搜档网
当前位置:搜档网 › 电磁铁选材

电磁铁选材

电磁铁选材
电磁铁选材

阀用电磁铁维修经验谈发布日期:2006-4-11

在液压件上,常用到电磁铁来产生吸力,推拉阀芯,从而控制液流的方向、压力和流量。这类电磁铁一般称为阀用电磁铁(下面一律简称电磁铁)。在控制系统中,电磁铁起着承上启下的作用,他将电能转化为机械能,推动液压阀动作。严格地讲,电磁铁包括电磁线圈和衔铁动作机构,在市场上,二者也是成套供应的。在工程机械维修中,遇到的电磁线圈烧毁的情况很普遍。因此,我们这里所说的电磁铁,主要指电磁线圈。

图1. 普通电磁阀使用开关式电磁铁

图2. 衔铁与线圈的相对位置决定阀芯是受推力还是拉力

电磁铁包括开关式和比例式两种,开关式电磁铁常被安装在换向阀上,用来控制阀的换向、系统的卸荷和加载等;比例式电磁铁安装在各类比例阀上,用来控制液流的方向、压力和流量。不少比例压力阀安装在电控变量泵上,可以控制泵的和流量和方向。

比例式电磁铁具有一个在其行程上,至少是在其工作行程内,电磁力很大程度上保持不变的特性,以此区别于普通开关式电磁铁。这一吸力特性,是通过工作气隙的特殊造型和导磁体磁力的引导而形成。开关式和比例式电磁铁的差别并不完全取决于电磁铁本身,比例电磁铁通最大电流时相当于开关式电磁铁,开关式电磁铁通不同的电流时也会产生不同的推力。

电磁铁的性能指标主要包括适用电压(电流)、推(拉)力和行程等。

根据电压可以分为12V直流,24V直流,110V交流,220V交流等。NG6阀用电磁铁推拉力一般为20-70N,行程在3-7mm之间。当怀疑某电磁阀卡滞或线圈烧毁时,可以将电磁阀反过来,看其行程是否在上述范围之内。

电磁铁的外特性主要表现为电阻。最常见的24V NG6电磁阀线圈阻值一般在16-26Ω之间,24V插装阀线圈阻值一般在20-38Ω之间,24V比例阀线圈阻值一般在21-26Ω。理论上,电磁吸力与电流的平方成正比,所以12V线圈阻值一般为对应24V线圈的1/4左右。

比例电磁阀一般要求电流达到某一范围。如REXROTH(力士乐)系列泵用24V比例电磁阀一般要求电流200-600mA,12V的要求电流400-1200mA。LINDE系列泵用24V比例电磁阀要求电流220-405mA或175-360mA。SAUER系列泵用24V比例电磁阀要求电流13-85mA。

当电磁阀没有动作时,可以用万用表测量线圈接线插片1、2之间电阻,如果阻值无穷大说明内部断路,如果阻值很小说明内部短路,需要更换线圈。断路和短路都常常由线圈发热引起。液压元件厂家为减少阀卡死的几率,都会降低线圈阻值,以增大推力。但这样一来,线圈发热就非常厉害,在连续通电几分钟之后内部温度就可能超过100°C。所以在应用上,除了要注意电磁阀的散热之外,还要尽可能地减少通电时间。通断电频率高的电磁阀线圈更易烧毁。

当没有万用表时,可以用铁丝或小螺丝刀等推动推杆,看工作机构是否有动作。也可以用扳手等工具靠近电磁铁,看是否有足够吸力。当然,电磁阀无动作还有电气和液压方面的其他原因。

电磁铁的接线一般参照ISO4400/ DIN43650标准。插片1、2即为线圈的两端,不管哪一端为正极,线圈都会对衔铁产生吸力,所以接线不分正负。但习惯上一般1为正,2为负。

少量的开关式电磁阀和部分比例阀采用推拉式电磁铁,其接线一般符合ISO4401标准,插片1、2为正极,3为共用负极。

图3.少量电磁阀采用推拉式电磁铁

参考资料:

1. REXROTH-BOSCH产品样本,REXROTH-BOSCH公司

2. 电液比例技术与电液闭环比例技术的理论与应用,BOSCH

3. HYDAC产品样本,HYDAC公司

[M24613-0362-0001] 直流电磁铁

[摘要] 一种直流电磁铁,线圈对接在底座一端,线圈的另一端设置上盖,铁芯由上铁芯和下铁芯组成,上铁芯和下铁芯为内端粗、外端细的变径结构,装在底座、线圈和上盖形成的腔内,粗径部分与底座和线圈内腔相适配,上铁芯细径部分外端穿过上盖的圆孔伸出在上盖外部,下铁芯细径部分外端穿过底座端部的圆孔伸出在底座外部,下铁芯细径部分套有压簧,压簧两端分别支撑在下铁芯变径部分和底座内端面上,底座上还固定下铁芯变径部分能触发的控制线圈是否得电的微动开关。它与光电保护装置配套使用,用于机床安全改造,成本低、体积小、改造容易、安全性强、用电量小。

[M24613-0232-0002] 交流模拟牵引电磁铁

[摘要] 本实用新型涉及一种交流模拟牵引电磁铁,属于低压电器产品技术领域。该电磁铁的结构类似直流电磁铁,所不同之处是在骨架上绕置三组线圈,三组线圈各有不同,各司其职,其外层线圈为启动保持线圈,内层线圈为辅助线圈,中间层线圈为控制线圈;另外在后轭铁外侧装有电子线路模块,该模块的电路结构主要由输入电路、启动保持电路、电源电路和控制电路组成。由于其吸合状态和保持状态是由电子线路控制下进行的,因此,无论是否过载均按设定时间进入保持状态,不会发生电磁铁烧毁现象。

[M24613-0619-0003] 起重电磁铁无触点停电保磁装置

本实用新型涉及一种起重电磁铁无触点停电保磁装置,属于磁力分离控制技术领域。该装置包括励磁电路、消磁电路和保磁电路;励磁电路的交流电源端正向接电磁铁线圈,构成励磁回路,恒压控制模块的受控端设有常闭的电压封锁继电器;消磁电路的电源输入端接与电磁铁线圈并联的放电电阻,构成消磁回路;恒流恒压控制模块的受控端设有常开的消磁控制继电器;保磁电路的电池通过切换接触器正向接电磁铁线圈,构成保磁回路。本实用新型实现了整个装置的无环流控制,克服了直流接触器拉弧严重、触点磨损快、故障率高的弊病;同时也避免了分立元件控制线路过于分散、抗干扰能力差、体积大、维修成本较高的缺点。

[M24613-0482-0004] 一种利用线圈自身表面散热的高温起重电磁铁

[摘要] 一种利用线圈自身表面散热的高温起重电磁铁,包括上轭板、外壳、线圈、线圈底护板、芯极,将线圈与上轭板、外壳、芯极、线圈底护板之间分别以隔热垫块相隔,使线圈周围形成一通风空间,电磁铁外壳两端装有将外界与所述通风空间相连的通风罩。线圈底护板套在芯极上,将线圈托起,并通过螺杆吊装在上轭板上。线圈工作时产生的热量借助通过电磁铁两端的通风罩流动的自然风对线圈的上下内外表面加以冷却。这样,不仅提高了电磁铁的使用性能,而且大大延长了电磁铁的使用寿命。此外本实用新型工艺简单、运行可靠、能有效地降低成本、提高工作效率。

[M24613-0489-0005] 新型压缩空气冷却高温起重电磁铁

[摘要] 本实用新型涉及一种新型压缩空气冷却高温起重电磁铁。由本体部分、气管卷筒、气泵、整流机组成,其特征在于:本体部分的励磁线圈采用多个环形薄线分别单独密封,线圈内灌以导热性能良好的填充物,各线圈之间设有冷却风道。本实用新型结构紧凑,励磁线圈采用全密封结构,可有效地防止粉尘、潮湿等有害气体对线圈的侵蚀,可大大提高产品的使用寿命和对恶劣环境的适应性;由于将整个励磁线圈设计成多个环形薄线圈,散热面积大,因而温升低,热态电流下降少,使得热态时的磁势增大,提高了吸重能力。

[M24613-0467-0006] 一种低功耗耐高压比例电磁铁

[摘要] 本发明公开了一种低功耗耐高压比例电磁铁,包括导向套,导向套位于壳体内,在导向套和壳体之间设置控制线圈;在导向套的内腔中设有衔铁,导向套由前段、中段和后段组成,左端盖与前段密封相连,左端盖的端面位于前段的内腔中;右端盖与后段密封相连;衔铁由大圆柱和小圆柱所形成;推杆的右端与右轴承相连,推杆的左端与左轴承相连,推杆与衔铁固定相连;部分的小圆柱位于左端盖的端盖孔内;前段的内腔表面与大圆柱外表面之间的间隙形成径向工作气隙I,端盖孔的孔壁与小圆柱外表面之间的间隙形成径向工作气隙II,小圆柱和大圆柱的交界面与端面之间的间隙形成轴向工作气隙。使用本发明的低功耗耐高压比例电磁铁,能降低系统能耗。

[M24613-0529-0007] 电动葫芦用圆柱形转子电磁铁锥形制动电动机

[摘要] 本实用新型公开了一种电动葫芦用圆柱形转子电磁铁锥形制动电动机,属于起重机。本实用新型需要解决的技术问题是设计一种电动葫芦用圆柱形转子电磁铁锥形制动电动机,其效率高,温升慢且工艺简单。本实用新型的技术方案是,一种电动葫芦用圆柱形转子电磁铁锥形制动电动机,它包括有转子和制动器,电动机的转子为圆柱形转子,制动器的结构是,在电动机壳端面外的一侧依次设有电磁铁、衔铁和锥形制动盘,在衔铁和电磁铁之间设有弹簧,衔铁的一端设有锥体与锥形制动盘的内锥面相配,沿圆周均布的螺栓穿过衔铁孔旋入电磁铁和电动机壳中的螺纹孔内;整流装置的输出端与电磁铁线圈连接。本实用新型主要用于起重机电动葫芦。

[M24613-0343-0008] 一种防水电磁铁按摩头

[摘要] 本实用新型公开了一种防水电磁铁按摩头。本实用新型的防水电磁铁按摩头,包括线圈骨架、线圈、活动芯轴,冲击头,该线圈骨架为筒套式结构,筒套式线圈骨架径向向外的空间为线圈空间,筒套式线圈骨架径向向内的空间为内空间,在该内空间内设有与线圈空间独立的液体流道;活动芯轴设置在该内空间内,冲击头连接在活动芯轴的一端。本实用新型的防水电磁铁按摩头按摩效果好,连续工作时间长,可以用在有水的地方。

[M24613-0427-0009] 吊运卧卷起重电磁铁

[摘要] 本发明公开了一种起重电磁铁,尤其是一种吊运卧卷起重电磁铁。该起重电磁铁为“U” 形电磁铁,包括磁极,磁轭,励磁线圈;磁极下部中段外侧有一凸台,磁极下部前、后两段的外侧上固连有多根柔性磁极,凸台的外侧也固连有多根柔性磁极,每根柔性磁极的上端固定,下端自由下垂;凸台的底面高于磁极底面圆弧的顶点,两个凸台外侧之间的距离大于卧钢板卷的最大宽度,两磁极外侧之间的距离等于卧钢板卷的最小宽度;每根柔性磁极的下端相互通过柔性绳相连;柔性磁极的长度大于卧钢板卷的半径;柔性磁极为导磁金属绳。本发明能安全可靠地吊运卧钢板卷,并且能耗低。

[M24613-0517-0010] 小型化高速电磁铁

[摘要] 本实用新型公开了一种小型化高速电磁铁。它包括一个锁紧外套、一个制有安装电缆插座台阶孔的铁芯和安装在铁芯极柱上的电磁线圈,其特征在于所述的铁芯是一个整体型圆环状铁芯,在它的环形槽中部还制有与铁芯连成一体的中心极柱,所述的电磁线圈嵌入于所述环形槽与中心极柱之间。本实用新型整体构成的圆环状铁芯为机械加工的一次成型提供了加工的方便性和快捷性。而且体积超小,结构十分紧凑,密封形式方便,响应时间快(0.3Ms),动态驱动力大于200N,瞬态驱动电流20A以下。解决了柴油电喷系统的高速响应和小型化的问题。十分适合于低成本,大批量生产。

1)与先导级配合的比例电磁铁,其工作行程相当小,应限制在比例电磁铁的有效行程内,即使它的整个工作行程处于比例电磁铁的水平吸力区段。

2)比例电磁铁一般多为湿式直流电磁铁,要特别注意衔铁腔是否耐高压,耐多少压力,不耐高压的比例电磁铁一般只能承受溢流阀、方向阀等的回油压力。

3)对配用两个比例电磁铁的比例方向阀,衔铁总行程包括工作行程和空行程。当其中一个工作在工作区时,另一个运行于非工作区(空行程区)。一般情况下,工作行程和空行程相等,各为衔铁总行程的二分之一。如衔铁行程为(3+3)mm,表示工作行程3mm,空行程3mm,即以电磁铁推杆全部推出位置为起始点,将推杆向里推3mm为水平吸力的工作区,再向里推3mm 为非工作区。

4)端头有放气螺钉的比例电磁铁,在液压系统启动之后到正常运行之前,应给电磁铁放气。否则,滞留在电磁铁中的空气会影响比例阀的可靠运行。

5)为了保证静压平衡,衔铁前后腔有通道沟通,此通道断面大小要适当,在保证快速性的前提下,要有一定阻尼。

对位置调节型比例电磁铁,可取消液压阻尼,以提高其快速性。

6)调零弹簧对比例电磁铁的稳态牲曲线有明显影响,其刚度和预压缩量应选择适当。没有调零弹簧的比例电磁铁,一般亦有刚度很小的复位弹簧,以保证在未通电时,电磁铁衔铁处于确定位置。

7)位置调节型比例电磁铁的位移传感器中的电感线圈与检测联杆间的相对位置由生产厂家调整好后,不能随意变动。8)电磁铁衔铁腔受污染后,应进行清洗。对于图1 所示结构的比例电磁铁,其拆卸的步骤为:拆开电磁铁后盖(或尾部调零弹簧装置)取出调零弹簧及相应附件取出衔铁取出限位片。清洗各部件后重新装配。在拆卸电磁铁时,一般不需将线圈部分拆开,以免擦伤线圈,弄断导线。目前,比例电磁铁广泛采用线圈可拆卸式的结构,拆卸时,拧下尾部的橡胶螺母,就可抽出线圈部分,然后,可用扳手取出比例电磁铁芯轴,再按图1 所示的比例电磁铁的拆卸步骤进一步分解。这种结构的比例电磁铁,其拆卸和装配过程变得更加简单,且线圈部分具互换性。一般情况下,经内部分解后又重新装置的比例电磁铁,应随比例阀一起在实验台上进行重新调试,以确保其零点和增益符合比例阀控制特性的要求。

9)比例电磁铁上的手动应急机构,用来在断电或比例控制放大器出现故障时,手动操作系统,系统布置时应留出手动操作空间。

10)通过比例放大器调整颤振信号,应在保证比例阀的稳定性和小电流信号的良好稳态特性的前提下,使滞环尽可能小。一般由生产厂家根据比例阀的控制要求调整好,用户不要随意调整。

11)通过调节比例电磁铁调零弹簧,可调整比例阀先导级的零位及比例阀的死区,以获得满意的比例控制特性。12)国内外生产比例电磁铁的厂家很多,但不同厂家的比例电磁铁在结构和性能上仍有差别。因此,即使是同一规

格的比例电磁铁,由于生产厂家不同,也不能相互简单替代。通力液压目前的比例电磁铁产品主要有GP80比例流量阀用电磁铁、GV40比例压力阀用电磁铁和GP37比例阀用电磁铁。

电磁铁铁心用材料

在电磁性电器中,电磁机构由吸引线线圈,铁心,衔铁等部分组成。

(1)交流电磁铁由于磁导体(铁心)在交流励磁下有铁损(磁滞损耗)和铜损(涡流损耗),加上它们往往是八小时工作制,甚至是不间断工作制(如欠电压脱扣器)或断续周期工作制(如接触器),运行中损耗大,因此铁心材料采用硅钢片叠装(片间绝缘)。

(2)对于短时工作的电磁铁,如分励脱扣器,断路器的瞬动电磁铁等,因不考虑磁滞损耗,其铁心可采用低碳钢(如Q235—A)等材料。

(3)要求体积小,精度高的铁心(如某些小体积断路器的欠电压脱扣器,剩余电流动作断路器的电磁式漏电脱扣器等),应采用剩磁小,矫顽力小,磁滞回路面积小的铁镍软磁合金(坡莫合金)来制作。

(4)直流电磁铁,因直流无磁滞损耗(但仍有涡流),铁心本身损耗小,故可用圆柱形碳钢或电工纯铁棒(用这种材料加工也容易),软铁就是纯铁。

直流电磁铁在稳定的状态下通过恒定的磁通,铁心中没有磁滞和涡流损耗,只有线圈中的铜耗,但对于交流电磁铁,因通入的是交变的电流,在线圈中产生交变的磁场,铁心中的磁畴被不断的磁化,磁畴之

间不停的摩擦产生磁滞损耗,除此之外,由电磁感应定律可知在交变的磁场中铁心中会产生环流,引起涡流损耗,同样交流电磁铁也有铜耗。因此对于交流电磁铁,它的线圈和铁心都发热。

为什么选圆柱形碳钢或电工纯铁棒

(1)主要是考虑磁回路的涡流损耗以及磁滞损耗。直流电磁铁中磁回路中磁场变化很慢,基本可以忽略涡流损耗以及磁滞损耗,避免磁饱合是主要矛盾。而交流电磁铁磁回路中磁场变化很快,涡流损耗和磁滞损耗就成为不可忽略的问题。采用硅钢片可以提高涡流回路的电阻,降低涡流损耗。

(2)电磁铁是要能控制磁场的强度的,要求在断电后就没有磁力的,没有磁力的铁磁物质在磁场就会被磁化,离开后磁场后会有残磁。软铁的残磁基本没有,但钢的却很强,特别是高碳钢类的,非常强。

某些小体积断路器的欠电压脱扣器,剩余电流动作断路器的电磁式漏电脱扣器等要求体积小,精度高的铁心,可用铁镍软磁合金(坡莫合金)来制作,因为这种材料剩磁小,矫顽力小,磁滞回路面积小。

中国牌号表示方法:

(1)冷轧无取向硅钢带(片)表示方法:DW+铁损值(在频率为50HZ,波形为正弦的磁感峰值为1.5T 的单位重量铁损值。)的100倍+厚度值的100倍。如DW470-50表示铁损值为4.7w/kg,厚度为0.5mm 的冷轧无取向硅钢,现新型号表示为50W470。

(2)冷轧取向硅钢带(片)表示方法:DQ+铁损值(在频率为50HZ,波形为正弦的磁感峰值为1.7T的单位重量铁损值。)的100倍+厚度值的100倍。有时铁损值后加G表示高磁感。如DQ133-30表示铁损值为1.33,厚度为0.3mm的冷轧取向硅钢带(片),现新型号表示为30Q133。

(3)热轧硅钢板热轧硅钢板用DR表示,按硅含量的多少分成低硅钢(含硅量≤2.8%)、高硅钢(含硅量>2.8%)。表示方法:DR+铁损值(用50HZ反复磁化和按正弦形变化的磁感应强度最大值为1.5T时的单位重量铁损值)的100倍+厚度值的100倍。如DR510-50表示铁损值为5.1,厚度为0.5mm的热轧硅钢板。家用电器用热轧硅钢薄板的牌号用JDR+铁损值+厚度值来表示,如JDR540-50。

DW310-35

一种含碳极低的硅铁软磁合金,一般含硅量为0.5~4.5%。加入硅可提高铁的电阻率和最大磁导率,降低矫顽力、铁芯损耗(铁损)和磁时效。主要用来制作各种变压器、电动机和发电机的铁芯。世界硅钢片产量约占钢材总量的1%(见精密合金)。

1900年英国哈德菲尔德(R.A.Hadfield)等首先发现含Si4%的Si-Fe合金有良好磁性。1903年德国和美国相继生产含Si1.0~4.5%的热轧硅钢片。1906年代替低碳钢用来制造电机和变压器铁芯。1934年美国戈斯(N.P.Goss)采用两次冷轧法制成(110)[001]晶粒择优取向的含Si3%的冷轧硅钢片。1968年日本田口悟等采用硫化锰和氮化铝综合抑制剂并使用一次大压下率冷轧法,制成(110)[001]高磁感取向硅钢,这种材料的晶粒取向更加准确,铁损和磁性进一步改善。历年来,硅钢的铁损值下降示意曲线见图1。

1949年美国制成厚度小于0.1mm的冷轧(110)[001]取向薄硅钢带,用于电

子工业。1957年联邦德国制成了(100)[001]立方取向硅钢片,其纵横向磁性都高,但因工艺复杂,至今未正式生产。图2是(110)[001]和(100)[001]取向硅钢片中晶粒排列示意图。含硅6.5%的Si-Fe合金的磁致伸缩约为零,磁导率高、铁损低、制成的变压器无噪声但因加工困难,未得到广泛应用。70年代采用液态快冷技术制成6.5Si-Fe微晶薄带,研制了更薄的取向硅钢片和(100)面织构(晶间无取向)的硅钢片等新品种。

中国于1953年开始生产热轧低硅硅钢片(Si1~2%);1955年开始生产热轧高硅硅钢片(Si3.0~4.5%);1962年开始生产冷轧取向薄硅钢带。70年代开始生产冷轧取向硅钢带。

对硅钢性能的要求主要是:①铁损低,这是硅钢片质量的最重要指标。各国都根据铁损值划分牌号,铁损愈低,牌号愈高。②较强磁场下磁感应强度(磁感)高,这使电机和变压器的铁芯体积与重量减小,节约硅钢片、铜线和绝缘材料等。③表面光滑、平整和厚度均匀,可以提高铁芯的填充系数。④冲片性好,对制造微型、小型电动机更为重要。⑤表面绝缘膜的附着性和焊接性良好,能防蚀和改善冲片性。⑥基本无磁时效。典型电磁性能见表1。

硅钢片一般随硅含量提高,铁损、冲片性和磁感降低,硬度增高(图3)。工作频率愈高,涡流损耗愈大,选用的硅钢片应当愈薄。硅钢片的主要用途与厚度和含硅量的关系见表2。

冶炼和轧制硅钢主要用氧气转炉冶炼(也可用电弧炉冶炼),配合钢水真空处理和AOD技术(见炉外精炼,采用模铸或连铸法。根据不同的用途,冶炼时改变硅(0.5~4.5%)和铝(0.2~0.5%)含量以满足不同磁性的要求。高牌号硅钢片的硅和铝量相应提高。碳、硫和夹杂物尽量减少。

冷轧硅钢片的磁性、表面质量、填充系数和冲片性比热轧硅钢片好,并可成卷生产,所以从60年代开始有些国家已停止生产热轧硅钢片。中国采用约900℃低温一次快速热轧和氢气保护下成垛退火方法制造热轧硅钢片,成材率较高,成品表面质量和磁性都较好。

冷轧无取向硅钢片是将钢坯或连铸坯热轧成厚度约2.3mm带卷。制造低硅产品时,热轧带卷酸洗后一次冷轧到0.5mm厚。制造高硅产品时,热轧带酸洗后(或先经800~850℃常化后再酸洗),冷轧到0.55或0.37mm厚,在氢氮混合气氛连续炉中850℃退火,再经6~10%小压下率冷轧到0.50或0.35mm厚。这个小压下率的冷轧可使退火时晶粒长大,铁损降低。这两种冷轧板都在20%氢氮混合气氛下连续炉中850℃最终退火,然后涂磷酸盐加铬酸盐的绝缘膜。晶粒取向硅钢一般都含Si3%,要求钢中氧化物夹杂含量低,并必须含有C0.03~

0.05%和抑制剂(第二相弥散质点或晶界偏析元素)。抑制剂的作用是阻止初次再结晶晶粒长大和促进二次再结晶的发展,从而获得高的(110)[001]取向。抑制剂本身对磁性有害,所以在完成抑制作用后,须经高温净化退火。采用第二相抑制剂时,板坯加热温度必须提高到使原来粗大第二相质点固溶,随后热轧或常化时再以细小质点析出,以便增强抑制作用。冷轧成品厚度为0.28、0.30或

0.35mm,工艺要点见表3。冷轧取向薄硅钢带是将0.30或0.35mm厚的取向硅钢带,再经酸洗、冷轧和退火制成

大象版五年级科学下册教学设计 玩转电磁铁教案

《玩转电磁铁》教案 教学目标: 1、让学生了解电磁铁的构成和性质。 2、使学生知道电磁铁的原理,认识到电磁铁磁性强弱与哪些因素有关,培养学生的 动手实验能力。 教学重难点: 了解电磁铁有通电产生磁性、断电磁性消失的基本性质。电池节数越多,线圈圈数越多,电磁铁的磁性越强。 教学过程: 教学方法:本节课主要采用了小组合作探究的教学形式,即:发现问题→猜想假设→设计实验→实验→得出结论。 教学演示:小电机、小平口螺丝刀、铁钉、漆包线、电池、砂纸、电铃、电脑打铃器等。分组实验材料:每组1只铁钉、1根漆包线、2节电池、10个大头针等。 一、观察和提问 观察小电机的内部结构,提出问题,进行研究。 二、猜想与判断 讲解:我们来做个类似的线圈。做线圈的用到的材料是铁钉、漆包线,用铁钉作铁芯,在铁芯上缠上漆包线。漆包线是细铜导线,外面包有绝缘漆,绝缘漆是不能导电的,在电动机里用的也是这种漆包线。使用的时候,要把导线两端的绝缘漆刮下来,露出里面的铜2 线,才能接通电流。在实验前,老师已经把线头的绝缘漆都刮掉了,只要把它和电源的两端接通就能通电了。制作线圈的方法是:从铁钉的一端开始,把漆包线缠绕在铁钉上。在铁钉上缠绕一圈叫一匝(板书“1匝”),我们在铁钉上缠绕30匝,做一个30匝的线圈(边讲边演示),大家也一起来做一做吧。学生制作线圈。 提问:现在我们把这个线圈的两个线头与一节电池的两极接通,给这个线圈通电,用铁钉的一端靠近大头针,看看能不能把大头针吸起来。断开电池后,看看还能不能把大头针吸起来。 一、实验:电磁铁的磁性 谈话:请各组同学做一下这个实验。能不能把大头针吸起来。注意每次通电时间不能 太长,不要超过10秒钟,以免电池发热,损坏电池。 二、学生实验、报告 讲解:线圈通电后能够吸起大头针,就是说,它像磁铁一样,有了磁性,它的磁性是因为通电产生的,断了电,磁性就消失了,所以我们把这种中间插有铁芯的线圈叫做电磁铁。今天我们一起来学习第2课:玩转电磁铁。(板书课题:2玩转电磁铁)

电磁铁设计

直流电磁铁设计 共26 页 编写: 校对:

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B=qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=21 μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kυ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

电磁铁的设计计算

电磁铁的设计计算 1原始数据 YDF-42 电磁铁为直流电磁铁工作制式为长期根据产品技术条件已知电磁铁的工作参数 额定工作电压UH=24V 额定工作电压时的工作电流IH ≤1A 2 测试数据 测试参数工作行程δ=1mm 吸力F=7.5kg 电阻R=3.5Ω 4 设计程序 根据已测绘出的基本尺寸通过理论计算确定线圈的主要参数并验算校核所设计出的电磁铁性能 4.1 确定衔铁直径dc 电磁铁衔铁的工作行程比较小因此电磁吸力计算时只需考虑表面力的作用已知工作行程δ=1mm 时的吸合力F=7.5kg 则电磁铁的结构因数 K = F/δ7.5/0.1=27 (1) 电磁铁的结构形式应为平面柱挡板中心管式 根据结构因数查参考资料,可得磁感应强度BP=10000 高斯 当线圈长度比衔铁行程大的多时,可以不考虑螺管力的作用,认为全部吸力都由表面力产生由吸力公式 F= (Bp/5000)2×Π/4×dc2 (2) 式中Bp磁感应强度(高斯) dc 活动铁心直径(毫米) 可以求得衔铁直径为 dc= 5800×F Bp = 5800×7.510000 =1.59cm=15.9mm 取dc=16 mm 4.2 确定外壳内径D2 在螺管式电磁铁产品中它的内径D2与铁心直径dc之比值n 约为2~ 3 ,选取n=2.7 D2=n ×dc=2.76×16=28.16 毫米(3) 式中D2 外壳内径毫米 4.3 确定线圈厚度 bk= D2?dc 2 ?Δ(4) 式中bk -----线圈厚度毫米 Δ------线圈骨架及绝缘厚度毫米今取Δ=1.7 毫米 bk= 28.16?16 2 ?1.7 =4.38毫米 今取bk=5 毫米 4.4 确定线圈长度 线圈的高度lk与厚度bk比值为β,则线圈高度

电磁铁教案

电磁铁教案 教学目标: 1、知道什么是电磁铁。 2、能够做一个电磁铁并能发现电磁铁与永久磁铁的异同点。 3、能通过探究实验,概括出电磁铁磁力大小与电池的数量、线圈的匝数有关。 教学重点难点: 重点:认识电磁铁的基本性质。 难点:探究影响电磁铁磁力大小的因素。 教学准备:电池、导线、铁钉、大头针、实验记录表 教学过程: 一、揭示课题 师:同学们,看(举起磁铁)还认识吗?它能干什么?(吸铁)演示吸桌上的回形针。 师:同学们,今天老师还带来了一个特殊的装置。老师让它吸大头针,它就吸;让它放,它就放。想不想见识一下? 师演示电磁铁,吸、放大头针。(同时提醒学生注意观察,在什么时候吸大头针,什么时候放大头针。) 师:给它通电就能当磁铁用,真是奇怪!这个奇怪的家伙还没有名字呢?你能根据它的特点给它起个名字吗?(电磁铁)我们的科学家给它起的名字也叫电磁铁。 二、自制“电磁铁”——提出问题 1、师:小科学家们,想自已做一个电磁铁吗? 2、教师介绍制作方法。 3、学生动手绕制电磁铁。 4、学生完成电磁铁后,测测能吸多少根大头针?

5、学生汇报吸回形针的个数。 6、(老师随机板书个数)怎么会有的吸的多,有的吸的少呢? 三、作出猜测 师:那么电磁铁磁力大小与哪些因素有关呢? 学生讨论,作出猜测。学生可能猜测:(1)线圈匝数;(2)电池节数;(3)导线粗细;(4)铁芯的粗细;(5)导线的长短……(师相机板书) 四、制订研究方案 1、过渡:要想验证我们的猜测,还得怎么办?(做实验)老师告诉你们,这个实验可难做了。稍有不注意,结果就会不准确。你们有信心做好吗?(学生齐声“有”) 2、那老师可得考考你们。选择一个因素让学生讨论研究方案。 3、汇报、讨论方案。师生提出补充修改意见。各组完善自己的方案。 五、实验操作 出示实验要求: (1)小组成员之间要互相合作,互相帮助; (2)认真研究发现问题并及时记录; (3)注意研究,结束或暂时停止时,要把电路断开。 学生选择材料实验。(教师参与小组活动并适时指导,注意普遍性) 六、汇报交流 1、小组代表上台汇报。(实物展示记录结果) 2、教师根据汇报相机板书。并总结出影响电磁铁磁力大小的原因。 七、拓展延伸 由于课堂时间有限,还有许多因素没有去研究,课后运用我们今天的探究方法,进一步研究我们所提出的其它的问题以及电磁铁的有关知识。

电磁铁设计

电磁铁设计

直流电磁铁设计

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kφ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

初中物理电磁铁教案

电磁铁教案 【教学目标】 1.知识与技能 ●了解什么是电磁铁。知道电磁铁的特征和工作原理。 ●了解影响电磁铁磁性强弱的因素。 2.过程与方法 ●经历探究电磁铁的过程,体会控制变量的方法。 ●体会交流和评估在科学探究中的重要作用。 3.情感态度与价值观 ●体验探索科学的乐趣,培养主动与他人交流合作的精神。 ●认识物理在生活、生产、科学技术的广泛应用,激发学习物理的积极 性。 【教学重难点】 重点:培养学生设计实验,交流评估的能力。 难点:培养学生科学设计实验方案,大胆交流评估的能力。 【教学方法】 探究、实验、讨论法 【教学器材】 投影仪、PowerPoint课件、实物展台、电脑演示实验仪器电源 (6V),开关,滑动变阻器(20Ω 2A),电流表,一盒大头针,两个线圈匝数相同、铁芯粗细不同的电磁铁,导线,匝数可变的电磁铁。分组实验仪器电源(6V),开关,滑动变阻器(20Ω 2A),电流表,一盒大头针,导线8根,

课前发给每组学生:4寸大铁钉两个, 5mm漆包线1.5m一根,0.75m 一根。 教学流程图 教学程序内容与教师活动学生活动设计依据 一、引入新课(2分钟) 分别在竹筷和铁钉上紧密绕上电线或漆包线,用它们分别吸引大头针师:上节课,老师布置各组同学分别制作两个线圈匝数不同的电磁铁,都做好了吗?老师检查一下。(鼓励表扬做得好的) 师:谁能说说你是怎样制作的? 师:你知道电磁铁是由哪两部分构成的吗?(板书:1.构成:线圈+铁芯)师:线圈插入铁芯后磁性大大增强,这节课我们就通过实验来研究电磁铁。 二、进入新课,科学探究 (3分钟)师:现在就请同学们试着把其中一个电磁铁连入电路,看你制作的电磁铁能不能吸引大头针,能吸多少。同组同学可以先讨论如何连,再动手操作。(师巡回,对确实有困难的指点,强调连接电路开关要断开。) 师:哪组做完了,请告诉老师你们组吸引大头针的个数,并说明用的是线圈匝数多的还是线圈匝数少的。(记录三组数据在黑板上) 师:同学们都做完了吗?请断开开关。你们制作的电磁铁都能吸引大头针吗?在实验中你们有没有发现什么问题?(提示学生回答并板书:2. 特性:磁性有无通断电) 师:吸引大头针数量不同表明什么?

电磁铁的结构及工作原理

电磁铁的结构及工作原理 1.电磁铁的工作原理与典型结构 电磁铁的结构形式很多,如图所示。 按磁路系统形式可分为拍合式、盘式、E形和螺管式。按衔铁运动方式可分为转动式如图(a)所示和直动式如图(b)、(c)、(d)所示。 电磁铁的基本工作原理: 当线圈通电后,铁心和衔铁被磁化,成为极性相反的两块磁铁,它们之间产生电磁吸力。当吸力大于弹簧的反作用力时,衔铁开始向着铁心方向运动。当线圈中的电流小于某一定值或中断供电时,电磁吸力小于弹簧的反作用力,衔铁将在反作用力的作用下返回原来的释放位置。 电磁铁是利用载流铁心线圈产生的电磁吸力来操纵机械装置,以完成预期动作的一种电器。它是将电能转换为机械能的一种电磁元件。 电磁铁主要由线圈、铁心及衔铁三部分组成,铁心和衔铁一般用软磁材料制成。铁心一般是静止的,线圈总是装在铁心上。开关电器的电磁铁的衔铁上还装有弹簧,如图所示。

2.电磁铁的分类 按其线圈电流的性质可分为直流电磁铁和交流电磁铁;按用途不同可分为牵引电磁铁、制动电磁铁、起重电磁铁及其他类型的专用电磁铁。 牵引电磁铁主要用于自动控制设备中,用来牵引或推斥机械装置,以达到自控或遥控的目的;制动电磁铁是用来操纵制动器,以完成制动任务的电磁铁;起重电磁铁是用于起重、搬运铁磁性重物的电磁铁。 3.电磁铁根据所用电源的不同,有以下三种: ①交流电磁铁。阀用交流电磁铁的使用电压一般为交流220V,电气线路配置简单。交流电磁铁启动力较大,换向时间短。但换向冲击大,工作时温升高(外壳设有散热筋);当阀芯卡住时,电磁铁因电流过大易烧坏,可靠性较差,所以切换频率不许超过30次/min,寿命较短。 ②直流电磁铁。直流电磁铁一般使用24V直流电压,因此需要专用直流电源。其优点是不会因铁芯卡住而烧坏(其圆筒形外壳上没有散热筋),体积小,工作可靠,允许切换频率为120次/min,换向冲击小,使用寿命较长。但启动力比交流电磁铁小。 ③本整型电磁铁。本整型指交流本机整流型。这种电磁铁本身带有半波整流器,可以在直接使用交流电源的同时,具有直流电磁铁的结构和特性。 1、首先是电源设计,即线圈两端的电压。建议使用直流电源,因为直流电流可 以保证次吸力稳定,没有交变。介于你设计的磁吸力小,可选用5-12V直流电源(电压越大,反应速度越快)。 2、绕线组材料的选取,如果设计要求绕线组质量轻,则可选择漆包铝线。一 般情况下,选择漆包铜线,因为铜的电阻率低。 3、考虑绕线组的发热,绕线组是有电阻的,其发热功率P=U*U/R(U为电源 电压)。 4、选用横截面积合适的导线作为绕线组。 5、磁吸力F∝磁感应强度B,而B∝I*N(电流与匝数的乘积),而I=U/R,

电磁铁公开课教案

电磁铁 教学目标: 过程与方法 ●能够根据所给的材料制作一个电磁铁; ●能够做电磁铁的磁力大小跟哪些因素有关的实验; ●能够对电磁铁的两极变化进行探究。 知识与技能 ●知道什么是电磁铁; ●知道电磁铁的磁力大小与电池的电量、导线缠绕的圈数有关; 情感、态度与价值观 ●积极主动地研究电磁铁,体会探究的乐趣; ●乐于合作与交流。 教师准备:导线、铁钉(用火烧过的)、回形针、指南针、电视资料 学生准备:电池 教学过程设计 一、制作电磁铁4+6 (出示一包木屑与回形针的混合物) 1.导入:今天老师不小心把一些回形针掉到了一包木屑里,同学们有什么办法能快速的分开它们? 学生可能提出用磁铁把大头针吸上来。 (注:用水分,用火分,用筛子分,用磁铁分等) (评:你真聪明。你能会动脑筋。你的这个方法很棒。) 2.同学们的方法很好。(鼓励)还有没有其他的方法?老师还有一种办法。睁大你的眼睛。演示(像魔术师一样): (将一个电磁铁放在盒子中,启动电磁铁,吸引回形针) 刚才我们看到的这个魔术其实就是我们今天要学习的电磁铁。(板书) 同学们看一看,这个装置有那几个部分组成的呢?(观察) 1、导线 2、铁芯 3、电池 4、开关(板书)(交流) 电磁铁在什么状况下会产生磁性呢?(讨论1分钟) 3、学生交流 你想不想也拥有这样神奇的电磁铁呢?你知道怎么做的吗?各组讨论一下交流各组的意见教师小结:出示示意图讲解 【1、指导电池放置的位置】 【2、指导线圈绕的方式。(同一方向和整齐)】 【3、电路的连接方法。(电池→开关→缠绕导线的铁芯)】 【4、让我们填写好我们的实验报告单,注意在本小组中分配好工作,还要注意报告单上面有五角星的操作步骤。】 4.学生尝试制作并验证电磁铁吸铁。请同学记得自己绕了多少圈?(为了提高效果,最好不要少于40圈)吸引了几个回形针. 学生实验报告单(一) 4、学生报告自己的实验报告,教师询问多个小组(4组) (板书学生绕制的圈数和吸引回形针的数量。) 二、研究电磁铁的磁力大小跟哪些因素有关6+15

传感器技术详细讲解样本

传感器技术

模块一传感器(Sensor) 知识要求: 1、传感器组成及工作原理; 2、分类、输出特性、和负载的连接。 技能要求: 1、掌握光电、电感、电容和磁场式传感器的正确使用; 2、掌握传感器的串联、并联回路控制负载。 1.1 传感器基本知识 1.1.1 定义 传感器是自动检测装置中直接感受被测量, 并将它转换成可用信号输出的器件。 ①自动检测在自动化装置构成的系统中是必不可少的。 ②直接感受被测量, 表明传感器和被测量之间没有其它感受器件。 ③实际的被测量中多数是非电量, 当然也可能是电量。 ④输出的可用信号, 是与被测量有确定对应关系的电量, 一般为电压、电流。1.1.2 组成 辅助电源 图1.1传感器组成 ①敏感元件是传感器中直接感受被测量并输出与被测量成确定关系的其它量的元件。其作用是检测感应被测物体信息。 ②转换元件是只感受由敏感元件输出的与被测量成确定关系的其它量并将其转换成电量输出的元件。其作用是把被测物体信息转换为可用输出信号( 电量) 。 ③辅助元件: 辅助电源, 固定、支撑件等。

1.1.3 应用 代替人的五种感觉( 视、 听、 嗅、 味、 触) 器官。 1.1.4 分类 按输出信号的性质分: 数字量传感器、 模拟量传感器。 1.1.5 数字量传感器输出特性 ( 1) NPN 型: 传感器的转换元件的输出管为NPN 型。 ①传感器的负载( 灯) 接在传感器电源正极( +DC24V) 和传感器输出信号端之间; ②未感应时传感器输出管截止, 输出端输出逻辑电平”1”( +DC24V) , 负载不工作; ③有感应时传感器输出管导通, 输出端输出逻辑电平”0”( 0V) , 负载得电工作。 ( 2) PNP 型: 传感器的转换元件的输出管为PNP 型。 ①传感器的负载( 灯) 接在传感器输出信号端和传感器电源负极( 0V) 之间; ②未感应时传感器输出管截止, 输出端输出逻辑电平”0”( 0V) , 负载不工作; ③有感应时传感器输出管导通, 输出端输出逻辑电平”1”( +DC24V) , 负载 得电工作。 蓝 黑红 蓝黑红负载 接近开关电路接 近 开 关 电 路负载()输出特性为型()输出特性为型 图1.2 以电感式接近开关为例的传感器输出特性 1.2 光电式传感器

电磁铁设计

直流电磁铁设计 共 26 页 编写: 校对: 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B=S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H=L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ=H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr = μμ 5、 磁通Φ=M R NI

磁阻R M =s l 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B=qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 8、磁效率 当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行磁化,达到期初始工作点2。当磁力克服反力使气隙减小直至为零时,工作点由2~3。断电后工作点由3~0。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。 我们的目的是使 Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 K 1=0A A A :输出的有效功

电磁铁参数计算方式

电磁铁参数计算方式 (2012-02-17 11:00:53) 标签: 文化 为确保您所使用的螺线管式电磁铁(包括我们通常所说的各式旋转电磁铁、推拉式电磁铁、直动式电磁铁、圆管式电磁铁等能可靠的工作和达到应有的寿命,我们在选用各种螺线管式电磁铁时,应注意以下几个方面: 1、螺线管式电磁铁都是以直流电工作的,因此当工作电源为交流电时,请使用全波整流方式将交流电转换为直流电; 2、通电率(或通电持续率),是用线圈通电时间和断开时间的比率来表示: 除通电率之外,有时还注出了每一次的最长通电时间的规定,这都是为防止线圈温度过度上升,从而导致螺线管电磁铁动作失误或寿命的减短,因此务必请在低于规定的数值下使用。 3、线圈中通过的电流值和线圈的圈数的乘积算做安培匝数。各种螺线管式电磁铁的线圈数据中对应每个通电率周期都提供有参数值,螺线管式电磁铁的机械输出力的大小与其安培匝数成正比。 4、随着线圈温度的变化会引起螺线管电磁铁总体性能的变化。当线圈接通电源施加上电压后,线圈的温度会逐渐上升,线圈的电阻也就随之增加,通过线圈的电流会降低,从而,造成安培匝数的减少,螺线管电磁铁的机械输出功率也就变小。一般产品样本或目录上所列的线圈数据和特性数据,均以环境温度20℃时为依据,线圈温度和线圈电阻,安培匝数之间的关系如表1所示。 线圈温度(℃)-40 -20 0 20 40 60 80 100 120 电阻系数0.764 0.843 0.921 1 1.079 1.157 1.236 1.314 1.393 安培匝数比 1.309 1.186 1.086 1 0.927 0.864 0.809 0.761 0.718 线圈温升是按电器温升检 测试验标准检测并以下式计算 确定式中: 100% 50% 25% 10%

电磁铁设计

精心整理 直流电磁铁设计 共26页 编写: 1234、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10 -7 享/米相对磁导率μr = μμ 5、 磁通Φ= M R NI

磁阻R M = s l 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7 8(2)9、机械效率 K 1= 0A A A :输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数

G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。 11 K Q 12 一部分用来建立磁场,当电流达到稳定值后,磁场的能量不再增加,电磁铁从电源吸收的能量全部消耗于线圈子的发热上,磁场的能量用来产生吸力和作功。 13、工作制 (1)热平衡公式 热平衡公式:Pdt=CGdτ+μsτdt

式中:Pdt供给以热体的功率和时间 CGdτ-提高电磁铁本身温度的热量。C-发热体比热 G-发热体质量dτ-在dt时间内电磁铁较以前升高的温度。 μsτdt-发散到周围介质中的热量。μ-散热系数。S-散热面积。τ-电磁铁超过周围介质的温度。 (2 升。 (3 度达不到温升τy。工作停止后,产品的温度又降到周围介质温度。短期工作制CGdτ(产品本身热容)是主要的方面。 短期工作制电流密度按13~30A/mm2。 重复短期工作制:产品工作和停止交替进行,工作时产品温度达不到温升τy,停止时产品降不到周围介质温度。

电磁铁完整教案

电磁铁教学设计 桑枣一小:周健教学目标: 科学概念:电磁铁具有接通电流产生磁性、断开电流磁性消失的基本性质。改变电池正负极接法或改变线圈绕线的方向,会改变电磁铁的南北极。 过程与方法:制作铁钉电磁铁,做研究电磁铁的南北极的实验。 情感、态度、价值观:养成认真细致、合作进行探究的品质。 教学重点:发现电磁铁的基本性质,发现电磁铁具有南北极并可改变的特点。 教学难点:探究电磁铁南北极发生变化与哪些因素有关。 教学准备:师生每人准备:有绝缘皮的导线两根、橡皮筋四根、大头针若干、1号电池1节、铁钉2枚、小磁针1个。 教学过程: 一、活动导入 通过转移大头针的活动导入新课揭示课题。 二.制作铁钉电磁铁并探究其基本性质。 1、在铁钉上绕线圈制作电磁铁。 2、测试电磁铁填写实验报告单一。 3、汇报看到的实验现象,并作出合理的解释。 三.电磁铁南北极的研究。 1、猜一猜:电磁铁有南北极吗?

2、交流验证方案,确定测试电磁铁南北极的方法。 3、学生动手操作,借助小磁针开展研究,并填写实验报告单二。 4、小组汇报本组电磁铁南北极情况。 5、观察各组的数据,发现了什么?(南北极有不一样的情况) 6、猜测:可能是什么因素影响了电磁铁的南北极呢? ①与电池的正负极接法有关;②与线圈绕线方向有关 7、这些都只是我们的猜测,但真的有关系吗?我们还需要用实验来证明。(关注点:每次只改变一个因素;多次实验,及时记录。) 8、学生分组研究并记录,完成实验报告单三,教师巡视。 9、交流研究现象和结果。 小结并板书:改变电池的正负极接入方向,改变线圈缠绕的方向,会改变电磁铁的南北极。 四.回顾知识,总结。 1、比较磁铁和电磁铁有哪些不同的地方。 2、电磁铁南北极可以改变那你们觉得电磁铁的磁力能不能改变呢?板书设计 电磁铁 通电产生磁性 断电磁性消失 改变电池的正负极接入方向 改变线圈缠绕的方向 电磁铁的基本性质 改变电磁铁的南北极

六年级科学上册 电磁铁的磁力(一)教

电磁铁的磁力 (一) 【教学目标】 科学概念: 1.电磁铁的磁力是可以改变的。 2.电磁铁的磁力大小与线圈的圈数有关: 圈数少磁力小,圈数多磁力大。 过程与方法: 1.有一定根据地进行假设,找出认为可能影响电磁铁磁力的因素。 2.在教师的指导下,会识别变量设计对比实验,会控制变量检验线圈圈数对磁力大小的影响。 3.能对本小组实验方案作介绍说明,体会到交流与讨论能引发新的想法。 情感、态度、价值观: 1.能够大胆想象,又有根据地假设。 2.能够以严谨的科学态度作检验假设的实验。 【教学准备】 1.学生自备: 一号电池、大头针 2.教师准备: 电池盒、大铁钉、长绝缘导线 【教学设计】

一、导入 1.(直到学生看P52图片)这是一个用在废铁处理厂的电磁起重机,它利用电磁铁的原理制造而成,一次可以吸起数吨重的废铁!你们知道磁力这么大的电磁铁是怎么做成的吗? 2.今天我们就一起来研究: 电磁铁的磁力(板书课题) 二、作出我们的假设 1.上节课我们制作过电磁铁,谁来说一说: 电磁铁的磁性是用哪些材料做成的?它的磁性又是怎样产生的? 2.如果要使电磁体的磁性得到加强,我们大胆的假设一下应该怎么做? 3.学生小组内交流,教师巡视,强调假设时要说明自己的理由,尽量避免无端的猜测。指导填写P52表格。 4.全班交流,教师简要板书。 用心爱心专心 1三、"设计实验,检验假设 1.我们的这些假设可以被证明吗?应该怎么做实验证明? 2.以研究线圈圈数多少对电磁铁磁力大小的影响为例,说明:这是一个典型的对比实验,要想知道电磁铁的线圈增多时,磁力是会加大还是减小,我们要使哪些因素保持不变呢?在这个实验中我们要改变哪些因素,才能知道线圈的圈数会对磁性造成影响呢? 3.看书P53表格,小组讨论并填写表格。教师巡视。 4.全班交流小组填写的研究计划。 5.根据计划,各小组开始实验。 6.学生实验,教师巡视指导填写实验记录表。用心爱心专心2

电器学电磁铁设计.

目录 引言 (1) 1 概述 (2) 1.1 基本公式及概念 (2) 1.2 一个简单电磁铁产品的结构图 (6) 1.3 电磁铁的结构形式 (7) 2直流电磁铁的设计要求 (9) 3 直流电磁铁的设计与计算 (10) 3.1 电磁铁设计点的选择 (10) 3.2选择电磁铁的结构形式 (11) 3.2.1用结构因数选择电磁铁的结构形式 (11) 3.3 直流电磁铁的初步设计 (12) 3.3.1 决定铁心半径和极靴半径 (12) 3.3.2 计算线圈磁通势 (13) 3.3.3 计算线圈高度及厚度 (14) 3.3.4计算线圈导线直径及匝数 (16) 3.4 计算极靴、衔铁和铁轭的尺寸 (16) 3.5 电磁铁草图 (18) 4 电磁铁性能验算 (19) 5结论 (22) 心得体会 (23) 参考文献 (24)

引言 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 电磁铁是通电产生电磁的一种装置。在铁芯的外部缠绕与其功率相匹配的导电绕组,这种通有电流的线圈像磁铁一样具有磁性,它也叫做电磁铁。我们通常把它制成条形或蹄形状,以使铁芯更加容易磁化。另外,为了使电磁铁断电立即消磁,我们往往采用消磁较快的的软铁或硅钢材料来制做。这样的电磁铁在通电时有磁性,断电后磁就随之消失。电磁铁在我们的日常生活中有着极其广泛的应用,由于它的发明也使发电机的功率得到了很大的提高。

小学科学《电磁铁》教学设计(创新性成果)

小学科学《电磁铁》教学设计(创新性成果) 内容分析 电磁铁是利用电流的磁效应使铁芯磁化产生磁力的装置。电磁铁是电生磁现象的最直接应用,电磁铁也广泛应用在各种用电器中,电磁铁结构简单、制作容易,呈现的现象有趣,探究电磁铁的性质是一个对学生进行科学启蒙,培养科学兴趣的良好契机。 教学目标 1.科学概念 电磁铁具有接通电流产生磁性、断开电流磁性消失的基本性质。 改变电池正负极接法或改变线圈绕线的方向,会改变电磁铁的南北极。 2.过程与方法 知道电磁铁的基本性质,能够根据所给材料制作一个电磁铁。 能够做电磁铁的磁力大小跟哪些因素有关的实验。 能选择适当方式表达对电磁铁磁力大小的研究结果。 3.情感、态度、价值观 了解电磁铁的应用,能主动对电磁铁现象进行研究,体会探究乐趣。 养成认真细致、合作进行探究的品质。 教学重点、难点 重点:发现电磁铁的基本性质,发现电磁铁具有南北极并可改变的特点。 教学难点:制作电磁铁,探究影响电磁铁磁力大小的因素。 教师准备:电池、铁钉、带绝缘皮的导线、大头针。 教学方法:观察、实验、分析、归纳、概括 教学过程: 导入新课: 一.自行发现问题: 1.出示课题(板书电磁铁) 2.提问: 师:通过上节课的学习,我们认识了磁铁,知道了磁铁很神奇,具有磁性,能吸起铁质物体,如:大头针、小铁钉,订书针等。(教师演示吸起订书针的情景) 师:(老师出示一根铁钉)你们看老师今天带来了一根铁钉,它能吸起这些大头针吗? 生1:不能 师:为什么? 生:铁钉就是铁钉啊 师:光凭嘴说可不行,还是让我们来试试。(实验)哎呀,真的吸不起来,铁钉就是铁钉没有磁性,当然不能吸起铁性物质。 生2:能 师:你来,请你上来帮我用这根铁钉把这些大头针吸起来。 生2:实验 师:吸得起来吗? 生2:吸不起来 (后面同生1师生问答) 师:不过有一种力量很神奇,那就是科学!它能让这些铁钉带上磁性吸起大头针,你们相信吗?

电磁铁设计

直流电磁铁设计 共26页 编写: 校对: 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10 -7 享/米相对磁导率μr = μμ 5、 磁通Φ= M R NI

磁阻R M = s l 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 8、磁效率 当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行磁化,达到期初始工作点2。当磁力克服反力使气隙减小直至为零时,工作点由2~3。断电后工作点由3~0。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。 我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 K 1= A A A :输出的有效功

教科版六年级科学上册《电磁铁》教案

第2课电磁铁 【教学目标】 科学概念: 电磁铁具有接通电流产生磁性、断开电流磁性消失的基本性质。 改变通过电磁铁中的电流方向(电池的正负极连接和线圈绕线方向)会改变电磁铁的南北极。 过程与方法: 制作铁钉电磁铁。 做研究电磁铁的南北极的实验。 情感、态度、价值观: 养成认真细致、合作进行研究的品质。 【教学重、难点】 【教学准备】 1.学生自备:大头针、透明胶 2.教师准备:绝缘导线、大铁钉、砂纸、指南针 【教学设计】 (一)导入 通过上节课的研究,我们知道了“电能够产生磁”。那么我们如果把导线绕在一枚大铁钉上,铁钉又会出现什么变化呢?(板书课题:电磁铁) (二)制作铁钉电磁铁 1.阅读P50制作铁钉电磁铁的部分,按照书上的方法制作铁钉电磁铁。 (1)朝着同一个方向绕导线。

(2)要将绕在铁钉上的线圈2头固定好。 (3)制作完成后,要通电试一试是否制作成功。 2.学生活动,教师巡视指导。 3.电磁铁做好了没有?怎么知道自己制作的电磁铁是否具有磁性?(注意学生对实验过程和现象的描述,指导正确的实验方法。) 4.电磁铁做好以后,在不通电的情况下具有磁性吗?为什么?(介绍磁化现象) (三)铁钉电磁铁的南北极 1.你们发现电磁铁的磁性哪里比较强?哪里比较弱?怎么知道的? 2.组织学生讨论:对于普通的磁铁来说,磁性强的地方是磁极。电磁铁有磁极吗?我们可以验证电磁铁是否有磁极吗?怎么做? 3.学生汇报,教师小结实验方法。 4.学生实验,教师巡视指导。 5.汇报实验发现:电磁铁是否有磁极?南北极各在那一端? 6.各小组电磁铁的磁极位置一样吗?为什么? (1)比较磁极位置不一样的小组的电磁铁(注意电池的接法要与汇报前一致),找出2者之间的差别。 (2)讨论:电磁铁的南北极与什么因素有关? (3)交流发现。

《电磁铁 电磁继电器》教学设计

《电磁铁电磁继电器》教学设计

新课讲授板书 二、电磁铁的磁性 教师总结 猜想:磁性强弱可能与电流的大 小、线圈的匝数和形状有关。 教师提问 那我们怎样来判断电磁铁的磁 性强弱呢? 引导学生设计实验,画出电路 图。 教师演示实验,引导学生分析总 结。 板书 结论:匝数一定时,通入的电流 越大,电磁铁的磁性越强。 板书 结论:电流一定时,外形相同的 螺线管匝数越多,电磁铁的磁性 越强。 学生思考回答 可以通过电磁铁吸引大头 针的个数判断。 学生根据控制变量法的思 想设计实验步骤,并画出 实验电路图。 学生观察实验,并总结。 学生观察实验,并总结。 培养学生知识迁移 能力。 培养学生应用控制 变量思想设计实验 的能力。 培养学生总结能力。 培养学生总结能力。

你还知道哪些电磁铁在生产生 活中的应用? 板书 三、电磁铁的应用 教师介绍磁浮列车。 由于磁极间的相互作用,磁浮列 车悬浮在空中,行走时不需接触 地面,只受来自空气的阻力。磁 浮列车的最高速度可达每小时 500 km以上。 其上所用的磁体大多是通有强 大电流的电磁铁。 2003年,上海浦东机场到市区的 磁浮铁路成为第一条正式投入 运营的磁浮铁路。 教师引导 在生活中我们经常看到一些大 型机器在工作,如大型吊车,它 们的电流可达几十、上百安,直 接来控制或操作是很危险的,那 怎么才能控制这些强大的电 流? 学生思考回答自己知道的 电磁铁的应用。 学生聆听。 学生聆听,思考。 物理就在我们身边, 激发学生学习物理 的兴趣。 渗透爱国主义教育, 激发学生探求欲望。 通过问题激发学生 学习兴趣。

板书 四、电磁继电器 电磁继电器就是利用电磁铁来 控制工作电路的一种开关。 教师根据电磁继电器原理图介 绍电磁继电器的构造和工作原 理。 板书 电磁继电器的工作原理 学生聆听,与教师一起分 析讨论。 培养学生的观察能 力和分析能力。 课堂 小结 本节课我们主要学习了什么是 电磁铁,电磁铁的磁性强弱与哪 些因素有关以及电磁铁的应用; 最后重点介绍了电磁继电器的 构造和工作原理。 聆听。回顾本节课主要内 容。 教师活动学生活动设计意图 反馈 练习 1.图中是一种水位自动报警器 原理图。试说明它的工作原理。

电磁铁技术协议样本

电磁铁技术协议甲方: 乙方: 一、电磁铁技术要求 所吸物料:废钢 温度:常温 二、高频椭圆形电磁铁及配套设备技术参数 1电磁铁 1)产品型号:QCMZ-22001600-75/4 2) 技术参数 3)图纸见附图一 2、电磁盘控制设备主要技术参数 1)、产品型号:GTBM-45E-C-J 2)、主要技术参数

3、配套卷筒主要技术参数 1)、产品型号:JZ2018-04-02/25225 2)、主要技术参数 三详细供货清单

四、设备主要技术要求 1、起重电磁铁 为了产品质量有可靠保证,在几道关键和特殊工序中进行了严格的试验: (1)焊接工序:在电磁铁总装过程中,焊接后严格进行气密性试验,用0.7Mpa以上压力试验,把肥皂水涂抹在所有焊缝上,无冒泡现象。 (2)绕制线圈工序:线圈绕制后,必须做匝间绝缘试验,对地耐压试验。 匝间绝缘试验:工频电压550V一分钟无短路和闪络现象 耐压试验:工频电压2500V一分钟无短路和闪络现象 2、电磁盘整流控制设备 整流方式为先经整流变压器降压,再经全控桥式整流的方式;电气元件均为市场上的一线品牌的标准件,不能含有非标准件。 3、电缆卷筒 以蜗卷弹簧为动力,利用弹簧的储能自动卷取电缆。电缆选用耐高温船用电缆。电缆能收放自如,工作可靠;采用集电滑环碳刷架结构可靠,承受电流不小于500A。 五、执行标准 起重电磁铁的执行标准为JB/ZQ6203-2004,电控设备执行标准为JB/DQ4509-89,电缆卷筒的执行标准为DB/4300 J802-88。所有产品从开发、设计、生产、安装到服务均严格按ISO9001国际质量体系标准运行。 六、合同设备的性能保证值和考核方法 6.1电磁铁

五年级上册科学《 电磁铁 》教案

5、电磁铁 教学目标 1、知道什么是电磁铁,能够做一个电磁铁并能发现电磁铁与永久磁铁的异同点。 2、能通过探究性实验,概括出电磁铁磁力大小与电池的数量,线圈的匝数有关。 3、能够设计实验,探究电磁铁的磁极变化规律。 4、知道电磁铁在生产生活中的应用。 教学重点:认识电磁铁的基本性质。 教学难点:探究影响电磁铁磁力大小和磁极变化的因素。 教学过程 一、导入新课 1、教师演示磁铁吸大头针的实验并提问:同学们,磁铁能够吸大头针,那么铁钉能吸铁吗? 学生作出预测。 2、教师谈话:刚才有的同学说铁钉能吸铁,有的同学说铁钉根本不能吸铁,那究竟铁钉能不能吸铁呢?下面我们来演示一下。 3、教师演示电磁铁装置,并做吸大头针的实验。 同学们看,铁钉能不能吸铁呢?是的,普通的铁钉是不能吸铁,但是通了电之后,它就不一样了,它就不再是普通的铁钉,而是一块电磁铁,它就具有了磁铁的性质,就能够吸大头针了。 二、制作电磁铁 1、指导学生制作电磁铁。 2、学生动手制作电磁铁,并用电磁铁做一些小的实验活动或游戏。 3、教师提问:你能比较磁铁和电磁铁的异同吗? 4、教师小结:电磁铁和磁铁的相同之处是都有南北极,都可以用来指示方

向,不同之处在于电磁铁的磁性、磁力大小和磁极的方向可以控制和改变,而磁铁却不可以。 三、电磁铁的两极 1、电磁铁既然跟磁铁有那么多相同的地方,那它和磁铁一样有两极吗?有南极和北极吗?如何分辨南极和北极呢? 2、学生分小组交流讨论,如何分辨电磁铁的两极两极? 3、全班交流讨论,选择比较恰当的方法验证、分辨电磁铁的两极。 4、学生动手操作实验, 四、研究电磁铁磁力大小。 1、出示两个电磁铁装置,一个电池多,线圈匝数多,一个线圈匝数少,电池也少,然后抽两组同学上台比赛,看看哪一组吸的大头针数量最多。 学生注意观看比赛,关注比赛的结果。 2、为什么会出现这样的结果呢?难道电磁铁也有磁力的大小吗?电磁铁磁力的大小与什么因素有关呢?下面我们就一起来研究电磁铁磁力的大小与什么因素有关?提出假设 3、学生小组内讨论电磁铁磁力的大小与什么因素有关,预设学生会认为可能与电磁铁包含的电池,线圈,铁芯等等有关。 4、引导学生大胆的假设,改变电磁铁的哪些因素可以增加电磁铁的磁力?教师引导学生从电池的节数和线圈的匝数两个方面作出猜想。 5、制定方案,以四人一小组为单位有计划的制定实验方案。学生可以参考课本43页的实验例子。 6、全班交流,教师出示一份学生制定的方案,引导学生共同实验,为学生自行设计其他实验做好铺垫。 7、分小组实验验证并交流。学生从提出的假设中选取自己喜欢的问题来探究实验。 8、教师巡视,了解学生实验情况,并适当的指导。全班交流实验结果,如

相关主题