搜档网
当前位置:搜档网 › 高三数学等比数列的概念通项公式

高三数学等比数列的概念通项公式

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

数列通项公式求法大全(配练习及答案)

数列通项公式的几种求法 注:一道题中往往会同时用到几种方法求解,要学会灵活运用。 一、公式法 二、累加法 三、累乘法 四、构造法 五、倒数法 六、递推公式为n S 与n a 的关系式(或()n n S f a = (七)、对数变换法 (当通项公式中含幂指数时适用) (八)、迭代法 (九)、数学归纳法 已知数列的类型 一、公式法 *11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 已知递推公式 二、累加法 )(1n f a a n n +=+ (1)()f n d = (2)()f n n = (3)()2n f n =

例 1 已知数列{} n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。(3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ (1)()f n d = (2)()f n n =, 1 n n +,2n 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 13211221 n n n n a a a a a a a a a ---?????L ,即得数列{}n a 的通项公式。 例4 (20XX 年全国I 第15题,原题是填空题) 已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。(! .2 n n a = ) 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 132122 n n n n a a a a a a a ---????L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。

数列.版块三.等比数列-等比数列的通项公式与求和.学生版

【例1】 在等比数列{}n a 中,22a =,5128a =,则它的公比q =_______,前n 项和n S =_______. 【例2】 等差数列{}n a 的前n 项和为n S ,且53655-=S S ,则4=a . 【例3】 设等比数列{}n a 的前n 项和为n S ,若 63 3S S =,则96=S S ( ) A .2 B . 7 3 C .83 D .3 【例4】 设{}n a 是公比为q 的等比数列,1>q ,令1(12)=+=L n n b a n , ,,若数列{}n b 有连续四项在集合{}5323193782--, ,,,中,则6=q . 【例5】 等比数列{}n a 的首项11a =-,前n 项和为n S ,公比1q ≠,若 105S S =31 32 ,则105a a 等于 . 【例6】 等比数列{}n a 中,1512a =,公比1 2 q =-,用n ∏表示它前n 项的积:12...n n a a a ∏=, 则1∏,2∏,…,n ∏中最大的是_______. 【例7】 已知数列{}n a 的前n 项和为n S ,1 (1)()3 N n n S a n *=-∈. ⑴求1a ,2a ,3a 的值; ⑵求n a 的通项公式及10S . 典例分析 等比数列的通项公式与求和

【例8】 在等比数列{}n a 中,12327a a a ??=,2430a a += 试求:⑴1a 和公比q ;⑵前6项的和6S . 【例9】 在等比数列{}n a 中,已知对任意正整数n ,有21n n S =-,则22212 n a a a +++=L ________. 【例10】 求和:2(1)(2)(),(0)n a a a n a -+-++-≠L . 【例11】 在等比数列{}n a 中,423a = ,35209a a +=.若数列{}n a 的公比大于1,且3log 2 n n a b =,求数列{}n b 的前n 项和n S . 【例12】 在各项均为正数的等比数列{}n b 中,若783b b ?=,则3132log log b b ++……314log b +等于( ) A .5 B .6 C .7 D .8 【例13】 等比数列}{n a 中,已知对任意自然数n ,=+?+++n a a a a 32121n -, 则222 12n a a a ++???+=( ) A .()221n - B .()1213n - C .41n - D .()1 413 n -

等比数列的通项公式(教案)

等比数列的通项公式(教案) 一、教学目标 1、掌握等比数列的通项公式,并能够用公式解决一些相关问题。 2、掌握由等比数列的通项公式推导出的相关结论。 二、教学重点、难点各种结论的推导、理解、应用。 三、教学过程 1、导入复习等比数列的定义: 通项公式: 用归纳猜测的方法得到,用累积法证明 2、新知探索例1 在等比数列中,(1)已知;(2)已知、,分析(1)根据等比数列的通项公式,得(2)可以根据等比数列的通项公式列出一个二元一次方程组解得所以问:上面的第(2)题中,可以不求而只需求得q就得到吗?分析在归纳猜测等比数列的通项公式时,有这样一系列式子:注意观察等式右边各项的下标与q的次方的和,可以发现,的表达式中,始终满足结论1 数列是等比数列,则有。再来看一下例1中(2)的另一种解法:,所以q=2,所以习题2、3(1) 2、在等比数列中,(1)已知;(2)已知、分析(1)可以根据定义和结论1给出两种解法。方法一方法二,所以q=3,所以。(2),所以例2 在243和3中间插入3个数,使这5个数

成等比数列。分析设此三个数为,公比为q,则由题意得243,,3成等比数列;,所以得故插入的三个数为81,27,9或-81,27,-9、问:观察一下例2中,当时,这5个数分别为243,-81,27,-9,3,可以发现什么规律?答:在等比数列中,当公比小于零时,数列中的奇数项同号,偶数项同号。习题2、3(1) 6、在等比数列中,,,求的值。分析得,同理得例3 已知等比数列的通项公式为,求首项和公比q、分析在例3中,等比数列的通项公式为,是一个常数与指数式的乘积,因为数列是特殊的函数,故表示这个数列的各点均在函数的图像上。问:如果一个数列的通项公式为,其中,都是不为零的常数,那么这个数列一定是等比数列吗?分析,,所以是等比数列。一般可以看作是等比数列通项公式的变形,,其中结论2 等比数列的通项公式均可写成(,为不等于零的常数)的形式。反之成立。习题2、3(1) 5、在等比数列中,(1)是否成立?是否成立?(2) (n>2)是否成立?(3)你能得到更一般的结论吗?分析 (1),所以成立。(2),所以成立。(3)从(1)(2)可以看出,等式两边各项的下表和相等,左边是同一项的平方,如果把左边换成两个不同项的乘积呢?同时,类比等差数列中的一个结论:在等差数列中,当m+n=p+q(m,n,p,q都是正整数)时,有,可以猜测:在等比数列中,当m+n=p+q(m,n,p,q都是正整数)时,有、证,所以、结论3 在等比数列中,当m+n=p+q(m,n,p,q都是

求通项公式的几种方法与总结

睿博教育学科教师讲义讲义编号: LH-rbjy0002 副校长/组长签字:签字日期:

问题转化为求数列{c n }的前2010项和的平均数. 所以12010∑=+20101 i i i )b (a =12010×2010×?3+4021? 2=2012. ? 探究点四 数列的特殊求和方法 数列的特殊求和方法中以错位相减法较为难掌握,其中通项公式{a n b n }的特征为{a n }是等差数列,{b n }是等比数列. 例4 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列. (1)求数列{a n }的通项公式; (2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 【解答】 (1)设{a n }公比为q ,由题意得q >0, 且?? ? a 2=2a 1+3,3a 2+5a 3=2a 4, 即??? a 1?q -2?=3,2q 2 -5q -3=0, 解得?? ? a 1=3,q =3 或? ?? ?? a 1 =-6 5,q =-12(舍去), 所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *. (2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+3·34+…+n ·3n +1.② ②-①得,2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1, =-3?1-3n ?1-3+n ·3n +1=32 (1-3n )+n ·3n +1 =32+? ? ???n -123n +1. 所以数列{a n b n }的前n 项和为S n =34+2n -14 3n +1 .

等比数列通项公式及性质练习

等比数列通项公式及性 质练习 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

等比数列通项公式及性质 1.若等比数列的首项为98,公比为23,3 1 n a ,则该数列的项数为( ) A .3 B .4 C .5 D .6 2.在等比数列{a n }中,a 2 010=8a 2 007,则公比q 的值为( ) A .2 B .3 C .4 D .8 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128 D .243 4.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1等于( ) D .2 5.已知等比数列{a n },a 4=7,a 6=21,则a 8等于( ) A .35 B .63 C .21 3 D .±21 3 6.在等比数列{a n }中,a 1=1,公比|q |≠1,若a m =a 1a 2a 3a 4a 5,则m =( ) A .9 B .10 C .11 D .12 7.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6 D .4 2 8.等比数列{a n }的各项均为正数,公比为q ,若q 2=4,则a 3+a 4a 4+a 5 的值为( ) B .±12 C .2 D .±2 9.(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7 10.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于 ( ) A .2 B .4 C .8 D .16

一、求数列通项公式的三种常用方法

一、求数列通项公式的三种常用方法 2; 3.n n S a ?? ??? 1、利用与的关系;、累加(乘)法、构造法(或配凑法、待定系数法) 1、利用n n S a 与的关系求通项公式: 1-11-1=1; =-.-n n n n n S a S S S S S ?? ≥? , 当n 时利用 ,当n 2时注意:当也适合时,则无需分段(合二为一)。 例1、设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,11a b =且2211().b a a b -= (Ⅰ)求数列}{n a 和}{n b 的通项公式; 解:(1),24)1(22,22 21-=--=-=≥-n n n S S a n n n n 时当 当;2,111===S a n 时也满足上式。 故{a n }的通项公式为42,n a n =- 设{b n }的公比为q , 111 , 4, .4 b qd b d q ==∴=则 故1 111 122,44n n n n b b q ---==? = 12 {}.4 n n n b b -=即的通项公式为 例2、数列}{n a 的前n 项和为S n ,且111,3, 1,2,3,n n a S a n +===,求: (1)2a 的值。(2)数列}{n a 的通项公式; 解:(1)由得,,3,2,1,31,111 == =+n S a a n n .3 1 3131112===a S a

1112342222 11 ()(2), 33 44 ,(2),...33114,()(2). 333 1, 1,,{}14(), 2.33 n n n n n n n n n n n n a a S S a n a a n a a a a q a a n n a a n +-+---=-=≥=≥===≥=?? =?≥??(2)由得即,,,是以为首项,为公比的等比数列 又所以所以数列的通项公式为 例3 已知函数 f (x ) = a x 2 + bx -23 的图象关于直线x =-3 2 对称, 且过定点(1,0);对于正数 列{a n },若其前n 项和S n 满足S n = f (a n ) (n ∈ N *) (Ⅰ)求a , b 的值; (Ⅱ)求数列{a n } 的通项公式; (Ⅰ)∵函数 f (x ) 的图象关于关于直线x =-3 2 对称, ∴a ≠0,-b 2a =-3 2 , ∴ b =3a ① ∵其图象过点(1,0),则a +b -2 3 =0 ② 由①②得a = 16 , b = 1 2 . 4分 (Ⅱ)由(Ⅰ)得2112()623f x x x =+- ,∴()n n S f a ==2112 623n n a a +- 当n ≥2时,1n S -=211112 623n n a a --+- . 两式相减得 2211111 ()622 n n n n n a a a a a --=-+- ∴221111 ()()062 n n n n a a a a ----+= ,∴11()(3)0n n n n a a a a --+--= 0,n a >∴13n n a a --=,∴{}n a 是公差为3的等差数列,且 22111111112 340623 a s a a a a ==+-∴--= ∴a 1 = 4 (a 1 =-1舍去)∴a n =3n+1 9分 2、累加(乘)法: 11-111 12-1. 2 3+2. 3 2-1.1 4 . (n+1) n n n n n n n n n a a n a a n a a a a n ++++=+=+=+=+例如:、 、、、

等比数列概念优秀教案

等比数列的概念教案 教学目标 1.理解等比数列的定义,并能以方程思想作指导,理解和运用它的通项公式. 2.逐步体会类比、归纳的思想,进一步培养学生概括、抽象思维等能力. 3.培养学生严密的思维习惯,促进个性品质的良好发展. 教学重点和难点 重点:等比数列要领的形成及通项公式的应用. 难点:对要领的深刻理解. 教学过程设计 (一)引入新课 师:前面我们已经研究了一类特殊的数列──等差数列,今天我们一起研究第二类新的数列──等比数列. (板书)三等比数列 (二)讲解新课 师:等比数列与等差数列在名字上非常类似,只有一字之差,一个是差,一个是比,你能否仿照等差数列,举列说明你对等比数列的理解. (要求学生能主动的用类比思想,通过具体例子说明对概念的理解) 生:数列1,3,9,27,… 师:你为什么认为它是等比数列呢? 生:因为这个数列相邻两项的比都是相等的,所以是等比数列. (先引导学生用自己的语言描述等比数列的特征,但暂时不作评论,以防限制其他学生的思维) 师:这是你对等比数列的理解,不过这个例子中的项是一项比一项大,能否再举一个一项比一项小的.

师:你对等比数列的理解呢? 生:数列中每一项与前一项的比都是同一个常数. 师:他们对等比数列理解基本相同的,能否再换个样子,举一个例子. (若理解没有什么变化,就不必让学生再重复了) 师:下面再举例子又增加点要求,既然要去研究它,说明它一定有实际应用价值,那么能否再举一个生活中的等比数列例子. 生:如生物学中细胞分裂问题:1个细胞经过一次分裂变为2个细胞,这两个细胞再继续分裂成为4个细胞.这样分裂继续下去,细胞个数从1到2到4到8,把每次分裂后所得细胞个数排列好可形成一个数列1,2,4,8,16,…这个数列就是等比数列. 师:这个例子举得很好,不仅能够发现生活中的数学问题,还能把数学知识应用在其它学科,其实等比数列的应用是非常广泛的,说明它确有很高的研究价值. 说了这么多,也发现了等比数列的特征,能否试着给等比数列下个定义呢? 生:如果一个数列的每一项与前一项的比都等于一个常数,那么这个数列就叫做等比数列. 师:作为定义这种叙述还有一点不足,为保证这样比都作得出来,这每一项应从数列的第二项起,否则第一项没有前一项,也就做不出这个比,调整之后,再找一位同学准确描述一下等比数列. 生:如果一个数列,从第二项起.每一项与前一项的比都等于一个常数,那么这个数列叫做等比数列. 师:好,就把它作为等比数列的定义记录下来. (板书)1.定义如果一个数列,从第二项起,每一项与前一项的比都是同一个常数,那么这个数列叫做等比数列,这个常数叫做公比,记作q.

等比数列的通项公式基础测试

一、选择题: 1.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 () A .4 B . 2 3 C . 9 16 D .2 2.已知等比数列{}n a 中,公比2q =,且30123302a a a a ????=L ,那么36930a a a a ????L 等于 A .102 B .202 C .162 D .152 二、填空题: 3.等比数列{an}中,a 1=2,a 9=32,则q=. 4.已知一个等比数列的第5项是 94,公比是-31 ,它的第1项是. 5.在等比数列{a n }中,已知a 1=2 3 ,a 4=12,则q =_________,a n =______. 6.在81和3中间插入2个数和,使这4个数成等比数列. 7.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =____. 8.在等比数列{}n a 中,3620,160a a ==,则n a =. 9.等比数列中,首项为98,末项为13,公比为23 ,则项数n 等于. 10.在等比数列中,n a >0,且21n n n a a a ++=+,则该数列的公比q 等于. 11.等比数列{}n a 中,已知12324a a +=,3436a a +=,则56a a += 12.数列{a n }中,a 1,a 2-a 1,a 3-a 2,…,a n -a n -1…是首项为1、公比为3 1 的等比数列,则a n 等于。 三、解答题: 13.在等比数列{a n }中, (1)已知{}n a 是递增的等比数列,,4,2342=-=a a a 则{}n a 的公比q ,及通项公式n a (2)已知n a a a a a n 求,2 1 ,18,367463= =+=+ 14.已知数列满足a 1=1,a n +1=2a n +1(n ∈N*) (1) 求证数列{a n +1}是等比数列; (2) 求{a n }的通项公式. 15.一个等比数列{}n a 中,701333241=+=+a a a a ,,求这个数列的通项公式。 一、选择题 1.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于()

求数列通项公式的种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细) 总述:一.利用递推关系式求数列通项的7种方法: 累加法、 累乘法、 待定系数法、 倒数变换法、 由和求通项 定义法 (根据各班情况适当讲) 二。基本数列:等差数列、等比数列。等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一。 例1已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 例2已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211122112211()()()()(231)(231)(231)(231)3 2(3333)(1)3 3(13)2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以13n +,得 11 121 3333 n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+ ,故 因此11 (13)2(1)211 3133133223 n n n n n a n n ---=++=+--?, 则21133.322 n n n a n =??+?- 练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12 +-n n 练习2.已知数列}{n a 满足31=a ,) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 12- = 评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .

等比数列的通项公式

等比数列的通项公式 例1 已知{a n}为等比数列, 求证:当m+n=p+l时 a m·a n=a p·a l 证明: 设等比数列的首项a1,公比为q, ∵m+n=p+l ∴a m·a n=a p·a l得证. 评注: 本题证明过程并不难,但结论:等比数列中,下标之和相等则对应项之积相等,这在解决有关等比数列的问题时常使解决的过程变得很简捷. 例2 在等比数列{a n}中 (1)已知:a1+a2+a3=6,a2+a3+a4=-3,求a3+a4+a5+a6+a7+a8的值; (2)已知a1+a2+a3+a4+a5=31,a2+a3+a4+a5+a6=62,求通项a n. 分析:利用等比数列的定义和性质整体观察. 解 (1)不难看出a1+a2+a3,a2+a3+a4,a3+a4+a5,a4+a5+a6,a5+a6+a7,a6+a7+a8成等比数列,且公比为q(即数列{a n}的公比).

设为{A n},即A1=6,A2=-3, (2)由已知可以看到 ∴a1(1+2+4+8+16)=31,a1=1 ∴a n=2n-1. 评注: 以上二题均可用列方程和方程组解决,但掌握等比数列有关性质整体考虑问题会使运算更简捷. 例3 在各项均为正数的等比数列{a n}中,若a5a6=9,则log3a1+log3a2+…+log3a10= [ ] A.12 B.10 C.8 D.2+log35 解: 根据等比中项的性质, a5a6=a1a10=a2a9=a3a8=a4a7=9.

∴a1a2…a9a10=(a5a6)5=95. ∴log3a1+log3a2+…+log3a10 =log3(a1a2 (10) =log395 =5log39 =10. 故正确答案为(B). 评注: (1)应用等比中项求解某些等比数列问题,简便快捷. (2)对等比数列{a n},有以下结论: 例4 若{a n}为等比数列,且a n>0,已知a5a6=128 则log2a1+log2a2+…+log2a10的值为 [ ] A.5 B.28 C.35 D.40

求数列通项公式常用的八种方法

求数列通项公式常用八种方法 一、 公式法: 已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解. 二、前n 项和法: 已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步) 三、n s 与n a 的关系式法: 已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步) 四、累加法: 当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 就可以用这种方法. 五、累乘法:它与累加法类似 ,当数列{}n a 中有()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面 形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的 方法:------+常数P

㈡、取倒数法:这种方法适用于1 1c --=+n n n Aa a Ba ()2,n n N * ≥∈(,,k m p 均为常数 0m ≠) ,两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子. ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a 分析:由()2113,2n n a a a n -==≥知0n a > ∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a a a --== 即1 lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列 故1 12lg 2lg3lg3n n n a --== ∴123n n a -= 七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。 八、形如21a n n n pa qa ++=+型,可化为211a ()()n n n n q xa p x a a p x ++++=+++ ,令x=q p x + ,求x 的值来解决。 除了以上八种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这8种方法是经常用的,将其总结到一块,以便于学生记忆和掌握。

高考第一轮复习数学:3.1 数列的概念

第三章数列 ●网络体系总览 ●考点目标定位 1.知识要求:(1)理解数列的概念,了解数列通项公式的意义;了解递推公式是给出一种数列的表示方法,并能写出数列的前n项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解决简单的问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题. 2.能力要求:培养观察能力、化归能力和解决实际应用问题的能力. ●复习方略指南 本章在历年高考中占有较大的比重,约占10%~12%,特别是2002年共计26分,占17%,2003年共计21分,占14%,2004年26分,占17%.考题类型既有选择题,也有填空题和解答题,既有容易题,也有中档题,更有难题.由于等差数列和等比数列在内容上是平行的,所以在复习时要应用对比去认识、理解、掌握数列知识. 纵观近几年的高考试题,可发现如下规律: 1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有. 2.数列中a n与S n之间的互化关系也是高考的一个热点. 3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用. 4.解答题的难度有逐年增大的趋势. 因此复习中应注意: 1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等. 2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.

高中数学 数列 版块三 等比数列 等比数列的通项公式与求和完整讲义(学生版)

学而思高中完整讲义:数列.版块三.等比数列-等比数列的通项公式 与求和.学生版 【例1】 在等比数列{}n a 中,22a =,5128a =,则它的公比q =_______,前n 项和 n S =_______. 【例2】 等差数列{}n a 的前n 项和为n S ,且53655-=S S ,则4=a . 【例3】 设等比数列{}n a 的前n 项和为n S ,若 63 3S S =,则96=S S ( ) A .2 B . 7 3 C .83 D .3 【例4】 设{}n a 是公比为q 的等比数列,1>q ,令1(12)=+=L n n b a n ,,,若数列{}n b 有 连续四项在集合{}5323193782--, ,,,中,则6=q . 【例5】 等比数列{}n a 的首项11a =-,前n 项和为n S ,公比1q ≠,若 105S S =3132 ,则105a a 等于 . 【例6】 等比数列{}n a 中,1512a =,公比1 2 q =-,用n ∏表示它前n 项的积:12...n n a a a ∏=, 则1∏,2∏,…,n ∏中最大的是_______. 【例7】 已知数列{}n a 的前n 项和为n S ,1 (1)()3 N n n S a n *=-∈. ⑴求1a ,2a ,3a 的值; 典例分析

⑵求n a 的通项公式及10S . 【例8】 在等比数列{}n a 中,12327a a a ??=,2430a a += 试求:⑴1a 和公比q ;⑵前6项的和6S . 【例9】 在等比数列{}n a 中,已知对任意正整数n ,有21n n S =-,则 222 12n a a a +++=L ________. 【例10】 求和:2(1)(2)(),(0)n a a a n a -+-++-≠L . 【例11】 在等比数列{}n a 中,423a = ,35209a a +=.若数列{}n a 的公比大于1,且3log 2 n n a b =,求数列{}n b 的前n 项和n S . 【例12】 在各项均为正数的等比数列{}n b 中,若783b b ?=,则3132log log b b ++ (314) log b +等于( ) A .5 B .6 C .7 D .8 【例13】 等比数列}{n a 中,已知对任意自然数n ,=+?+++n a a a a 32121n -, 则222 12n a a a ++???+=( ) A .()221n - B .()1213n - C .41n - D .()1 413 n -

求通项公式的几种方法与总结

睿 博 教 育 学 科 教 师 讲 义 讲义编号: LH-rbjy0002 副校长/组长签字: 签字日期: 教学内容 数列通项及求和 主干知识整合: 1.数列通项求解的方法 (1)公式法;(2)根据递推关系求通项公式有:①叠加法;②叠乘法;③转化法.(3)不完全归纳法即从特殊到一般的归纳法;(4)用a n =?? ? S 1n =1 S n -S n -1n ≥2 求解. 2.数列求和的基本方法: (1)公式法;(2)分组法;(3)裂项相消法;(4)错位相减法;(5)倒序相加法. ? 探究点 一 公式法 如果所给数列满足等差或者等比数列的定义,则可以求出a 1,d 或q 后,直接代入公式求出a n 或S n . 已知{a n }是等差数列,a 10=10,前10项和S 10=70,则其公差d =________. ? 探究点二 根据递推关系式求通项公式 如果所给数列递推关系式,不可以用叠加法或叠乘法,在填空题中可以用不完全归纳法进行研究. 例2 (1)已知数列{a n }满足a 1=2,a n +1=5a n -13 3a n -7(n ∈N *),则数列{a n }的前100项的和为________. (2)已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l

时,都有a i +b j =a k +b l ,则 12010∑=+2010 1 i i i )b (a 的值是________. (1)200 (2)2012 【解析】 (1)由a 1=2,a n +1=5a n -133a n -7(n ∈N * )得a 2=5×2-133×2-7=3,a 3=5×3-133×3-7= 1,a 4=5×1-13 3×1-7 =2,则{a n }是周期为3的数列,所以S 100=(2+3+1)×33+2=200. (2)由题意得a 1=1,a 2=2,a 3=3,a 4=4,a 5=5;b 1=2,b 2=3,b 3=4,b 4=5,b 5=6.归纳得a n =n , b n =n +1;设 c n =a n +b n ,c n =a n +b n =n +n +1=2n +1,则数列{c n }是首项为c 1=3,公差为2的等差数列,问题转化为求数列{c n }的前2010项和的平均数. 所以12010∑=+20101i i i )b (a =12010× 2010× 3+4021 2 =2012. ? 探究点四 数列的特殊求和方法 数列的特殊求和方法中以错位相减法较为难掌握,其中通项公式{a n b n }的特征为{a n }是等差数列,{b n }是等比数列. 例4 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列. (1)求数列{a n }的通项公式; (2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 【解答】 (1)设{a n }公比为q ,由题意得q >0, 且?? ? a 2=2a 1+3,3a 2+5a 3=2a 4, 即??? a 1q -2=3,2q 2 -5q -3=0, 解得?? ? a 1=3,q =3 或? ?? ?? a 1 =-6 5,q =-12(舍去), 所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *. (2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+3·34+…+n ·3n +1.② ②-①得,2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1, =- 31-3n 1-3 +n ·3n +1=3 2 (1-3n )+n ·3n +1

高三数学求数列通项公式的10种方法

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 1 1==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解 : 22(1) 4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--…… 2分 当1,35811n T b ===--=-时 当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时 ……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等 比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.设数列{}n a 的前n 项的和

相关主题