搜档网
当前位置:搜档网 › 矿井通风煤矿瓦斯利用论文中英文资料对照外文翻译文献综述

矿井通风煤矿瓦斯利用论文中英文资料对照外文翻译文献综述

矿井通风煤矿瓦斯利用论文中英文资料对照外文翻译文献综述
矿井通风煤矿瓦斯利用论文中英文资料对照外文翻译文献综述

中英文资料对照外文翻译文献综述

附录A:

Status of worldwide coal mine methane

emissions and use

Underground coal mines worldwide liberate an estimated 29–41×109 m3 of methane annually, of which less than 2.3×109 m3 are used as fuel. The remaining methane is emitted to the atmosphere, representing the loss of a valuable energy resource. Methane is also a major greenhouse gas and is thus detrimental to the environment when vented to the atmosphere. Coal mine methane recovery and use represents a cost-effective means of significantly reducing methane emissions from coal mining, while increasing mine safety and improving mine economics.

The world’s ten largest coal producers are responsible for 90% of global methane emissions associated with the coal fuel cycle. China is the largest emitter of coal mine methane, followed by the Commonwealth of Independent States, or CIS particularly Russia, Ukraine and Kazakhstan, the United States, Poland, Germany, South Africa, the United Kingdom, Australia, India and the Czech Republic. Most of these countries use a portion of the methane that is liberated from their coal mines, but the utilization rate tends to be low and some countries use none at all. Coal mine methane is currently used for a variety of purposes. Methane is used for heating and cooking at many mine facilities and nearby residences. It is also used to fuel boilers, to generate electricity, directly heat air for mine ventilation systems and

for coal drying. Several mines in the United States sell high-quality mine gas to natural gas distributors. There are several barriers to decreasing methane emissions by increasing coal mine methane use. Many of the same barriers are common to a number of the subject countries. Technical barriers include low-permeability coals; variable or low gas quality, variations in gas supply an demand and lack of infrastructure.

Economic and institutional barriers include lack of information pertinent to development of the resource, lack of capital and low natural gas prices. A possible option for encouraging coal mine methane recovery and use would be international adoption of a traceable permit system for methane emissions.

1 Introduction

In recent years, coalbed methane has gained attention as a saleable natural gas resource. Methane can be extracted either from coal seams which will never undergo mining, or it can be produced as a part of the coal mining process. This paper focuses on methane which is produced in conjunction with coal mining operations(coal mine methane). According to the United States Environmental Protection Agency (USEPA, 1994a), underground coal mines liberate an estimated 29 to 41×109 m 3of methane annually, of which less than 2.3×109 m3 are used as fuel. The remaining methane is vented to the atmosphere, representing the loss of a valuable energy resource. This paper examines the potential for recovering and using the methane which is currently being emitted from coal mines.

There are three primary reasons for recovering coal mine methane. The first reason is to increase mine safety. Worldwide, there have been

thousands of recorded fatalities from underground mine explosions in which methane was a contributing factor. Using methane drainage systems, mines can reduce the methane concentration in their ventilation air, ultimately reducing ventilation requirements.

The second reason is to improve mine economics. By reducing emissions and preventing explosions and outbursts, methane drainage systems can cost effectively reduce the amount of time that the coal mine must curtail production. Moreover, recovered methane can be used either as fuel at the mine site or sold to other users.

The third reason for coalbed methane recovery and use is that it benefits the global and local environment. Methane is a major greenhouse gas and is second in global impact only to carbon dioxide; methane thus is detrimental to the environment if vented to the atmosphere. Although the amount of carbon dioxide accumulating in the atmosphere each year is orders of magnitude larger than that of methane, each additional gram of methane released to the atmosphere is as much as 22 times more effective in potentially warming the Earth’s surface over a 100-year period than each additional gram of carbon dioxide (USEPA, 1994a) . Compared with other greenhouse gases, methane has a relatively short atmospheric lifetime. The lifetime of methane (defined as its atmospheric content divided by its rate of removal) is approximately 10 years. Due to its short lifetime, stabilizing methane emissions can have a dramatic impact on decreasing the buildup of greenhouse gases in the atmosphere.

Coal mine methane recovery and use represent a cost-effective

means of significantly reducing methane emissions from coal mines. Methane, moreover, is a remarkably clean fuel. Methane combustion produces no sulfur dioxide or particulates and only half the amount of carbon dioxide that is associated with coal combustion on an energy equivalent basis.

Because of the environmental impact of coal mine methane emissions, the USEPA, the Int ernational Energy Agency’s Coal Advisory Board (CIAB), and others have investigated methane emissions from coal mining worldwide. The USEPA (1994a) estimates that the coal fuel cycle (which includes coal mining, post-mining coal transportation and handling, and coal combustion) emits 35 to 59×109 m3 of methane to the atmosphere annually. Table 1 shows methane emissions from the world’s ten largest coal producers, which are responsible for 90% of global methane emissions associated with the coal fuel cycle. Underground coal mining is the primary source of these emissions, accounting for 70 to 95% of total emissions.

There are many opportunities for decreasing coal mine methane emissions by increasing recovery of this abundant fuel. Section 2 examines the status of methane recovery and use in key countries worldwide.

2 Coal mine methane recovery and use in selected countries

2.1 China

The Peoples Republic of China (China) produces about 1.2×109 raw tons of hard coal annually (EIA, 1996). In 1990, coal mining activities in China emitted an estimated 14 to 24×109 m3 (10 to 16×106 ton) of

methane to the atmosphere, contributing one-third of the world’s total from this source. Not only is China the largest coal producer in the world; it is unique in that underground mines produce over 95% of the nation’s coal. Because of the great depth and high rank of China’s coals, underground coal mines have higher methane emissions than surface mines.

There are currently 108 Coal Mining Administrations (CMAs) in China, which manage more than 650 mines. These state-owned mines are responsible for most of China’s methane emissions, but there are numerous gassy local, township, and private mines that cumulatively produce over one-half of China’s coal. However, these non-states owned mines are not gassy (International Energy Agency or IEA, 1994).

2.1.1 Methane recovery and use in China

China has a long history of coal mine methane drainage, and the volume of methane drained has increased markedly during the past decade. Nationwide, coal mine methane drainage at state-run mines nearly doubled in 14 years, increasing from 294×106 m3 in 1980 to more than 561×106 m3 in 1994 .However, this is still less than 11% of the total methane liberated annually. Approximately 131 state-owned mines currently have methane drainage systems. Less than one-half of these mines are set up to distribute and use recovered methane. China’s state-run coal mining administrations use about 70% of the methane they drain (USEPA, 1996a).

Most of the methane recovered from Chinese mines is used for

heating and cooking at mine facilities and nearby residences. Methane is also used for industrial purposes, in the glass and plastics industries, and as a feedstock for the production of carbon black (an amorphous form of ca rbon used in pigments and printer’s ink). Methane is also being used, to a lesser extent, for power generation. In 1990, the Laohutai Mine at the Fushun Coal Mining Administration built a 1200 kW methane-fired power station, the first in China.

Several barriers currently prevent China from developing economic methane recovery from coal mining to its full potential. Critical barriers include the lack of an appropriate policy framework, limited capital for project investments and equipment, the need for additional information and experience with technologies and the lack of a widespread pipeline network. Artificially regulated low gas prices and difficulty with repatriation of profits, create barriers to foreign investment in joint ventures for production of domestic energy resources (USEPA, 1993).

2.1.2 The future of methane development in China Recognizing the need for a unified effort in advancing coalbed methane development, China’s highest governing body, the State Council, established the China United Coalbed Methane Company (China CBM) in May 1996. As a single, trans-sectoral agency, China CBM is responsible for developing the coalbed methane industry by commercializing the exploration, development, marketing, transportation and utilization of coalbed methane. The State Council has also granted China CBM exclusive rights to undertake the

exploration, development and production of coalbed methane in coopera- tion with foreign partners (China Energy Report, 1996). More than 20 coalbed methane projects are underway or planned in China, and at least half of them are taking place at active mining areas. Some of the projects are state-sponsored, while others involve joint ventures with foreign companies. The future of the coalbed methane industry in China appears bright. The government recognizes coalbed methane’s potential for meeting the nation’s burgeoning energy needs and is generally supportive of efforts to develop this resource. With deregulation of energy prices, increased capital investment in pipeline infrastructure, and ongoing research efforts, China can likely overcome its remaining barriers to widespread coalbed methane use. 2.2 Russia, Ukraine and Kazakhstan

In 1994, Russia produced more than 169×106 ton of hard coal; Kazakhstan produced nearly 104×106 ton and Ukraine more than 90×106 ton. The coal mining regions of these republics liberate approximately 5.3×109 m3 of methane annually, of which less than 3% is utilized. This amount represents about 20% of world methane emissions from underground coal mining.

The energy sectors of these Republics are at a turning point. The coal mining industry, in particular, is undergoing restructuring, a process which includes decreasing or eliminating subsidies, and closing many of the most unprofitable mines. The industry is being compelled to become more efficient in order to increase profitability. Mining regions are also seeking to mitigate environmental problems

resulting from producing and using coal. Thus, there is an impetus to utilize more natural gas and decrease dependency on low grade coal. Increasing recovery and use of coalbed methane is a potential means of improving mine safety and profitability while meeting the regions’ energy and environmental goals.

There are five coal basins in the Commonwealth of Independent States where hard coal is mined and which have the potential for coalbed methane development.

They are: (1) the Donetsk Basin (Donbass) , located in southeastern Ukraine and western Russia, (2) the Kuznetsk Basin Kuzbass , located in western Siberia (south-central Russia) , (3)the L’vov-Volyn Basin, located in western Ukraine, which is the southeastern extension of Poland’s Lublin Basin, (4)the Pechora Basin, located in northern Russia and (5) the Karaganda Coal Basin, located in Kazakhstan.

Of the five basins, the Donetsk and Kuznetsk Basins appear to have the largest near-term potential for coalbed methane development (USEPA, 1994b). Both of these regions are heavily industrialized and present many opportunities for coalbed methane use.

2.2.1 Options for methane use in the CIS

2.2.1.1 Heating mine facilities. Currently, most mines use coal-fired boilers to produce steam heat for drying coal, heating mine facilities and heating ventilation air. In some cases, mine boilers also supply thermal energy to the surrounding communities. Boilers can be retrofitted to co-fire methane with coal, a relatively simple and low-cost procedure. More than 20 mines in the Donetsk and Pechora

Basins use methane to fuel boilers and several mines also use it for directly heating air for the mines’ ventilation systems and for coal drying (Serov, 1995; Saprykin et al., 1995).

2.2.1.2. Use in furnaces in the metallurgical industry. Another viable market for methane use is the metallurgical industry. For example, the city of Novokuznetsk, in the southern portion of the Kuznetsk Basin, contains numerous gassy mines and is one of the biggest centers of metallurgy in Russia. The region’s metallurgical industry consumes about 54 PJ of natural gas annually, which is equivalent to about

1.4×109 m3 of methane (USEPA, 1996b) .

2.2.1.

3. Power generation at mine facilities. Most mines purchase electricity from the power grid. Co-firing coalbed methane with coal to generate electricity on-site may be a more economical option for these mines. Coalbed methane can be used, independently of or in conjunction with coal, to generate electricity using boilers, gas turbines and thermal combustion engines (USEPA, 1994b).

2.2.1.4. Use as a motor vehicle fuel. The Donetskugol Coal Production Association in Ukraine is draining methane in advance of mining using surface boreholes. The recovered methane is compressed on-site and used as fuel for the Association’s vehicle fleet. The refueling station, which has been operating for more than three years, produces about 1,000 m3 of compressed gas per day. Based on estimated gas reserves it is expected to operate for a total of eight years ( Pudak, 1995 ).

While many mines in the CIS are utilizing their methane resources,

the majority are not. Certain barriers must be overcome before recovery and use of coal mine methane becomes widespread. These barriers and their potential solutions are discussed in greater detail in Section 3 of this paper.

2.3 The United States

There are five major coal producing regions in the United States from which hard coal is mined and which have the potential for coalbed methane development. They are: (1)the Appalachian Basin, located in Pennsylvania, Ohio, West Virginia, eastern Kentucky and Tennessee, (2)the Warrior Basin, located in Alabama, (3)the Illinois Basin, located in Illinois, Indiana and western Kentucky, (4)the Southwestern region, including the Uinta, Piceance, Green River and San Juan Basins located in Colorado, Utah and New Mexico and (5)the Western Interior region, including the Arkoma Basin of Oklahoma and Arkansas.

In 1994, an estimated 4.2×109 m3 of methane were liberated by underground mining in these regions, of which less than 0.7×109 m3 were used(USEPA, unpublished data).

Currently in the United States, at least 17 mines in six states (Alabama, Colorado,Ohio, Pennsylvania, Virginia and West Virginia)recover methane for profit, primarily through sale to gas distributors. In 1995, the total methane recovered from these mines, including vertical wells draining methane in advance of mining, exceeded 1×109 m3.By maximizing the amount of gas recovered via drainage systems, these mines have greatly reduced their ventilation

矿井瓦斯防治论文之欧阳光明创编

矿井瓦斯爆炸的原因及防治措施 欧阳光明(2021.03.07) 学院;矿业学院 专业:采矿专业 班级:082 学号: 学生姓名: 指导教师: 2011年 12 月 15 日

矿井瓦斯爆炸的原因及防治措施 摘要:在众多煤矿事故中,瓦斯爆炸造成的危害最大,从每年的事故统计来看,绝大多数特大事故都是由于瓦斯爆炸引起的。而在我国目前国有重点煤矿大多数属于瓦斯矿井,其中高瓦斯矿井和突出矿井占全国矿井总数的44%。预防、控制瓦斯爆炸事故,是实现煤矿安全生产的关键。瓦斯防治是煤矿安全工作的重中之重,在提高每个干部职工对瓦斯的认识,特别是对瓦斯危害性的认识的同时,必须采取有利措施,有效防治煤矿重特大瓦斯事故的发生,以确保煤矿的安全生产。 关键词:瓦斯爆炸;提高认识;防治措施 1 什么是瓦斯爆炸 瓦斯爆炸是瓦斯在一定浓度范围内受激发而发生的剧烈化学反应,反应时产生大量的热和气体,主要是以CH4为主的瓦斯与空气的混合气体点燃后发生剧烈化学反应的结果。瓦斯爆炸是自由基链反应过程,它包括链引发、链传递、链分支和链终止等过程。如果混合气体各成分达到爆炸浓度范围,并且存在火源点,链反应过程就会被引发,链传递和连分支反应随之很快发生,反应速度急剧增加,反应放出的热量使气体温度迅速升高,体积剧烈膨胀,从而引起爆炸。 1.1瓦斯爆炸的危害 瓦斯爆炸是我国煤矿生产中最常见的灾害事故,不仅造成大量人员伤亡,而且严重摧毁井巷设施,中断生产,甚至引起煤尘爆炸、矿井火灾、井巷垮塌等二次事故。据统计,因瓦斯爆炸事故造成的死亡人数占全国煤矿事故死亡人数的80%,每年直接经济损失高达7.5亿元人民币。据不完全统计,仅2000年1-6月份全煤系统十人以上重特大事故三十六起,死亡561人,瓦斯事故三十三起,占总数的92%。因瓦斯、煤尘爆炸事故死亡511人,占全部死亡人数的91%!因此,瓦斯被称为煤矿事故的“头号杀手”。近几年来,随着开采深度的进一步加大和高强度机械化采掘和集约化生产,自然灾害的威胁更加突出。根据近几年的事故统计表明,煤矿瓦斯爆炸事故呈上升趋势,几乎每年都有死亡人数超过百人以上的事故发生,虽然瓦斯爆炸事故发生的几率小,但是一旦发生事故,所造成的损失和危害程度是十分严重的。不仅在我国,瓦斯爆炸事故长期以来也是世界其他主要产煤国的“头号杀手”,自1850年以来,英国发生的瓦斯爆炸事故共造成14742人死亡,其中1913年10月14日在森恩伊德煤矿发生的瓦斯爆炸事故造成了439名矿工死亡,是英国死亡人数最多的一次瓦斯爆炸事故。可见,瓦斯是矿井安全生产的最大威胁。分析瓦斯爆炸原因,制订防治对策,特别重要。

煤矿瓦斯抽采考试[一遍过][全考点]

煤矿瓦斯抽采考试 1、【判断题】采空区高抽巷瓦斯抽采时,高抽巷要封闭严实,保证不漏气,要做到封闭墙周边掏槽、见硬帮、硬底。(√) 2、【判断题】煤与瓦斯突出的次数,有随着煤层倾角的增大而减少的趋势。(×) 3、【判断题】当发现突出预兆时,防突工应立即通知现场职工停止作业,并协助班组长立即组织职工迅速戴好自救器,按避灾路线撤出并报告调度室。(√) 4、【判断题】防突钻孔间距是指钻孔在煤层中两孔的最大轴线距离,实际就是孔底间距。(×) 5、【判断题】煤突然倾出时有大量的瓦斯(二氧化碳)涌出,一般有瓦斯逆流现象。(×) 6、【判断题】无突出危险工作面可以不采取安全防护措施。(×) 7、【判断题】有突出危险的煤巷掘进工作面应优先选用超前钻孔(包括超前预抽瓦斯钻孔、超前排放钻孔)防突措施。(√) 8、【判断题】用流量传感器测试瓦斯流量时,瓦斯流量与瓦斯管道大小和瓦斯涌出速度有密切关系。(√) 9、【判断题】井下防突工要保证自己不“三违”,发现别人有“三违”现象可以不管。(×)

10、【判断题】某矿采用钻屑指标预测某突出煤层,最浅钻孔的见煤深度为30m,测得钻屑瓦斯解吸指标Ah2为140Pa(湿煤样),因此判断该煤层为无突出危险。(×) 11、【判断题】矿井一旦发生事故,防突工要运用自己掌握的安全知识,勇于自救,在力所能及的情况下,勇救他人,共同脱险,战胜灾害。(√) 12、【判断题】电压在36V以上和由于绝缘损坏可能带有危险电压的电气设备的金属外壳、构架、铠装电缆的钢带(或钢丝)、铅皮或屏蔽护套等必须有保护接地。(√) 13、【判断题】矿用隔爆兼本质安全型电气设备的防爆标志是Exib对I。(×) 14、【单选题】突出煤层采掘工作面设置的压风自救装置安装在掘进工作面巷道和采煤工作面巷道内的( )上。(A ) A、压缩空气管道 B、高压水管道 C、支架顶梁 15、【单选题】钻屑法瓦斯解吸指标K1,综合反映煤层瓦斯含量和卸压初期瓦斯解吸速度的大小,用特定仪器测定钻屑试样在卸压初期一段时间( )瓦斯解吸曲线的斜率表示,单位为cm3/(g﹒min1/2)。(B ) A、2min

文献综述,外文翻译,论文网站

文献综述怎么写 1) 什么是文献综述? 文献综述是研究者在其提前阅读过某一主题的文献后,经过理解、整理、融会贯通,综合分析和评价而组成的一种不同于研究论文的文体。 2) 文献综述的写作要求 1、文献综述的格式 文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,而文献综述介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,再根据提纲进行撰写工作。 前言,要用简明扼要的文字说明写作的目的、必要性、有关概念的定义,综述的范围,阐述有关问题的现状和动态,以及目前对主要问题争论的焦点等。前言一般200-300字为宜,不宜超过500字。 正文,是综述的重点,写法上没有固定的格式,只要能较好地表达综合的内容,作者可创造性采用诸多形式。正文主要包括论据和论证两个部分,通过提出问题、分析问题和解决问题,比较不同学者对同一问题的看法及其理论依据,进一步阐明问题的来龙去脉和作者自己的见解。当然,作者也可从问题发生的历史背景、目前现状、发展方向等提出文献的不同观点。正文部分可根据内容的多少可分为若干个小标题分别论述。 小结,是结综述正文部分作扼要的总结,作者应对各种观点进行综合评价,提出自己的看法,指出存在的问题及今后发展的方向和展望。内容单纯的综述也可不写小结。 参考文献,是综述的重要组成部分。一般参考文献的多少可体现作者阅读文献的广度和深度。对综述类论文参考文献的数量不同杂志有不同的要求,一般以30条以内为宜,以最近3-5年内的最新文献为主。 2、文献综述规定 1. 为了使选题报告有较充分的依据,要求硕士研究生在论文开题之前作文献综述。 2. 在文献综述时,研究生应系统地查阅与自己的研究方向有关的国内外文献。通常阅读文献不少于30篇,且文献搜集要客观全面 3. 在文献综述中,研究生应说明自己研究方向的发展历史,前人的主要研究成果,存在的问题及发展趋势等。 4. 文献综述要条理清晰,文字通顺简练。 5. 资料运用恰当、合理。文献引用用方括号[ ]括起来置于引用词的右上角。 6. 文献综述中要有自己的观点和见解。不能混淆作者与文献的观点。鼓励研究生多发现问题、多提出问题、并指出分析、解决问题的可能途径,针对性强。 7. 文献综述不少于3000字。 3、注意事项 ⒈搜集文献应尽量全。掌握全面、大量的文献资料是写好综述的前提,否则,随便搜集一点资料就动手撰写是不可能写出好的综述。 ⒉注意引用文献的代表性、可靠性和科学性。在搜集到的文献中可能出现观点雷同,有的文献在可靠性及科学性方面存在着差异,因此在引用文献时应注意选用代表性、可靠性和科学性较好的文献。 ⒊引用文献要忠实文献内容。由于文献综述有作者自己的评论分析,因此在撰写时应分清作者的观点和文献的内容,不能篡改文献的内容。引用文献不过多。文献综述的作者引用间接文献的现象时有所见。如果综述作者从他人引用的参考文献转引过来,这些文献在他人

矿井瓦斯防治安全技术正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.矿井瓦斯防治安全技术正 式版

矿井瓦斯防治安全技术正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 矿井瓦斯是指从煤岩中释放出的气体的总称,主要成分是甲烷(CH4),其次为氮气和二氧化碳,还有烃类气体等。 瓦斯是一种无色、无味的气体。由于瓦斯的比重轻,容易聚集在巷道的上部。瓦斯的渗透性很强,封闭在采空区内的瓦斯能不断地渗透到矿内空气中,从而增加空气中的瓦斯浓度。空气中瓦斯浓度增加会相对降低空气中氧的含量。当瓦斯浓度达到40%时,因缺乏氧气会使人窒息死亡。 瓦斯具有燃烧性与爆炸性。瓦斯与空

气混合达到一定浓度后,遇火能燃烧或爆炸,对矿井威胁很大。井下瓦斯爆炸产生的高温、高压和大量有害气体,能形成破坏力很强的冲击波,不但伤害职工生命,而且会严重地摧毁矿井巷道和井下设备。有时,还可能引起煤尘爆炸和井下火灾,从而扩大灾害的危险程度。 矿井瓦斯在煤体及围岩中的存在状态有游离状态(也称自由状态)和吸附状态两种。 (一)瓦斯含量及涌出量 1.瓦斯含量及其影响因素 瓦斯含量是指单位体积或单位质量的煤体或围岩中所含有的瓦斯量,单位通常用m3/ m3、m3/t来表示。瓦斯含量是确

煤矿安全外文翻译文献

煤矿安全外文翻译文献 (文档含英文原文和中文翻译) 基于WSN的煤矿安全监控系统的研究 摘要 在本文中,我们使用无线传感器网络监控煤矿的经验进行了阐述。在一个节点上的多传感器可以捕获各种各样的环境数据,包括矿山的振动,矿井温度,湿度和气体浓度,和环境参数、控制风扇运转。网络由许多无线传感器节点组成。煤矿安全监控方案发展从可以保存汇聚节点接收到的数据,并实时显示和分析各种的信息来供决策。 1 背景与介绍 煤炭安全生产关系到国民经济的发展,如今,中国的煤矿安全信息系统是基于有线网络,随着煤炭开采的加速,有线网络在扩展,灵活性,覆盖率等方面具有严重不足。为了解决这些问题,无线网络是最好的选择。 ZigBee是一种先进的数据通信技术,具有低速率,低功耗,协议简单,成本低,良好的扩展性,容易形成无线网络等特点。相比现有煤矿监测设备,节点构成的无线传感器网络的更小,更轻,更易于大规模部署。 由于数据采集和传输方式是通过无线电台,节点挂钩传感器,可以打破电线电缆的

约束,并可以使部署更加方便,灵活。此外,大规模的和灵活的部署节点对于矿工来说使得更好的本地化工作。因此,它具有重要的现实意义,将这一新技术和新方法,应用在煤矿安全信息系统的设计中。 2 系统的结构 本文设计了一个煤矿安全监控系统,它是基于ZigBee2007无线通信协议,采用TI 公司生产的CC2530芯片做无线数据传输。煤矿安全监控系统由三部分组成:控制中心,协调和终端节点。终端节点有两种类型:全功能设备(FFD ),部分功能的移动设备( RFD )。监督控制中心软件是以TI的Z -位置引擎,它显示了各监测点的位置和状态信息,它是一个在整个潜在风险区域的地理信息的图形化描述。协调也是一个网关,它获得FFD和RFD的所有信息,然后发送到控制中心的节点上然后通过监控软件来更新状态消息。此外,他还要广播控制中心的指示。 FFD是路由器,它SA节点组链接在一起,并提供多希望消息,它与其他路由器和终端设备相关联,而RFD仅仅是一个终端设备。 我们知道,整个监控系统可以分离的两个子系统,煤矿井下环境调查和数据收集子系统和矿山集中智能信息管理子系统。本文将主要介绍煤矿井下环境调查和数据采集子系统。 考虑矿山井下的环境的实际情况,RFD主要负责用于收集矿工的生理功能,然后通过无线通讯方式将其发送到FDD,FDD由具有路由功能,可以收集环境参数的节点,然后将数据上传到管理中心。矿山井下系统主要通过无线网络设备的链接,可靠的通信应用来保证它的正常工作。地面矿山系统包括各类综合服务体系,服务平台体系,监测分析系统和紧急行动中心等等,这些通过TCP/ IP网络连接设备连接。 3 系统设计 3.1硬件设计。 在系统中的每个终端节点组成的CC2530,振动传感器,气体传感器,温度和湿度传感器,射频模块,电源模块,无线收发信机的天线和复位电路模块。基于CC2530的传感器节点的硬件结构示于图1。这个节点是仅作为终端节点,预留外接电源接口和UART端

矿井瓦斯抽采设计说明

矿井瓦斯抽采设计 一、矿井概况 1、矿井位置及资源储量 地方永安煤业位于禹州市文殊镇南村,由原文殊镇顺利煤矿和兴发煤矿两个煤矿整合而成。系股份制企业,隶属于省煤层气开发利用。为“四证”齐全矿井。 矿井开采二1煤层,资源储量526.61万吨,累计动用资源储量74.22万吨,保有资源储量452.39万吨,可采储量206.46万吨。设计生产能力21万吨/年。 2、矿井瓦斯等级 根据省工业和信息化厅《关于省煤层气公司所属煤矿2010年度矿井瓦斯等级及二氧化碳涌出量鉴定结果的批复》(豫工信煤〔2010〕200号),永安煤业相对瓦斯涌出量为12.66m3/t,绝对瓦斯涌出量8.12m3/min,矿井为高瓦斯矿井。 3、煤尘爆炸性和煤层自燃倾向性 根据《国家安全生产矿山机械检测检验中心》于2009年10月26日所做的煤尘爆炸性和煤层自燃倾向性鉴定:永安煤业有煤尘爆炸性。二1煤层为Ⅲ类,即不易自燃煤层。

4、矿井开拓 矿井采用“三立井单水平上下山”开拓方式。其中主立井承担提升煤炭,辅助进风任务;副井承担提升人员、升降物料及主进风等任务;回风立井作为矿井专用回风井。 矿井开拓水平为-134m,全矿划分为11采区和12采区,其中11采区为上山采区,12采区为下山采区(因瓦斯高,治理难度大,予以密闭)。11采区为矿井首采区,老副井煤柱工作面目前为隐患整改工作面。 5、瓦斯参数测定情况 为合理开采11采区,地方永安煤业首先于2015年8月委托中国矿业大学对11采区-100m标高已浅二1煤层瓦斯含量及瓦斯压力进行测定,编制了《地方永安煤业11采区-100m标高已浅二1煤层瓦斯含量及瓦斯压力测定报告》,结果如下:二1煤层瓦斯含量为3.67~4.35m3/t,平均值为4.02 m3/t;瓦斯压力为0.075~0.090MPa,平均值为0.083 MPa。两个指标均小于“双六”,符合《强化煤矿瓦斯防治十条规定》。 其次,于2017年9月地方永安煤业委托中国矿业大学对11采区二1煤层顺层钻孔抽采半径进行测定,编制了《地方永安煤业11采区二1煤层顺层钻孔抽采半径测定报告》,结果如下: 1、当抽采40天,顺层钻孔抽采半径为1.0m,钻孔间距2m;

矿井火灾防治论文

矿井火灾危害分析及其防治技术 摘要:矿井火灾是威胁煤矿安全生产、危害职工生命安全的五大灾害之一。通 过分析矿井火灾发生的基本要素、矿井火灾的分类和矿井火灾的危害等, 从外因火灾防治和自然发火防治两个方面提出了防治矿井火灾的技术途径。 关键词: 矿井; 火灾; 危害; 防治 矿井火灾又叫矿内火灾或井下火灾。是指发生在煤矿井下巷道、工作面、硐室、采空区等地点的火灾。能够波及和威胁井下安全的地面火灾, 也属矿井火灾。矿井火灾一旦发生, 轻则影响安全生产, 重则烧毁煤炭资源和物资设备, 造成人员伤亡, 甚至引发瓦斯、煤尘爆炸。发生在矿井井下或地面, 威胁到井下安全生产, 造成损失的非控制燃烧均为矿井火灾。如地面井口房、通风机房失火或井下 输送带着火、煤炭自燃等都是非控制燃烧。 1 我国煤矿矿井火灾防治现状 我国煤矿自燃发火非常严重, 有56%的煤矿存在自燃发火问题, 而我国统配和重点煤矿中具有自燃发火危险的矿井约占47%,矿井自燃发火又占总发火次数 的94%, 其中采空区自燃则占内因火灾的60%。这种火灾常造成工作面封闭、冻结大量的煤炭资源和昂贵的生产设备, 造成工作面、采区风流紊乱, 影响矿井正常的生产接续, 并造成人员伤亡。为了加强煤矿防灭火安全技术, 我国从50 年代起就在煤矿推广了黄泥灌浆防火技术, 60年代至70年代又研究出了阻化剂防火、均压通风、高倍数泡沫灭火等技术, 80年代至90年代则研究了矿井自燃发火预测系统、惰气防灭火、快速高效堵漏风、带式输送机火灾防治等技术, 并逐步形成适应普通采煤法和高产高效采煤法的综合防灭火技术。由于我国火灾基础理论研究起步晚, 防灭火关键设备和技术有待完善和配套, 有一批亟待解决的技术问题。因此, 矿井火灾防治工作仍然是矿井安全生产所面临的一项艰巨任务。 2 矿井火灾发生的基本要素 和所有的物质燃烧一样, 导致矿井火灾发生的三个基本要素为: 热源、可燃物和空气。

2019煤矿瓦斯抽采管理和考核奖励制度

贵州吉利能源投资有限公司 桐梓县仙岩煤矿 瓦斯抽采管理制度 汇编 二〇一九年七月

目录 第一节瓦斯抽采管理制度 (3) 第二节瓦斯抽采管理奖惩制度 (20) 第三节瓦斯抽采工程检查验收制度 (25)

⑴石门揭煤,钻孔控制范围内预抽的时间不得少于4个月; ⑵瓦斯预抽率不低于30%; ⑶利用钻屑瓦斯解析指标法效果检验,指标降到临界值以下。 ⑷瓦斯压力小于0.74MPa以下,或煤层残存瓦斯含量低于始突标高的煤层瓦斯含量时(没有检验值的可按小于8m3/t计算),方可采用远距离爆破揭煤。 5、采煤工作面瓦斯预抽时间应达到6个月以上,因接替紧张的工作面必须采取缩小钻孔间距、加大钻孔直径等有效措施,且工作面瓦斯预抽时间必须达到3个月以上。 6、有突出危险的回采工作面、掘进工作面(包括石门揭煤),在进行区域治理后,开采(掘)前必须对工作面突出危险性进行评价,矿各部门组织评审,报矿长审阅备案。 (二)瓦斯抽放系统的管理 1、有下列情况之一的矿井,必须建立地面永久抽采瓦斯系统或井下临时抽采瓦斯系统。 ⑴一个采煤工作面的瓦斯涌出量大于5m3/min或一个掘进 工作面瓦斯涌出量大于3m3/min,用通风方法解决瓦斯问题不合理 ⑵矿井绝对瓦斯涌出量达到以下条件的: ①大于或等于40 m3/min; ②年产量100~150万t的矿井,大于30 m3/min; ③年产量60~100万t的矿井,大于25 m3/min; ④年产量40~60万t的矿井,大于20 m3/min;

⑤年产量小于或等于40万t的矿井,大于15m3/min。 ⑶开采有煤与瓦斯突出危险煤层 2、建立地面永久瓦斯抽采系统的矿井,应具备下列条件: ⑴瓦斯抽放系统的抽放量稳定在2 m3/min以上; ⑵瓦斯资源量可靠、储量丰富,预计瓦斯抽采服务年限在5年以上。 ⑶需要高负压、高浓度抽采时。 3、建立井下抽采系统应具备以下条件: ⑴不具备建立永久瓦斯抽采系统条件的; ⑵回采工作面上隅角瓦斯涌出量大、采用回采工作面高位抽采、浅孔卸压抽采、采空区埋管抽采等,需要分源抽采的。 4、矿井抽采系统能力必须满足需要。抽采泵站必须配备同等能力的备用瓦斯抽放泵,抽采系统的管路应与抽放泵相匹配。矿井必须保证瓦斯抽采系统正常运行,防止抽采系统停止运行造成瓦斯超限。抽采瓦斯泵应选择制造技术先进、高效率、低噪声、有煤安标志、各种保护齐全、防爆符合要求的水环式真空泵。 5、抽采系统中各种管路、连接装置尽可能选择重量轻、强度大、使用寿命长、耐腐蚀、抗静电、阻燃性能符合要求的管材。抽放孔封孔管及连接管必须采用钢管或双抗软管。 对各种抽放管路系统每周至少检查一次,并建立检查台帐,保证抽采管路无破损、无漏液、无积水,抽采管路离地面高度不小于0.3m。 6、瓦斯抽放系统的在线监测必须齐全有效定期鉴定校检有记录;人工计量装置必须完整正常使用,按每小时对各种参数进行计量。

煤矿瓦斯抽采基本指标

煤矿瓦斯抽采基本指标本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

煤矿瓦斯抽采基本指标 AQ1026-2006 前言 本标准全部内容为强制性条文。 本标准由国家煤矿安全监察局提出。 本标准由全国安全生产标准化技术委员会煤矿安全分技术委员会归口。 本标准起草单位:煤炭科学研究总院重庆分院、中国矿业大学、煤炭科学研究总院抚顺分院、阳泉矿业(集团)有限责任公司、淮南矿业(集团)有限责任公司、芙蓉(集团)实业有限责任公司。 本标准主要起草人:胡千庭、文光才、俞启香、王魁军、李宝玉、周德昶、高正强、龙伍见。 1 范围 本标准规定了煤矿瓦斯抽采应达到的指标及其测算方法。 本标准适用于井工煤矿。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 MT/T638 煤矿井下煤层瓦斯压力的直接测定法 MT/T77 煤层气测定方法(解吸法) AQ1025 煤井瓦斯等级鉴定规范 3 必须进行瓦斯抽采的矿井 有下列情况之一的矿井,必须建立地面永久抽采瓦斯系统或井下临时抽采瓦斯系统: a) 一个采煤工作面的瓦斯涌出量大于5m3/min或一个掘进工作面瓦斯涌出量大于3m3/min,用通风方法解决瓦斯问题不合理时; b) 矿井绝对涌出量达到以下条件的: ——大于或等于40m3/min; ——年产量—的矿井,大于30m3/min;

煤矿矿井通风安全管理瓦斯防治技术-安全管理论文-管理论文

煤矿矿井通风安全管理瓦斯防治技术-安全管理论文-管理论文 ——文章均为WORD文档,下载后可直接编辑使用亦可打印—— 摘要:想要保障矿井安全管控效果,采矿公司需要科学的制定通风安全管控标准,逐步的优化安全管控标准,并且创建良好的效果管控方式,应用众多科学的管控技术,保证管控工作的落实效果,提升矿井通风的安全性,进而提升矿井公司的经济收益。基于此,本文对煤矿矿井通风安全管理及瓦斯防治技术进行了探讨,以供参考。 关键词:煤矿矿井通风;安全管理;瓦斯防治技术;研究 引言

随着我国经济的快速发展,资源的消耗速度明显的加快了很多,因此煤矿开采的进度也提高了很多,为了获得更加油质的煤矿,需要对矿井进行不断的加深。而煤矿开采的深度不断增加,煤层当中的瓦斯含量也分布的越来越多,给施工的安全带来的极大的影响。一旦由于施工疏忽导致了煤与瓦斯突出,会对施工人员的安全造成比较严重的危害,影响到煤矿的有序开采。 1矿井通风的技术及特征分析 矿井通风指的是矿井施工期间,采用对应的工艺措施能够把纯净的空气输送到煤矿内部,从而有效的稀释矿井内部瓦斯与粉尘的密度,降低矿井内部有害气体的浓度,进而改善开采环境。如今,矿井通风体系与监管系统仍旧在建设期间,囊括了传感、数据网络与声光警示等众多功能。针对煤矿中所有数据进行良好的监管,保证各项工作的开展拥有准确的数据基础,保证各项工作良好的开展,从而在一定程度上确保矿井施工的安全性。煤矿通风系统拥有下列显著特点:第一,实用性较高,必须能够保证煤矿内部具备充足的空气,良好的管控矿井内部空气浓度,进而保证施工人员能够正产的呼吸,从而提高矿井

施工的安全性。第二,煤矿通风必须拥有可变性,此性能是开展所有工作的基础,通过此功能能够良好的管控空气密度,进而减少有害气体的含量。 2煤矿矿井通风安全管理 2.1进一步建立健全矿井安全管理制度 矿井单位必须高度关注开采过程的安全性,针对有关的管理工作者展开责任与职权的分配。在平时工作期间,必须针对有关的工作者开展良好的考核与选拔。把人员调整与职权划分情况及时进行公示,从而加强矿井公司监管工作的开展。针对有关的工作者进行考评,待其能够满足工作标准后方可以展开工作,创建同时完善有关的安全管控标准。

煤矿瓦斯抽采工考试题库完整

瓦斯抽采工考试题库 第一部分 法律法规知识子题库及答案 一、单选题 1、《劳动法》规定,国家对女职工与( B )实行特殊劳动保护。 A、童工 B、未成年工 C、青少年 《劳动合同法》规定,劳动合同期限3个月以上不满1年的,试用期不得超过( A )。2、 A、1个月 B、3个月 C、6个月 3、坚持“管理、( A )、培训并重”就是我国煤矿安全生产工作的基本原则。 A、装备 B、技术 C、检查 4、煤矿安全生产就是指在煤矿生产活动过程中( B )不受到危害,物(财产)不受到损失。 A、人的生命 B、人的生命与健康 C、人的健康 5、“面不属于矿井“一通三防”管理制度的就是( B )。 A、瓦斯检查制度 B、机电管理制度 C、防尘管理制度 6、对于发现的事故预兆与险情,不采取事故防止措施,又不及时报告,应追究( A )的责任。 A、当事人 B、领导 C、队长 7、煤矿职工因行使安全生产权利而影响工作时、有关单位不得扣发其工资与给予处分,由此造成的停工、停产损失,应由( C )负责。 A、该职工 B、企业法人 C、责任者 D、班长 8、新招入矿山的井下作业人员、接受安全教育培训的时间不得少于( A )学时。 A、72 B、36 C、24 9、从业人员( C )违章指挥、强令冒险作业。 A、不得拒绝 B、有条件服从 C、有权拒绝 10、矿山企业必须建立健全安全生产责任制,( A )对本企业的安全生产工作负责。 A、矿长 B、各职能机构负责人 C、各工种、岗位工人 D、特种作业人员 11、离开特种作业岗位( C )以上的特种作业人员,应当重新进行实际操作考试。

经确认合格后方可上岗作业。 A、1年 B、10个月 C、6个月 D、2年 12、煤矿企业必须建立健全各级领导安全生产责任制,( B )安全生产责任制,岗位人员安全生产责任制。 A、党团机构 B、职能机构 C、监管机构 13、煤矿企业应对从业人员进行上岗前、在岗期问的职业危害防治知识培训,上岗前培训时间不少于( B )学时,在岗期间培训时间每年不少于2学时。 A、2 B、4 C、6 D、8 14、煤矿应当建立健全领导( B )下井制度,并严格考核。 A、不定期 B、带班 C、定期 15、煤矿作业场所从业人员每天连续接触噪声时间达到或者超过8 h的,噪声声级限值为( C )。 A、55 dB(A) B、65 dB(A) C、85 dB(A) D、115 dB(A) 16、煤与瓦斯突出矿井应建设采区避难硐室。突出煤层的掘进巷道长度及采煤工作面推进长度超过500 m时,应在距离工作面( D )范围内,建设临时避难硐室或设置可移动式救生舱。 A、50 m B、100 m C、300 m D、500 m 17、任何单位与个人有权举报煤矿重大安全生产隐患与行为,经调查属实的,应给予最先举报人1 000元至( A )的奖励。 A、1万元 B、2万元 C、3万元 18、生产经营单位( B )与从业人员订立协议,免除或者减轻其对从业人员因生产安全事故伤亡依法应承担的责任。 A、可以 B、不得以任何形式 C、可以按约定条件 19、生产经营单位应当向从业人员如实告知作业场所与工作岗位存在的( A )、防范措施以及事故应急措施。 A、危险因素 B、人员状况 C、设备状况 D、环境状况 20、特种作业人员必须经专门的安全技术培训并考核合格,取得( D )后,方可上岗作业。 A、《特种作业资格证》 B、《特种作业合格证》

员工激励的文献综述、外文翻译.doc

一、激励理论的背景 在经济发展的过程中,劳动分工与交易的出现带来了激励问题。激励理论是行为科学中用于处理需要,动机,目标和行为四者之间关系的核心理论。行为科学认为人的动机来自需要,由需要确定人们的行为目标,激励则作用于人内心活动,激发,驱动和强化人的行为。哈佛大学维廉詹姆士研究表明:在没有激励措施下,下属一般仅能发挥工作能力的20%~30%,而当他受到激励后,其工作能力可以提升到80%~90%,所发挥的作用相当于激励前的3到4倍。日本丰田公司采取激励措施鼓励员工提建议,结果仅1983年一年,员工提了165万条建议,平均每人31条,它为公司带来900亿日元利润,相当于当年总利润的18%。由于激励的效果明显,所以各种组织为了提高生产效率,有些专家学者就开始了对激励理论的研究之中,探索激励的无穷潜力。 二、国外研究现状 国外对于激励理论有了大量的研究并获得了丰硕的成果。总体来说,可以分为两类激励理论。一类是以人的心理需求和动机为主要研究对象的激励理论,熟称“内容型激励理论”。另一类是以人的心理过程和行为过程相互作用的动态系统为研究对象的激励过程理论,它也被称作是“行为型激励理论”。 1 内容型激励理论 1.1 奠瑞的人类人格理论 这种理论认为,在面临着动态且不断变化的环境时,人们都是自适应的。它把需求分成了两种类型,即生理需求和心理需求。前者与人体基本生理过程的满足感有关,而后者所关注的是情绪上和精神上的满足感。 1.2 马斯洛的“需要层次”理论 美国心理学家马斯洛(A.H.Maslow)进一步发展了莫瑞的研究,在1954年出版的《动机与人格》一书中对该理论作了进一步的阐释。马斯洛认为人的需要可以划分为五个层次,从低到高依次为生理需要,安全需要,社交需要,尊熏需要,自我实现需要,且这五个层次的顺序,对每个人都是相同的。只有当较低层次的需要获得了基本满足后,下一个较高层次的需要才能成为主导需要。 1.3 赫茨伯格的激励—保健双因素理论 美国心理学家赫茨伯格因素理论打破了这一假设。他于1959年在《工作的激励》一书中提出了保健——激励因素理论,简称双因素理论。即保健因素和激励因素。保健因素可以用来体现高水平员工的不满意,激励因素可以用来体现高水平员工的满意度。他认为只有激励因素才能促发员工积极性,提高生产效率。 2 行为型激励理论 2.1 洛克的目标设置理论 2O世纪6O年代末,埃德温·A·洛克和他的同事们花了许多年的时间研究目标对于人类行为和绩效的效果。他们的研究导致了目标设置理论的创立并不断地得到验证,提出:指向一共同目标的工作意向是工作效率的主要源泉。他还提出了具体的设置目标的步骤。 2.2 亚当斯的公平理论 美国心理学家亚当斯(J.s.Adams)对员工受激励程度的大小与他人之间的关系进行研究,并在《工人关于工资不公平的内心冲突同其生产率的关系》(1962年与罗森合写),《工

煤矿瓦斯抽采综合管理办法

煤矿瓦斯抽采综合管理办法(试行) 一、工作目标 ㈠2014年完成瓦斯抽采进尺34万m,瓦斯抽采量3100万m3,矿井抽采率达55%。 ㈡施钻瓦斯超限指标下降50%。 二、组织领导 矿成立瓦斯抽采工作领导小组。 组长:总工程师 副组长:生产副矿长、安全副矿长、机电副矿长 成员:各副总,生产各科室科长、副科长,抽放队队长、书记、技术员,抽采科管理人员。 领导小组负责瓦斯抽采工作资金投入、人员保障工作;抽采科为瓦斯抽采主管部门,负责抽采工作技术指导与监督、检查,抽放队负责瓦斯抽采工作的具体实施。 三、工作措施 ㈠科学计划,认真组织,确保指标完成。 ⒈矿根据部署编制瓦斯抽采年度实施计划,每月根据采掘作业计划及地质情况下达瓦斯抽采指标、钻孔施工及重节点工程的实施计划; ⒉抽采科每月根据实施计划检查瓦斯抽采工作实施情况,并对未完成项进行原因分析,提出考核意见;

⒊矿每月由总工程师组织召开一次瓦斯抽采及水治瓦斯专题会议,参会人员为分管井下矿领导、生产各科室负责人和抽放队等相关人员; ⒋抽采科每周组织召开瓦斯抽采工作会,参会人员为矿总工程师、抽采科、抽放队管理人员,总结研究解决瓦斯抽采问题。 ⒌未按时组织每次处罚组织者200元,应参会人员无故不参加每次处罚100元,会议迟到、早退或不遵守会议纪律的,一次处罚50元,会议安排事项未按期完成的,扣责任人200元/项。 ㈡严格出勤管理。 ⒈抽放队每天向矿调度室报送钻尺完成量及班组出勤情况,抽采科、人力资源科每月利用人员定位系统对抽放队出勤及劳动用时进行清理、监督; ⒉抽放队根据实际情况安排抽采各项工作,工作任务安排饱满,凡因安排不合理导致员工下早班,每次处罚抽放队值班队干100元;凡因员工未完成工作任务,无故下早班,每次处罚下早班员工100元/人,值班队干50元; 3.抽放队应严格管理,确保员工出勤率,如全队生产班员工月出勤率低于70%,处罚抽放队队长、书记各200元。 ㈢强化瓦斯抽采技术管理。 ⒈矿各项瓦斯抽采工程设计、方案、措施必须严格按照《煤矿安全规程》、《瓦斯抽采技术管理规定》、《通风质量标准化标准》、《防治煤与瓦斯突出规定》等规范及矿井实际情况编制。内

大数据外文翻译参考文献综述

大数据外文翻译参考文献综述 (文档含中英文对照即英文原文和中文翻译) 原文: Data Mining and Data Publishing Data mining is the extraction of vast interesting patterns or knowledge from huge amount of data. The initial idea of privacy-preserving data mining PPDM was to extend traditional data mining techniques to work with the data modified to mask sensitive information. The key issues were how to modify the data and how to recover the data mining result from the modified data. Privacy-preserving data mining considers the problem of running data mining algorithms on confidential data that is not supposed to be revealed even to the party

running the algorithm. In contrast, privacy-preserving data publishing (PPDP) may not necessarily be tied to a specific data mining task, and the data mining task may be unknown at the time of data publishing. PPDP studies how to transform raw data into a version that is immunized against privacy attacks but that still supports effective data mining tasks. Privacy-preserving for both data mining (PPDM) and data publishing (PPDP) has become increasingly popular because it allows sharing of privacy sensitive data for analysis purposes. One well studied approach is the k-anonymity model [1] which in turn led to other models such as confidence bounding, l-diversity, t-closeness, (α,k)-anonymity, etc. In particular, all known mechanisms try to minimize information loss and such an attempt provides a loophole for attacks. The aim of this paper is to present a survey for most of the common attacks techniques for anonymization-based PPDM & PPDP and explain their effects on Data Privacy. Although data mining is potentially useful, many data holders are reluctant to provide their data for data mining for the fear of violating individual privacy. In recent years, study has been made to ensure that the sensitive information of individuals cannot be identified easily. Anonymity Models, k-anonymization techniques have been the focus of intense research in the last few years. In order to ensure anonymization of data while at the same time minimizing the information

矿井瓦斯防治论文

矿井瓦斯爆炸的原因及防治措施 摘要:在众多煤矿事故中,瓦斯爆炸造成的危害最大,从每年的事故统计来看,绝大多数特大事故都是由于瓦斯爆炸引起的。预防、控制瓦斯爆炸事故,是实现煤矿安全生产的关键。瓦斯防治是煤矿安全工作的重中之重,在提高每个干部职工对瓦斯的认识,特别是对瓦斯危害性的认识的同时,必须采取有利措施,有效防治煤矿重特大瓦斯事故的发生,以确保煤矿的安全生产。 关键词:瓦斯爆炸;提高认识;防治措施1、什么是瓦斯爆炸 瓦斯爆炸是瓦斯在一定浓度范围内受激发而发生的剧烈化学反应,反应时产生大量的热和气体,主要是以CH4为主的瓦斯与空气的混合气体点燃后发生剧烈化学反应的结果。 1.1瓦斯爆炸的危害 1

瓦斯爆炸是我国煤矿生产中最常见的灾害事故,不仅造成大量人员伤亡,而且严重摧毁井巷设施,中断生产,甚至引起煤尘爆炸、矿井火灾、井巷垮塌等二次事故。 1.2瓦斯爆炸的条件 矿井瓦斯爆炸必须满足下面三个条件:瓦斯浓度;一定的引火温度;氧气的浓度。 1.3 瓦斯爆炸的原因 瓦斯爆炸的主要直接原因就是瓦斯积聚及火源两个因素。但是导致这两个直接原因的是种种如:通风设计不合理、管理不当、管理制度不完善,安全投入少、安全意识不到位等等客观原因。 1.3.1 瓦斯积聚 瓦斯积聚的原因是多方面的,主要有: (1)对通风系统管理不严格,局部通风机随意停风造成瓦斯积聚。 (2)通风系统不合理造成瓦斯积聚。 2

(3)在没有形成全负压通风的情况下,强行生产,不合理串联、角联造成巷道无风、微风,形成瓦斯积聚。 (4)巷道贯通,新旧工作面接替时,通风系统不能及时调整导致部分巷道瓦斯积聚。 (5)瓦斯检查员脱岗,不按规定检查瓦斯,使瓦斯积聚不能及时处理,积聚范围扩大造成瓦斯爆炸。 1.3.2 引爆火源 产生火源的因素主要是违章操作产生引爆火源。在引爆火源中出现最多的是放炮火源,其次是电气火花、摩擦火花和电焊火花;还有煤炭自燃产生的火花。 1.3.3 间接原因 (1)个别矿山现场管理混乱,干部违章指挥,违章作业。 (2)“安全第一”的思想意识不强,尤其是技术管理和执行规章不严格,对一些隐患存在侥 3

煤矿瓦斯抽采基本指标

煤矿瓦斯抽采基本指标 AQ1026-2006 前言 本标准全部内容为强制性条文。 本标准由国家煤矿安全监察局提出。 本标准由全国安全生产标准化技术委员会煤矿安全分技术委员会归口。 本标准起草单位:煤炭科学研究总院重庆分院、中国矿业大学、煤炭科学研究总院抚顺分院、阳泉矿业(集团)有限责任公司、淮南矿业(集团)有限责任公司、芙蓉(集团)实业有限责任公司。 本标准主要起草人:胡千庭、文光才、俞启香、王魁军、李宝玉、周德昶、高正强、龙伍见。 1 范围 本标准规定了煤矿瓦斯抽采应达到的指标及其测算方法。 本标准适用于井工煤矿。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 MT/T638 煤矿井下煤层瓦斯压力的直接测定法 MT/T77 煤层气测定方法(解吸法) AQ1025 煤井瓦斯等级鉴定规范

3 必须进行瓦斯抽采的矿井 有下列情况之一的矿井,必须建立地面永久抽采瓦斯系统或井下临时抽采瓦斯系统: a) 一个采煤工作面的瓦斯涌出量大于5m3/min或一个掘进工作面瓦斯涌出量大于3m3/min,用通风方法解决瓦斯问题不合理时; b) 矿井绝对涌出量达到以下条件的: ——大于或等于40m3/min; ——年产量1.0—1.5Mt的矿井,大于30m3/min; ——年产量0.6—1.0Mt的矿井,大于25m3/min; ——年产量0.4—0.6Mt的矿井,大于20m3/min; ——年产量等于或小于0.4Mt,大于15m3/min。 c) 开采有煤与瓦斯突出危险煤层。 4 瓦斯抽采应达到的指标 4.1突出煤层工作面采掘作业前必须将控制范围内煤层的瓦斯含量降到煤层始突深度的瓦斯含量以下或将瓦斯压力降到煤层始突深度的煤层瓦斯压力以下。若没能考察出煤层始突深度的煤层瓦斯含量或压力,则必须将煤层瓦斯含量降到8m3/t以下,或将煤层瓦斯压力降到0.74MPa(表压)以下。控制范围如下: a)石门(井筒)揭煤工作面控制范围应根据煤层的实际突出危险程度确定,但必须控制到巷道轮廓线外8m以上(煤层倾角>8°时,底部或下帮5m)。钻孔必须穿透煤层的顶(底)板0.5m以上。若不能穿透煤层全厚,必须控制到工作面前方15m以上。 b)煤巷掘进工作面控制范围为:巷道轮廓线外8m以上(煤层倾角>8°时,底部或下帮5m)及工作面前方10m以上。 c)采煤工作面控制范围为:工作面前方20m以上。

“文献综述、外文翻译和开题报告”三合一文件模版

本科生毕业论文 文献综述与开题报告 姓名与学号****** ******* 指导教师************ 年级与专业2011级电子科学与技术或2011级信息与通信工程 所在学院信息与电子工程学系

一、题目:纳米尺寸双V型表面等离激元波导导光特性研究 二、指导教师对文献综述和开题报告的具体内容要求: 对文献综述的要求: 要求详细阅读表面等离激元各种几何结构波导的文献,对之前已发表的各种结构的波导做一个归纳总结,并比较各自的传输长度和模场大小,作出文献综述。 对开题报告的要求: 要求学生对表面等离激元和契形波导和凹槽的相关背景知识有深入理解,对目前已发表的各种契形波导有系统的归纳,能指出存在的不足和未来发展的方向。 指导教师(签名)

目录 文献综述 (1) 一、背景介绍 (1) 1. 当前集成技术的发展瓶颈 (1) 2.表面等离子体激元的性质 (1) 3.表面等离子体波导 (1) 二、国内外研究现状 (1) 1.研究方向及进展 (1) 2.课题应用前景 (2) 3.存在的问题 (3) 三、研究展望 (4) 开题报告 (6) 一、问题提出的背景 (6) 1.背景介绍 (6) 2.本研究的意义和目的 (6) 二、论文的主要内容和技术路线 (6) 1.主要研究内容 (6) 2.技术路线 (6) 3.可行性分析 (8) 三、研究计划进度安排及预期目标 (8) 1.进度安排 (8) 2.预期目标 (8) 文献翻译和原稿 (10)

文献综述 指导老师:*** ***系 ***班姓名学号 一、背景介绍 1.当前集成技术的发展瓶颈 互联网和计算机的速度越来越快、功能越来越强大,但是电子线路的发热和速度严重限制了计算机的运行。用光子替代电子,光子不会像电子那样产生大量热量,并且随着频率的升高具有很高的数据传输能力。光子集成电路比传统的电子集成电路具有很多明显优势,包括信号屏蔽性、速度更快、发热更少、带宽更大、串扰更低等。然而,光子集成电路需要在纳米级尺度内控制光子,离桌面计算机和其他口常应用还相差甚远。这对纳米光子学的研究提出了新的挑战:一方面要求光学器件尺寸高度小型化,便于纳米应用和集成;另一方面要求能够在纳米尺度下控制光场,实现在纳米尺度内的聚焦、变换、耦合、折射、传导和复用,以及实现高准直、超衍射的新型光源和各种纳米光子学器件。[1] 2.表面等离子体激元的性质 表面等离子体激元有望解决这一问题。表面等离子体激元是光与金属自由电子相互作用、在金属-介质界面产生的电子-光子混合共振。表面等离子体激元有两种形式:局域表面等离子体激元(localized surface plasmons, LSPs)和表面等离子体极化激元(surface plasmon polaritons, SPPs)。LSPs是电子与光子耦合的非传播的激发,主要涉及很小的纳米颗粒的散射问题。SPPs是沿金属表面传播的极化波。SPPs在垂直金属表面上形成消逝场,场振幅呈指数衰减,因此SPPs的电磁能量被强烈地约束在表面附近,具有强大的近场增强效应;沿金属表面由于欧姆热效应,只能传播有限距离。 3.表面等离子体波导 在纳米光子学中,波导用来传导光,扮演电缆或线路的角色,是实现纳米光子回路的基础。利用表面等离子体波导作为光子互连元件,具有无RC延迟和衍射极限限制的优势。SPPs 波导结构的种类有沟槽、楔形、金属纳米条、纳米线、纳米颗粒,矩形间隙,狭缝等。 二、国内外研究现状 1.研究方向及进展

相关主题