倒塌,支座破坏.梁体碰撞,相邻墩间发生过大相对位移等引起的。 5.地基与基础震害 地基与基础的严重破坏是导致桥梁倒塌。并在震后难以修复使用的蕈要原因。地基破坏主要是指因砂土液化、不均匀沉降及稳定性不够等因数导致的地层水平滑移、下沉、断裂。基础的破坏与地基的破坏紧密相关,地基破坏一般都会导致基础的破坏,主要表现为移位、倾斜、下沉、折断和屈曲失稳。 6.另外桥梁结构的震害还表现在:结构构。造及连接不当所造成的破坏、桥台台后填土位移过大造成的桥台沉降或斜度过大而造成墩台承受过大的扭矩引起的破坏。 三.桥梁的震害原因 国内外学者对桥梁震害的调查研究结果表明,现在桥梁的破坏大多沿顺桥向和横桥向发生,而顺桥向震害尤其严重,分析其破坏原因主要表现在以下几个方面: 1.地震位移造成的粱式桥梁上部活动节点处因盖梁宽度设置不足导致落梁或粱体相互碰撞引起的破坏。而对拱式结构则主要表现在拱上建筑和腹拱的破坏,拱圈在拱顶、拱脚产生的破损裂缝,甚至整个隆起变形。 2.地震位移的影响,进而放大了结构的振动反应,使落梁的可能性增大。当采用排架桩基础时,则使桩基的承载力降低,从而造成与地震反应无关的过大的竖向和横向位移,而简支粱桥对此尤为明显。另外,由于地基软弱,地震时当部分地基液化失效后引起了结构物的整体倾斜.下沉等严重变形,进而导致结构物的破坏,震害较重。 3.支座破坏,在地震力的作用下,由于支座设计没有克分考虑抗震要求。构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等,并由此导致结构力的传递形式的变化,进而对结构的其他部位产生不利的影响。 4.软弱的下部结构破坏。即由于桥梁下部结构不足以抵抗其自身的惯性力和支座传递的主梁的地震力,导致结构下部的开裂、变形和失效,甚至倾覆,并

结构抗震课后习题答案解析

《建筑结构抗震设计》课后习题解答建筑结构抗震设计》第 1 章绪论 1、震级和烈度有什么区别和联系?震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防?规范将建筑物按其用途分为四类:甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。 4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为 6 度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震? 小震就是发生机会较多的地震,50 年年限,被超越概率为63.2%;中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。

地震作用下桥梁结构横向碰撞模型及参数分析

振 动 与 冲 击 第26卷第9期 JOURNAL OF V I B RATI O N AND SHOCK Vol .26No .92007  地震作用下桥梁结构横向碰撞模型及参数分析 基金项目:国家自然科学基金资助项目(50578118)收稿日期:2006-12-18 修改稿收到日期:2007-01-18第一作者邓育林男,博士生,1977年3月生 邓育林, 彭天波, 李建中 (同济大学桥梁系,上海 200092) 摘 要:针对桥梁结构在地震作用下梁体与横向挡块间的碰撞现象,采用非线性时程积分法,研究了横向地震作 用下梁体与挡块间的碰撞效应。通过对刚体碰撞模型分析,推导出阻尼常数与恢复系数间的关系表达式,在此基础上建 立了能考虑碰撞过程中能量损失的桥梁横向碰撞模型,并对碰撞刚度、初始间隙、恢复系数以及桥梁跨径等参数进行了影响分析。分析结果表明:最大撞击力随碰撞刚度和桥梁跨径的增大而增大,但随初始间隙的变化规律不明显;恢复系数对碰撞效应影响很大,忽略碰撞过程中的能量损失会高估碰撞反应。为减轻梁体与横向挡块间的碰撞效应,提出了挡块刚度的合理取值。 关键词:横向地震;非线性;碰撞效应;碰撞模型;参数分析 中图分类号:U442.5+5 文献标识码:A 最近二十余年,地球上发生的多次地震灾害对桥 梁抗震设计理论产生了巨大影响,并且开展了一系列深入研究。其中地震作用下,结构的碰撞被认为是影响结构地震反应和结构抗震性能的一个重要因素。许多桥梁结构地震震害表明:桥梁连接构造处的碰撞是 引起结构破坏的主要原因之一[1,2] 。从历次大地震中可知碰撞不但造成构造设施的损坏,而且还会引起相应构件内力急剧增大,对下部结构的延性能力要求增 加,甚至造成桥梁墩台脆性剪切破坏[3-5] 。 在桥梁工程中,为了防止落梁的震害或保证支座的抗震安全性,通常采用设置挡块的抗震措施。目前,各国学者对挡块的抗震性能研究不多,在国外,Shervin Maleki [6,7] 对简支梁桥上部结构与横向约束挡块间碰撞效应进行了研究,分析表明碰撞刚度、初始间隙和结构周期影响很大,同时指出忽略碰撞效应,将会低估挡块及下部结构的地震需求,在抗震设计中造成不安全的结果。其不足是采用的是线性碰撞模型,没有考虑碰撞过程中的能量损失。而在国内,目前的桥梁工程抗震规范仅把挡块作为一种构造措施,实际上挡块的作用对主体结构的地震反应有较大的影响,因而在地震反应分析中,分析挡块的作用以及横向碰撞效应就很有意义。本文通过刚体碰撞模型分析,推导出阻尼常数与恢复系数间的关系,在此基础上建立了简支梁桥横向碰撞简化模型,并进行了参数分析,得到了一些结论和规律,为减轻地震作用下碰撞效应提供依据。 1 刚体碰撞模型 对于混凝土简支梁桥, 上部结构横向刚度一般很  图1 刚体碰撞模型 大,可将其视为刚体,在与挡块发生碰撞时,由于碰撞持时很短,横向碰撞过程可以等效为图1刚体碰撞模型,其中m 为刚体质量,k 为碰撞刚度,c 代表碰撞 过程中的能量损失,假定在t =0时刻发生碰撞。 建立系统的运动方程 m x ?? +cx ? +kx +0x (0)=0,x ? (0)=υ (1) 对于小阻尼情况,上式解为: x (t )=A exp (-ξωn t )sin ωd t (2) 式中 ξ=c /(2m ωn )<1,A =υ0/ωd ,ωd =1-ξ2 ωn , ωn = k /m 。 由条件cx ? (t 0)+kx (t 0)=0或x ?? (t 0)=0可以得到碰撞接触时间。对式(2)求二阶导数并代入t =t 0得: -A exp (-ξωn t 0)[(1-2ξ2 )ωn sin ωd t 0+2 ξωd cos ωd t 0]=0(3)碰撞接触时间为上式的最小正解,即 t 0=π-arctan λωn 1-ξ 2,λ=2 ξ1-ξ2 1-2ξ2(4)同样,可以给出碰撞前后的速度关系,对式(2)求一阶导数并计算碰撞末t =t 0的速度:x ?(t 0)=υ0 1-2ξ2exp [-ξ1-ξ 2(π-arctan λ)]?co s (π-arctan λ)(5) 引入Ne wt on 恢复系数e,得到碰撞前后速度比:

大跨度桥梁设计的论文

大跨度桥梁设计的论文 一、非线性地震反应分析 大跨度桥梁结构的非线性可分为材料非线性(又可称为物理非线性或弹塑性)和几何非线性两种,一般情况下结构的几何非线性可通过考虑所谓的P-△效应来进行在结构非线性地震反应分析的计算理论研究方面,备受关注的是结构的弹塑性分析,这不仅是因为相对于几何非线性而言,结构的弹塑性性能对于结构的抗震性能影响较大,而且更由于问题的复杂性。所以国内外众多学者针对后者开展了大量的研究工作。在大跨度公路桥梁弹塑性地震反应分析的力学模型中,根据各种构件的工作状态,将结构简化为杆系结构是合理的,同时对计算而言也是非常经济的。若按构件所处的空间位置可把力学模型分为平面模型和空间模型两种。若按模型中所采用的单元应力水平的种类来分,又可分为微观模型(采用应力空间)和宏观模型(采用内力空间)两种。由于微观模型要求将结构划分为足够小的单元,尽管很有效但所需的计算量较大,只适用较小规模的结构或构件的非线性分析,因此在实际工作中应用的范围比较有限,所以这里仅按前一种分类方法来加以讨论。 在结构弹塑性地震反应分析中,构件恢复力模型的确定是基本的步骤而构件的恢复力关系又集中反映在滞回特性曲线上,基本指标有曲线形状、骨架曲线及其特征参数、强度、刚度及其退化规律、滞回耗能机制、延性和等效滞回阻尼系数等。国内外在这方面已进行了大量的试验研究并取得了相应的研究成果。在平面模型中,根据所采用的塑性铰类型可把它分为集中塑性铰模型和分布塑性铰模型两大类。在集中塑性铰模型中,有代表性的一种是Clough等于1965年提出的双分量单元模型,该单元模型采用两根平行杆来模拟构件,其中一根用来表示具有屈服特性的弹塑性杆,另一根用来表示完全弹性杆,非弹性变形集中于杆件两端的集中塑性铰处,该模型的最大不足是不能考虑构件刚度退化。另一种有代表性的是1969年Giber-son提出的单分量模型,它克服了Clough双分量模型的不足,同时只用两个杆端塑性转角来刻划杆件的弹塑性性能,而杆件两端的弹塑性参数又是相互独立的,因此应用起来较为简便。其缺点是基本假设中有地震过程中反弯点不能移动的限制,所以对一些与基本假设不甚相符的特殊情况其使用的合理性就受到了限制。 二、多点激振效应 通常桥梁结构的地震反应分析是假定所有桥墩墩底的地震运动是一致的。而实际上,由于地震机制、地震渡的传播特征、地形地质构造的不同,使得入射地震在空间和时间上均是变化的。即使其他条件完全相同,由于地面上的各点到震源的距离不同,它们接收到的地震波必然存在着时间差(相位差),由此导致地表的非同步振动。这一点已被地震观测结果所证实。因此,多点地震输入是更合理的地震输入模式。特别是大跨度桥梁结构,当地震波的波长小于相邻桥墩的跨度时,入射到各墩的地震波的相位是不同的,由于在桥长范围内各墩下的基础类型和周围的场地条件可能有很大的差别,因此入射到各墩的地震波的波形也可能是不同的。有关实际震害表明,入射地震波的相位差可增大桥跨落梁的危险性。所以就地震波传播过程中的多点激振效应进行研究是有很大的'实际意义的。

相关主题