搜档网
当前位置:搜档网 › 规则碎纸片的拼接复原模型

规则碎纸片的拼接复原模型

规则碎纸片的拼接复原模型
规则碎纸片的拼接复原模型

规则碎纸片的拼接复原模型

摘要

图像碎片复原技术是一项综合的并具有实用价值的研究课题,它的最终目的是要从大量的任意图像碎片中找出真正符合实际的匹配对,并根据这些匹配关系将相邻的图像碎片拼合起来重现图像的原貌。

图像碎片的复原工作是以实际碎片为参考依据进行的,建立能够准确描述实物的计算机模型是图像碎片复原工作的关键步骤之一,对碎片复原的后续工作有基础性的作用,模型建立的准确性和复杂性将影响到后续工作能否顺利进行下去。

本文利用边缘特征点匹配,相关系数,广度搜索法等方法建立了规则碎纸片的拼接复原模型。

对于问题一,我们利用边缘特征点匹配的方法,先提取边缘特征点的灰度矩阵,再寻找矩阵相似度最大的碎片实现匹配。

对于问题二,我们采用了基于文字特征的半自动拼接方法,通过找到相交点距离相等的最大个数来确定匹配图像。

对于问题三,我们提取了各边的像素作为灰度矩阵,用X ,Y ,H ,L 确定目标函数min d (,i j X Y )=i j X Y -,min d (,i j H L )=i j H L -,运用广度搜索算法找出最佳匹配项。

最后,本文还对模型推广进行了进一步讨论,分析了模型的优缺点,提出了改进模型的方法和思路。

关键词:图像拼接;规则碎片;图像复原;灰度矩阵;广度搜索算法;特征匹配;自动拼接;图像分割;匹配准则

一.问题的重述

破碎文件的拼接在司法物证复原、历史文献修复及军事情报获取等领域都有重要的应用。传统拼接复原工作由人工完成,准确率较高,但效率很低。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。碎纸自动拼接技术是图像处理与模式识别领域中的一个较新但是很典型的应用,它是通过扫描和图像提取技术获取一组碎纸片的形状、颜色等信息,然后利用计算机进行相应的处理从而实现对这些碎纸片的全自动或半自动拼接还原。请讨论以下问题:

1. 对于给定同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。每页纸被切为19条碎片。如果复原过程要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达,将碎片序号按复原后顺序填入1×19的表格。

2. 对于碎纸机既纵切又横切的情况,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。每页纸被切为11×19个碎片。如果复原过程要人工干预,表达要求同上,将碎片序号按复原后顺序填入11×19的表格。

3. 上述所给碎片数据均为单面打印文件,还可能有双面打印文件的碎纸片拼接复原问题要解决。附件5给出一页英文印刷文字双面打印文件的碎片数据。每页纸被切为11×19个碎片,每个碎片有正反两面。每一碎片对应两个文件,共有2×11×19个文件。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,表达要求同上,将碎片序号按复原后顺序填入两个11×19的表格。(以上若不能确定复原位置的碎片,可不填入上述表格,单独列表。)

二.模型的假设

1.假设纸片上的文字都是完整的。

2.假设扫描过程中图像不失真,保持清晰度。

3.假设纸面上除了文字外无其他杂点黑点。

4.假设切割过程中纸片没有损坏。

5.假设切割后的纸片不是歪斜的。

6.假设原图的左边(起始碎片的左边)与原图的右边(终始碎片的右边)

边界线为白色。

7.假设原始图像本身的内容是连续的具有意义的。

8. 假设所有的碎片中都存在相互匹配的碎片。 9. 假设所有碎片都在一次扫描下完成。

三. 符号说明

i A :第i 个碎片

ij X :纵向切割时,碎片的灰度矩

X :横纵切割时,碎片左边的灰度矩 Y : 横纵切割时,碎片右边的灰度矩

H : 横纵切割时,碎片上边的灰度矩 L :横纵切割时,碎片下边的灰度矩

1122

i j i j X

X ρ:灰度矩11i j X 与22i j X 的相关系数

四.模型的建立与求解

5.1.1问题一的分析

如果是一个整体分裂成的两个碎片,那么两个碎片裂口对应的部分的颜色(对灰度图像而言,就是灰度信息)会有很强的相关性,这是碎片间除了轮廓外信息外最重要的信息之一。由于碎片的轮廓是完全一致的,我们只考虑碎片裂口对应的部分颜色对图像匹配的影响。完成图像碎片匹配过程后,相互匹配的图像碎片就被找到了,同时也得到了图像碎片的匹配段,并在碎片间建立了对应的匹配信息表,并记录了构成匹配对的匹配线段的相关信息如匹配起始点终止点等。接下来的工作就是将相互匹配的图像碎片拼接起来,恢复图像的原貌。 5.1.2问题一的模型建立

设碎片i A 的每条边的灰度矩为L ,{}123,,,...ij l X x x x x =,i=1,2,…19,j=1或2,

l x =0或1。i 代表第i 个碎片,j=1表示碎片左边,j=2表示碎片右边,l x =0代表

黑色,l x =1代表白色。由于每个碎片的左边只能与另一个碎片的右边相匹配,此时两向量之间的相关系数可表示为

1122

(,)i j i j X

X Cov X X ρ=

{}

112211112222(,)()()i j i j i j i j i j i j Cov X X E X E X X E X ????=--????

采用相关系数这一测度可以测量两个描绘子之间的相似性,如果已知用于比较多个描绘子ij X ,就可以计算出各个描绘子之间的相互关系,并找出最大相关系数

max

1122

i j i j X X ρ

。灰度矩相似性最高的两条边,就可以作为真正的匹配边,同时可以排

除掉其他干扰匹配对。 5.1.3问题一的模型求解

首先通过碎纸片左右边界线是否为单一色(白色)找出起始碎片和终止碎片,将拥有与起始碎片右边相似度最高的边的碎片作为起始匹配图像,运用迭代法将剩余碎片匹配拼接。利用matlab 软件求得i 从1到19时max 11

22

i j i j X X ρ相对应的ij

X 匹配图像,将复原后匹配碎片的顺序列入下表:

表一:附件1的复原结果

表二:附件2的复原结果

5.1.4问题一的模型结果的分析与检验

经过灰度矩的相关系数匹配,模型一最终精确的拼接复原了碎纸片。在拼接过程中并没有进行人工干预,使得计算工作更为简便。但是对于较为复杂的图像,纯粹地依靠计算机寻找匹配图像时,一般只能找到匹配图像的一个区域,并不能唯一确定具体的结果,从而增大误差。 5.2.1问题二的分析

问题二中不仅有纵向切割还有横向切割,碎片切割的复杂化,使得按照问题一的模型,不能让计算机自动地完成拼接过程。

在此文中,对这类边缘相同的碎纸片的拼接,理想的计算机拼接过程应与人工拼接过程类似,拼接时不需要考虑待拼接碎纸片边缘形状是否匹配,但要判断碎片内的字迹断线或碎片内的文字内容是否匹配,然而由于理论和技术的限制,让计算机具备类似人那种识别碎片边缘的字迹断线、以及理解碎片内文字图像含义的智能几乎不太可能。但是利用现有的技术,完全可以获取碎片文字所在行的几何特征信息,比如文字行的行高、文字行的间距等信息,拼接碎片时如利用这些信息进行拼接,其拼接效率应该比较好。

由于此文字文档的文字行方向为单一水平方向,如果碎片内的文字行在碎片边缘断裂,那么与它相邻的碎纸片在边缘处一定有相同高度、相同间距的文字行,凭此特征可以很容易地从形状相似的多碎片中挑选出相邻碎片。因文字行的高度特征、间距特征的识别比字迹断线识别和文字图像的理解实现起来要容易得多,利用碎片内文字行特征拼接形状相似的碎纸片理论上是可行的。

另一方面由于计算机数字分析图像能力的缺陷,让计算机对碎片进行完全意义上的自动化拼接也几乎不太可能,为保证拼接的准确性,需要在拼接过程中加入人工干扰过程。一般而言拼接碎片时先利用计算机搜索与目标碎片匹配的未拼接碎片,并根据匹配程度按顺序显示待选碎片,我们再根据人脑进一步分析结果舍弃或拼接待选碎片。这种半自动拼接方法综合利用了计算机高速计算能力以及人的文字图像识别和理解能力,拼接效率比纯人工高,拼接准确性也好于纯计算机拼接法。

5.2.2问题二的模型建立

为提高模型的准确性,假设汉字宽度与高度比值1/3~3。这意味着每个文字图像与其他文字图像之间有空白点,文字图像宽度与高度的比值在1/3~3 之间,如果碎片内有英文单词,应将英文单词图像拆分成类汉字图像,即将英文单词图像分割成宽度与高度近似的类汉字图像。每个碎片像素高度H=180,宽度w=72。碎片文字行的方向为水平方向,先将两个碎片按文字行方向(水平方向)线位置对齐, 然后计算文字行方向线与碎片边界的交点与处于同一水平位置的另一个碎片交点的距离i d 。如果碎片没有对齐,则距离相等的连续点的个数比对齐位置的距离相等连续点的个数要少,即距离相等的连续点的个数越多,图像越匹配。由于各碎片边缘都为垂直线(或水平线),因此距离相等等价于相同高度下(或宽度)点的像素相同。设X,Y ,H,L 分别为碎纸片的左右上下边的0-1灰度矩阵,函数F (i X ,j Y )表示对应1l l x y ==的对数,目标函数为maxF (i X ,j Y ),maxF (i H ,j L )。

5.2.3问题二的模型求解

(1)根据边界灰度矩阵i X =0,i H =0,从候选碎片中筛选出起始碎片1A ; (2)计算该碎片上(或下)边界与未接碎片下边界(或上边界)可能拼接位置处的距离相等的连续点的个数;

(3)将距离相等的连续交点个数按升序排列,按升序依次显示未拼接碎片,人工选择碎片并拼接到计算机屏幕上;

(4)判断是否完成本列碎片的拼接,如果继续拼接,转(2),否则转(5);= (5)以第一列为起始碎片,进行11次下面步骤循环;

(6)计算该碎片左(或右)边界与未接碎片右边界(或左边界)可能拼接位置处的距离相等的连续点的个数;

(7)将距离相等的连续交点个数按升序排列,按升序依次显示未拼接碎片,人工选择碎片并拼接到计算机屏幕上;

(8)判断是否完成本行碎片的拼接,如果继续拼接,转(6),否则结束此次循环。

将复原后匹配碎片的顺序列入下表:(注:加黑序号为人工筛选序号)

表三:附件3的复原结果

表四:附件4的复原结果

5.2.4问题二的模型结果的分析与检验

该模型采用了基于边界交点距离的碎片半自动拼接算法,该算法不依赖于碎片几何特征,实现简单,可靠性比较好。

对于碎片文字是汉字的碎片,该模型能更精确地找出匹配碎片的图像,而对英文碎片,搜索的精度略低,人工筛选工作量稍大。

该半自动拼接算法最终求得的复原图像符合实际情况,且拼接计算工作量在允许范围内,效果显著。 5.3.1问题三的分析

较之问题一和问题二的碎片数据是单面打印文件,问题三研究的是在横纵切割的基础上加上正反面碎片的双面打印文件,显得更为复杂。在碎片数量增加一倍的情况下,若单纯地以匹配条件去寻找匹配对象,则工作量会很大。所以我们想到引进一种搜索算法,可以使搜索到的匹配对象范围更为精准,从而缩小工作量,尤其是人工筛选的工作量。经过研究,决定采用广度搜索算法,在此基础上,又考虑到之前提取碎片边缘像素点,将之化为0-1灰度矩,有失图像的真实性,便决定提取碎片原有的像素作出灰度矩,而再用广度搜索算法搜索满足匹配条件的碎片对象,从而更为精准迅速地得出结果。 5.3.2问题三的模型建立

设X,Y,H,L 为边界的实际灰度矩,d (,i j X Y )=i j X Y -,d (,i j H L )=i j H L -,目标函数为min d (,i j X Y ),min d (,i j H L )。 5.3.3问题三的模型求解

对于一个给定的i X ,利用广度搜索算法求出min f (,i j X Y )时的j Y ,从而确定碎片i A 的最优匹配碎片j A ,再经由人工最终确定i A 的匹配图像。将所求碎片复原序号填入下表:

表五:附件5碎片正面复原结果

表六:附件5碎片反面复原结果

5.3.4问题三的模型结果的分析与检验

由于本模型中采用的灰度矩是对各边像素的真实提取,并且运用了广度搜索算法搜索最优匹配项,使得该模型的效率得到了提高,能在可接受的时间范围内求得匹配结果。

尽管已在问题二的基础上对模型进行了改进,仍不能脱离人工干预实现计算机的全自动化,在碎片数量多的情况下会有较大的工作量。

五.模型的改进与推广

本文对算法的计算工作量进行了分析,分析表明,对大多数碎片的实际碎纸片,拼接计算工作量在允许范围内,如果对算法作些改进,拼接计算量可大幅度减小。

本文虽然对二维图像碎片复原方法的关键技术进行了研究,但依然还有很多地方需要进一步深入探讨。本文主要针对规则碎片的特征提出了基于边缘特征点的复原算法,对特征点的利用可以推广到任意不规则碎片类型,但还需进一步研

究。另外,由于本文只是针对灰度图像进行了实际研究并取得了较好效果, 理论上讲,彩色图像和灰度图像适用于同样的方法,但彩色图像包含了更丰富的内容信息,无论是算法研究还是在实证研究方面都还有很大的研究空间,有更强的实用性,也具有更大的挑战性。本文主要针对二维规则碎片,应用前景受限,如果能把二维的工作扩展到三维空间,将会有更加广泛的应用空间。

将规则碎片推广到针对多边形碎片复原的复原匹配算法,由于多边形碎片的特殊性,综合利用了多边形碎片的形状和灰度特征进行匹配,这是整个算法的关键,也是创新点。

图像碎片复原问题除了上边提到的以外,还可以推广到很多其他领域,比如,破碎的艺术品复原,破碎的纸币复原,公安机关破案中的破碎证物复原等等。从理论上讲,图像碎片复原技术的核心技术是碎片匹配拼接问题,是模式识别技术的一个新发展,超出了传统模板匹配的局限,对这个问题的深入研究将促进机器识别,计算机视觉等相关领域的发展,开辟模式识别新的应用领域。因此,不管从理论角度还是从实践角度来看,本课题的相关研究工作都具有积极的意义。

六.模型的优缺点分析与评价

虽然我们进行实验仿真所涉及的纸片数量不多,但是它充分表明了所进行的碎纸拼接复原技术研究的可行性。

虽然文中所用算法在实验中取得了比较好的效果,但还需挖掘潜力,进一步优化。因此,如何减少错误匹配的数量,提高效率,增加适应性,也是下一步的工作重点。

在实际应用中,由于设备等条件的限制,一次处理往往不能完全完成拼接任务。因此,必须开发合理的数据库,以充分利用每次拼接得到的结果。

虽然在进行简单拼接复原的时候,计算机可以满足要求,但是在实际应用中,通常会涉及对大量纸片数据进行管理和处理工作。目前,我们主要还是以实现功能为主,下一步必须优化程序结构,改善用户界面,提高程序的交互能力,真正实现快速有效的计算机辅助碎纸

自动拼接复原系统。

本文对碎纸自动拼接进行了研究,在前人研究的基础上寻找一些新的研究方法进行研究,或者是对一些传统的方法进行应用与改进,可进行深入探讨,将其应用于计算机辅助碎纸自动拼接中,以取得很好的效果。

参考文献

[1]曹弋,MATLAB教程与实训,北京,机械工业出版社,2012年

[2]盛骤,概率论与数理统计第四版,北京,高等教育出版社,2008年

[3]邓薇,MATLAB函数速查手册,北京,人民邮电出版社,2010年

[4]姚泽清,全国大学生数学建模竞赛赛题与优秀论文评析(2005年-2011年B 题),北京,国防工业出版社,2012年

[5]贾海燕,碎纸自动拼接关键技术研究,2005年

[6]先毅,图像碎片复原方法的研究,2010年

[7]楼兵军,基于区域的图像匹配算法的关键技术研究,2006年

附件

附录一:

附件1的复原图

附件2的复原图附录二:

附件3的复原图

附件4的复原图附录三:问题一的程序代码

clc;clear

A=cell(1,19);

for i=0:18;

if i<=9

NO=strcat('00',num2str(i));

elseif i<=99

NO=strcat('0',num2str(i));

else NO=num2str(i);

end

dir=[NO,'.bmp'];

a=imread(dir,'bmp');

end

for k=1:19

B{1,k}=im2bw(A{1,k});

end

%for k=1:19

% imshow(B{1,k},[])

%end

C=cell(1,19);

M=zeros(1980,19);

N=zeros(1980,19);

for i=1:19;

m=find(B{1,i}(:,1)==0);

if sum(m)==0;

c=i;

end

M(1:end,i)=B{1,i}(:,1); n=find(B{1,i}(:,72)==0); if sum(n)==0

d=i;

end

N(1:end,i)=B{1,i}(:,72); end

M1=[];N1=[];

for i=1:19;

m=find(B{1,i}(:,1)==0);

n=find(B{1,i}(:,72)==0);

M1=[M1;length(m)];

N1=[N1;length(n)];

end

save M1.mat;save N1.mat;save M.mat;save N.mat;

n2=c;n3=d;

global d5

d5=[c];

n6=xuanze(n2,n3);

d5=[d5,d] D=[];

for i=1:19

k=d5(i);

D=[D,B{1,k}];

end

imshow(D,[]);

function n6=xuanze(n2,n3)

load M1;load N1; load M;load N;

M(:,n3)=0;

global d5

n6=0;

d1=[];

for i=1:19

d2=corrcoef(M(1:end,i),N(1:end,n2)); d1=[d1,d2(1,2)];

end

for j=1:length(d5)

k1=d5(j);

d1(k1)=0;

end

d4=max(d1');

n6=[n6,n2];

n2=find(d1==d4);

d5=[d5,n2];

if length(d5)==18

return

end

n6=xuanze(n2,n3);

end

注:其余问题程序代码见程序文件。

2013年数学建模碎纸片的拼接复原模型

承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2013 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号): 碎纸片的拼接复原模型 摘要:本文针对碎纸片的拼接复原问题,提出了互相关匹配模型。首先对附件图片数值化处理并建立矩阵;然后根据图像页边距特点定位最左边和最右边的碎片;按照每张碎片 中的文字部分所在位置,提取同一行碎片,利用互相关函数 横向拼合。 在第一问中,附件一、二仅作横向相关性比较即可;在第二、三问中,需要提取同一行碎片横向拼接,并将横向拼合完整的碎片进行竖向拼合,经过人工干预得到结 果。 最终结果见附录。 关键词:拼接复原;互相关;矩阵;数值化;人工干预

规则碎纸片的拼接复原

论 文 检 测 报 告 报告编号: 5d95e0aadf5149a5a9ef1ecb397c466d 送检文档: 规则碎纸片的拼接复原 论文作者: 陈芳芳 文档字数: 2981 检测时间: 2015-01-07 12:39:34 检测范围: 论文库,中文期刊库(涵盖中国期刊论文网络数据库、中文科技期刊数据库、中文重要学术期刊库、中国重要社科期刊库、中国重要文科期刊库、中国中文报刊报纸数据库等),Tonda论文库(涵盖中国学位论文数据库、中国优秀硕博论文数据库、部分高校特色论文库、重要外文期刊数据库如Emerald、HeinOnline、JSTOR等),资源共享库。 一、检测结果: 总相似比: 36.05% [即复写率与引用率之和] 检测指标: 自写率 63.95%复写率 36.05%引用率 0.0% 相 似 比: 互联网 36.05% 学术期刊 0.0% 学位论文 0.0% 资源共享 0.0% 其他指标: 表格 0 个 脚注 0 个 尾注 0 个

章节抄袭比 36.05% 规则碎纸片的拼接复原 二、相似文献汇总: 序号标题文献来源作者出处发表时间11213年碎纸片拼接复原数模论文互联网互联网 213年碎纸片拼接复原数模论文-豆丁网互联网互联网 32013年全国大学生数学建模竞赛国家一等奖论文B题碎纸片的拼接...互联网互联网 4【图】科密碎纸机 深圳碎纸机 黑金刚碎纸机 可碎光碟 - 罗湖办公...互联网互联网 5一种碎纸自动拼接中的形状匹配方法-《计算机仿真》2006年11期-...互联网互联网 6国家奖碎纸片的拼接还原_百度文库互联网互联网

7基于蚁群优化算法的碎纸拼接-豆丁网互联网互联网 8求2013数学建模题B题(2)的中文原题以及附件3不胜感激_百度知道互联网互联网 9沈阳建筑大学_徐俊杰.郭书恒.唐杰_百度文库互联网互联网 10碎纸机批发,厂家,图片,商贸城-马可波罗网互联网互联网 三、全文相似详情: (红色字体为相似片段、浅蓝色字体为引用片段、深蓝色字体为可能遗漏的但被系统识别到与参考文献列表对应的引用片段、黑色字体为自写片段) 碎纸机,是用来切碎销毁纸张的机器,为了达到废弃文件保密的目的,要把纸张分割成很多的细小纸片,碎纸机切割的纸粒工整利落,能达到保密的效果。随着数据时代发展,大量的政府机关、企事业单位都采用了碎纸机对废弃文件或失效的机密文件进行破碎处理。碎纸方式是指当纸张经过碎纸机处理后被碎纸刀切碎后的形状。市面上有些碎纸机可选择两种或两种以上的碎纸方式。不同的碎纸方式适用于不同的场合,如果是一般性的办公场合则选择段状、粒状、丝状,条状的就可以了。但如果是用到一些对保密要求比较高的场合就一定要用沫状的。随着现代技术的不断发展和市场的需求,现在的碎纸机,除了对纸张的处理,也可以对信用卡、光盘等进行切割。本文研究的只是针对印刷文字文件在碎纸机中被切割的碎片,它是规则的黑白图片,对于非印刷文字文件的碎纸片、彩色碎纸片、形状不规则或边缘有破损的碎纸片等都是该碎纸片拼接技术的重要影响因素。随着科学技术的不断发展,人们对信息交流、存储和销毁的需求也不断的增加。目前,大量政府机关、企事业单位都是用打印机来打印文件,也都采用了碎纸机对废弃文件或失效的机密文件进行破碎处理。当遇到误销毁的文件时,就要靠人工对碎纸片进行拼接,而人工拼接工作量大 ,不仅费力耗时,可能还会出现拼接错误等情况。如果应用当前的图像处理与模式识别技术来开发碎纸片的自动拼接技术,用计算机对所有碎片进行搜索和筛选,对能够在某种指标上匹配的碎片进行拼接复原。这样会大大的提高拼接复原的效率,从而降低了人工的工作量和难度。目前在情报资料碎片整理、司法技术鉴定等领域中, 碎纸的拼接工作大部分都是靠人工的方式完成。虽然国外对这项工作有进行了一些研究, 但是由于碎纸的自动修复技术应用背景的特殊性, 目前几乎没有公开的研究资料可以参考。类似的研究主要是集中在文物碎片的自动修复、虚拟考古、故障分析以及计算机辅助设计、医学分析等领域。所以对规则碎片自动拼接问题的研究,不仅具有广阔的应用前景,而且具有很强的理论意义。问题1:对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(纵切),建立碎纸片拼接复原模型和算法,针对附件1、附件2针对文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。分析:针对问题1,在附件一及附件二中,碎纸片仅纵切 ,则纸片边缘的字有可能出现完整、残缺、标点符、空格四种情况,每个字又由多个像素点组成,故我们利用Matlab图像处理函数imread()将各个碎片文字像素二值化,并取出代表各个碎片左右两边缘的像素点的列向量,如此在每张碎片左右两边缘所获的值都可组成一组向量,且分别设左边缘 ,右边缘 ( )。设复原图像的第1列像素为 向量,第72列像素为 向量列,以此类推直到最后一列像素为 。因为原图像的第一列像素全为255(白色),所以可找出 ,从而可以确定 和 对应的 和 ,将该碎纸片数据放入向量A中,再将列向量 逐一与剩下的所有图片的列向量 元素作差,列方向绝对值求和,则和最小的就是能与 匹配的碎片,以此类推。匹配完成后用Matlab图像处

碎纸片的拼接复原数学模型的构建

碎纸片的拼接复原数学模型的构建 发表时间:2014-11-27T14:26:53.797Z 来源:《价值工程》2014年第9月上旬供稿作者:毕楷明[导读] 以纵横方式破碎纸片,利用同行文字行间距一致性的主要特性可解决横向碎纸片的拼接复原问题。Construction of Mathematical Model of Splicing Scrap Recovery毕楷明BI Kai-ming(东北大学理学院,沈阳110819)(NEU College of Sciences,Shenyang 110819,China) 摘要院本文讨论在碎纸机以不同方式破碎纸片的情况下建立碎纸片的拼接复原模型,以解决碎片数量巨大时人工拼接的难题,本文建立了三个具有针对性的模型。 模型一:方差分析法下的碎纸片拼接模型。在以纵切方式破碎纸片的情况下,提取碎纸片左右边缘的灰度列向量,利用碎纸片边缘处为单边同宽空白区域的特殊性对碎纸片进行定位,再利用方差分析法和欧式距离解决了纵切碎纸片的拼接复原问题。模型二:文字行间距一致性的碎纸片拼接模型。以纵横方式破碎纸片,利用同行文字行间距一致性的主要特性可解决横向碎纸片的拼接复原问题,简化了模型,将离散的像素灰度矩阵平均化处理,进而利用欧氏距离对碎纸片进行匹配,得到了碎纸片复原后的完整图片。模型三:二值化Otsu 算法的碎纸片拼接复原模型。本文从双面纵横破碎纸片的问题出发,建立了纸片二值化Otsu 法拼接模型,先对碎纸片分组预处理,为将复杂模型简单化,再利用全局阈值方法中典型的Otsu 法求取碎纸片的最佳阈值,以该阈值对碎纸片中所含灰度值信息进行划分实现二值化处理,将边缘区域明显化,利用统计学方法求取拼接后的纸片间成功匹配的像素点占纸片边缘的概率,最终双面纵横破碎纸片的拼接复原问题得以解决。Abstract: This paper discusses the construction of splicing scrap recovery model under the condition of shredder breaking paper intopieces in different ways, so as to solve the problem of artificial splicing when there is a great amount of pieces. This paper establishes threecorresponding model.Model One: Paper Scrap Splicing Model under Analysis of Variance.Shredding paper through longitudinal mode, the paper selects the gray scraps of paper around the edge extraction column vector,locates the paper scrap by using edge of paper scraps as blank area with same width, then solves the problem of reconstruction of thelongitudinal cutting paper splicing through analysis of variance method and Euclid Distance.Model Two: Paper Scrap Splicing Model with Consistency of Text Line Spacing.Shredding paper through vertical and horizontal mode, its main characteristics of peer text line spacing consistency can solve theproblem of reconstruction of splicing transverse paper scraps, simplifies the model, processes the pixel matrix of discrete in average andmatches the paper scraps through Euclid Distance and then gets the complete picture of paper scrap after recovery.Model Three: Paper Scrap Splicing Model Based on Binaryzation Otsu Algorithm.This paper firstly expounds the double side's vertical and horizontal mode, establishes the paper scrap splicing model based onbinaryzation Otsu algorithm. The paper firstly does preconditioning for paper scraps into groups, simplifies the complex model, and then getsthe optimal threshold of the paper scraps by using typical Otsu algorithm of global threshold method. The paper classifies the gray valueinformation of paper scraps through this threshold to realize binaryzation processing, specifies the edge area, evaluates the probability ofsuccessful matching pixels on edge of splicing paper, and finally solves the mosaic and restoration problems of double side's vertical andhorizontal mode. 关键词院离散;方差分析;置信区间;阈值;Otsu 算法Key words: discrete;analysis of variance;confidence interval;threshold;Otsu algorithm中图分类号院TQ018 文献标识码院A 文章编号院1006-4311(2014)25-0238-031 模型一考虑以为空间拼接情况,为了获取拼接图像所必须的数据,文章以像素为单位离散所得碎片:利用VC++使用了Windows.H 头文件并调用RGB 等结构定义获得不同像素点的g 值[1],生成了多个灰度矩阵。由于本题主要研究碎片的拼接,故只需考虑碎片的边缘部分,故分别提取全部碎片的最左侧和最右侧的g 值列向量:文章分别找出其中最左侧g 值列向量的值全为255(即像素全白)的和最右侧g 值列向量的值全为255 的两个碎片,于是左侧g 值全为255 的碎片对应左一位置,同理右侧g 值全为255 的碎片对应左一位置。再考虑剩余的碎片(本文中考虑18 个碎片)的对号入座问题,使最左侧碎片分别与其他碎片的最左侧灰度g 值列向量进行相同y 值下作差,得到不同碎片的G 差。先求出左一位置碎片最右侧g 值列向量:

碎纸片拼接复原问题研究

基于旅行商规划模型的碎纸片拼接复原问题研究 摘要 本文分别针对RSSTD(Reconstruction of Strip Shredded Text Document)、RCCSTD(Reconstruction of cross-cut Shredded Text Document)和Two-Sides RCCSTD三种类型的碎纸片拼接复原问题进行了建模与求解算法设计。首先我们对于RSSTD问题,建立了基于二值匹配度的TSP模型,并将其转化为线性规划模型,利用贪心策略复原了该问题的中文和英文碎片;然后对于RCCSTD问题,由于中英文字的差别,我们分别建立了基于改进误差评估的汉字拼接模型和基于文字基线的误差评估的英文字拼接模型,并利用误差评估匹配算法,复原了该问题的中文和英文碎片;随后我们针对正反两面的RCCSTD 问题,利用基线的概念将正反两面分行,转化为RCCSTD问题,并复原了该问题的英文碎片。最后,我们对模型的算法和结果进行了检验和分析。 ◎问题一:我们针对仅纵切的情况,首先将图像进行数字化处理,转换为了二值图像,然后得到各图像的边缘,并计算所有碎片与其他碎片边缘的匹配程度。然后,根据两两碎片之间的匹配程度建立了TSP模型,并将其划归为线性规划模型。最终,我们根据左边距的信息确定了左边第一碎片,随后设计了基于匹配度的贪心算法从左向右得到了所有碎片的拼接复原结果。结果表明我们的方法对于中英文

两种情况适用性均较好,且该过程不需要人工干预。 ◎问题二:我们针对既纵切又横切的情况,由于中英文的差异性,我们在进行分行聚类时应采用不同的标准。首先根据左右边距的信息确定了左边和右边的碎片,随后分别利用基于改进误差评估的汉字拼接模型和基于文字基线的误差评估模型,将剩余的碎片进行分行聚类,然后再利用基于误差评估的行内匹配算法对行内进行了拼接,最终利用行间匹配算法对行间的碎片进行了再拼接,最终得到了拼接复原结果。对于拼接过程中可能出现误判的情况,我们利用GUI 编写了人机交互的人工干预界面,用人的直觉判断提高匹配的成功率和完整性。 ◎问题三:我们针对正反两面的情况,首先根据正反基线信息,分别确定了左右两边的碎片,然后利用基线差值将其两两聚类,聚类以后其正反方向也一并确定,随后我们将其与剩余碎片进行分行聚类,最终又利用行内匹配和行间匹配算法得到了最终拼接复原结果。其中,对于可能出现的误判情况,我们同样在匹配算法中使用了基于GUI的人机交互干预方式,利用人的直觉提高了结果的可靠性和完整性。 关键字:碎片复原、TSP、误差评估匹配、基线误差、人工干预

碎纸片的拼接复原的数学模型

碎纸片的拼接复原 摘要 本文主要采用了模糊模型识别、灰度相关、傅里叶变换等方法对碎纸自动拼接进行了深入探讨。 文中主要结合司法物证复原、历史文献修复、军事情报获取这一背景,针对横纵切碎自动拼接展开探究。提出一种基于最大梯度和灰度相关的全景图拼接法。同时采用边界提取法使图像预处理达到最好的效果,期间采用傅里叶变换对图像进行处理,最后再利用匹配准则等方法处理图像的拼接。最终应用模糊模型识别法建立模型,通过隶属函数的建立实现最终的碎纸拼接。期间有些碎纸片计算机无法识别,需要进行人工干预,从而才能得到一副完整的复原图。 图像拼接的主要工作流程可以概括为以下三个步骤: (1) 对图像碎片进行预处理,即对物体碎片数字化,得到碎片的数字图像。 (2) 图像碎片匹配,通过匹配算法找到相互匹配的图像碎片。 (3) 图像碎片的拼接合并,将相互匹配的图像碎片拼接在一起得到最终结果。 ! 针对问题一:将图像导入MATLAB 进行相应的转化,由于数据量较大,所以 对数据进行优化提取。计算提取数据的均值与方差,找出其模糊集,建立符合题意的隶属函数。由于模糊集的边界是模糊的,如果要把模糊概念转化为数学语言,需要选取不同的置信水平(01)λλ≤≤ 来确定其隶属关系,从而实现纵切图像的全景拼接。(如表一、表二) 针对于问题二:由于是横纵切碎纸片,所得图像较多,采用提取像素法对图片进行灰度分析,通过中介量阈值的确定来找出像素点的差别,梯度值在这一过程中也是作为衡量两张碎纸片是否匹配的标准。从而对数据进行处理,最后导入MATLAB 软件实现拼接。(如表三、表四) 针对问题三:它是在问题一和问题二上加深了难度,采用提取像素点,傅里叶变换,灰度相关、模糊相似优先比等方法对问题进行分析,通过(0,1)矩阵的简化运算以及傅里叶变换得到最后的结果,但对于傅里叶变换需说明一点,变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间是低频最亮,也就是说幅角比较大。此过程中同时也需要人工干预,最终实现拼接。(如表五、表六)

年全国大学生数学建模竞赛—B题—碎纸片的拼接复原

2013高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):西华大学 参赛队员 (打印并签名) :1. 杨尚安 2. 刘洋 3. 叶军 指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2013 年 09 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):

2013高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

碎纸片的拼接复原

全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。(全国评奖时,每个组别一、二等奖的总名额按每道题参赛队数的比例分配;但全国一等奖名额的一半将平均分配给本组别的每道题,另一半按每题论文数的比例分配。) 论文用白色A4纸打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。 ●论文第一页为承诺书,具体内容和格式见本规范第二页。 ●论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和 格式见本规范第三页。 ●论文题目、摘要和关键词写在论文第三页上(无需译成英文),并从此页开始编写 页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。注意:摘要应该是一份简明扼要的详细摘要,请认真书写(但篇幅不能超过一页)。 ●从第四页开始是论文正文(不要目录)。论文不能有页眉或任何可能显示答题人身 份和所在学校等的信息。 ●论文应该思路清晰,表达简洁(正文尽量控制在20页以内,附录页数不限)。 ●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文 献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。 ●在论文纸质版附录中,应给出参赛者实际使用的软件名称、命令和编写的全部计算 机源程序(若有的话)。同时,所有源程序文件必须放入论文电子版中备查。论文及源程序电子版压缩在一个文件中,一般不要超过20MB,且应与纸质版同时提交。 (如果发现程序不能运行,或者运行结果与论文中报告的不一致,该论文可能会被认定为弄虚作假而被取消评奖资格。) ●本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求, 可由赛区自行决定。 ●在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第 一页前增加其他页和其他信息,或在论文的最后增加空白页等)。 ●不符合本格式规范的论文将被视为违反竞赛规则,无条件取消评奖资格。 ●本规范的解释权属于全国大学生数学建模竞赛组委会。 [注] 赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。 全国大学生数学建模竞赛组委会 2013年8月26日修订

碎纸片拼接复原数模论文b

碎纸片拼接复原数模论 文b Revised as of 23 November 2020

2013高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):重庆XX大学 参赛队员 (打印并签名) :1. 祝XX 2. 冯XX 3. 周XX 指导教师或指导教师组负责人 (打印并签名):张XX (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 20XX 年 X 月 XX 日赛区评阅编号(由赛区组委会评阅前进行编号):

2013国赛B题碎纸片的拼接复原

2013高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B题碎纸片的拼接复原 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。请讨论以下问题: 1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。 2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。 3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。附件5给出的是一页英文印刷文字双面打印文件的碎片数据。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。 【数据文件说明】 (1)每一附件为同一页纸的碎片数据。 (2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片。 (3)附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片。 (4)附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反两面。该附 件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片的两面分别对应文件000a、000b。 【结果表达格式说明】 复原图片放入附录中,表格表达格式如下: (1)附件1、附件2的结果:将碎片序号按复原后顺序填入1×19的表格; (2)附件3、附件4的结果:将碎片序号按复原后顺序填入11×19的表格; (3)附件5的结果:将碎片序号按复原后顺序填入两个11×19的表格; (4)不能确定复原位置的碎片,可不填入上述表格,单独列表。

碎纸片的拼接复原问题

2013高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

碎纸片的拼接复原问题 摘要 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。本文针对已给图像先进行了图片灰度二值化处理得到碎纸片的像素矩阵,提取碎纸片的边缘像素矩阵,对边缘矩阵进行相似度分析,相似度的度量采用向量距离平方和最小化,在相似度度量中设置阈值、对相近相似度的候选纸片进行人工干预、对数据量较大的附件,采用文本特征,如页边距、行距进行筛选,降低计算量,提高计算精度。使用Matlab软件编程实现了上述算法,在对附件的拼接中通过少量的人工干预,可实现纸片的完整拼接,效果较好。 关键词:相似度;文字特征;碎纸片拼接;Matlab;

1 问题重述 1.1 问题的描述 设计一个碎纸片的自动拼接模型,以提高碎纸片的拼接复原效率。 1.2 问题的要求 (1)对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达。 (2)对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。 (3)从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。附件5给出的是一页英文印刷文字双面打印文件的碎片数据。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。 1.3 问题的分析 对破碎文件这类边缘相似的碎纸片的拼接,理想的计算机拼接过程应与人工拼接过程类似,即拼接时不但要考虑待拼接碎纸片边缘是否匹配,还要判断碎纸片内的字迹断线或碎片内的文字内容是否匹配,然而由于理论和技术的限制,让计算机具备类似人那种识别破碎边缘地字迹断线、以及理解碎片内文字图像含义的智能几乎不太可能。但是分析了基于几何特征的碎纸片自动拼接方法的缺点,研究了碎纸片内文字行特征以及行特征获取方法。利用这些信息进行拼接,其拼接效率无疑比单纯利用边界几何特征方法要好些。 另一方面由于计算机数字分析图像能力的缺陷,让计算机对碎片进行完全意义上的自动化拼接也几乎不大可能,这就需要我们在拼接过程加入人工干扰过程,对一些碎片进一步分析结果舍弃或拼接待选。 2 模型假设和符号系统

碎纸片拼接复原的数学模型与实现

碎纸片拼接复原的数学模型与实现 摘要碎纸拼接,就是利用计算机将碎片复原.如果碎片的数量过大,手工拼接会费时费力. 本文利用MATLAB实现碎片自动拼接,解决了如何复原一个纵切印刷文字文件破碎纸片,如何复原一个即纵切又横切的印刷文字文件破碎纸片,如何复原一个即纵切又横切的双面印刷文字文件破碎纸片. 关键词碎纸片;像素;灰度;邻接;MATLAB;复原. 中图分类号0141.41 Mathematical model stitching scraps of paper and achieve recovery (School of Mathematics and Statistics,Hexi University,Zhangye,Gansu,734000)Abstract:Shredding splicing, is to use the computer to recover the debris. If the number of fragments is too large, hand-stitching dues when consuming. In this paper, using Matlab automatic mosaic fragments, Addresses how to recover a broken piece of paper slitting printing text documents, How to recover a longitudinal and transverse to that file fragmentation paper printed text, How to recover a longitudinal and cross that double-sided printed paper text file fragmentation. Keywords:Scraps of paper; Pixel; Grayscale; Adjacency; Matlab; Recovery. 1 问题重述 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用.传统上,拼接复原工作需由人工完成,准确率较高,但效率很低.特别是当碎片数量巨大,人工拼接很难在短时间内完成任务.随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率.现给出下列三种情形 (1)对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,如针对给出的同一页中文文件(图片集1)的碎片数据进行拼接复原. (2)对于碎纸机既纵切又横切的情形,建立碎纸片拼接复原模型和算法,如针对给出的同一页中文文件(图片集2)的碎片数据进行拼接复原. (3)上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决.现给出一页英文印刷文字双面打印文件(图片集3)的碎片数据. 图片文件说明: (1)每一图片集为同一页纸的碎片数据. (2)图片集1为纵切碎片数据,每页纸被切为19条碎片(随机编号为00-19). ?个碎片(随机编号为(3)图片集2为纵横切碎片数据,每页纸被切为1119 000-208). (4)图片集3为纵横切碎片数据,每页纸被切为1119 ?个碎片,每个碎片有正反两面.

2013年数学建模B题碎纸片的拼接复原

B题 碎纸片的拼接复原 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。请讨论以下问题: 1.对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。 2.对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。 3.上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。附件5给出的是一页英文印刷文字双面打印文件的碎片数据。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。 【数据文件说明】

(1)每一附件为同一页纸的碎片数据。 (2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片。 (3)附件3、附件4为纵横切碎片数据,每页纸被切为 11×19个碎片。 (4)附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反两面。该附件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片的两面分别对应文件 000a、000b。 【结果表达格式说明】 复原图片放入附录中,表格表达格式如下: (1)附件1、附件2的结果:将碎片序号按复原后顺序填入 1×19的表格; (2)附件3、附件4的结果:将碎片序号按复原后顺序填入11×19的表格; (3)附件5的结果:将碎片序号按复原后顺序填入两个 11×19的表格;

碎纸片的拼接复原问题大学生数学建模全国一等奖论文

碎纸片的拼接复原问题 摘要 为解决碎纸片的拼接复原问题,我们通过定义差异度指数、高度差,建立0-1规划模型,使用聚类分析、MATLAB搜索算法和人工干预等相结合,得到了所有附件复原序号和复原图片。 针对问题一,首先提取附件1、2中所有碎片左侧和右侧边缘灰度,通过任意列碎片右侧和任意列碎片左侧的边缘灰度差值可以定义差异度指数,从而得到差异度特征矩阵,然后建立0-1规划模型,以第i张碎片右侧与第j张碎片左侧差异度最小为目标函数,以第i张碎片右侧与第j张碎片左侧是否相连为决策变量,以每张碎片右侧一定与某张碎片左侧相连、每张碎片左侧一定与某张碎片右侧相连为约束条件。算法为先提取任意张碎片边缘灰度值,得到差异度矩阵,带入规划模型中,通过LINGO软件找到中英文碎片的拼接方法,得到复原序号如表一、表二,从而得到出中文与英文复原图片。 表一:中文碎片的复原序号 表二:英文碎片的复原序号 片拼接方法。结果表明两种方法得出的中英文复原顺序相同,复原图片相同,同时人工检验中英文复原图片中无明显语法、单词错误,证明复原图片准确。 针对问题二,由于每张碎片有左侧、右侧和上侧、下侧,与问题一相同,可以定义两个差异度指数,建立双目标0-1规划模型。但由于差异度矩阵过大,决策变量复杂,我们又建立了改进的简化模型,定义高度差,运用聚类分析方法,按照高度不同将所有碎片分为18类,然后再以第j块碎片左侧与第i块碎片右侧的差异度最小为目标函数,以第i块碎片右侧与第j块碎片左侧是否相连为决策变量,以每块碎片右侧一定与某块碎片左侧相连、每块碎片左侧一定与某块碎片右侧相连,满足高度差阈值为约束条件,建立单目标0-1规划模型。算法为先提取任意块碎片边缘灰度值和高度,得到差异度矩阵,编程将中文碎片按高度分为18类,人工干预分为11行,再利用问题一中碎片纵向复原方法,得到中文复原序号,画出中文复原图片。(英文复原模型相似,仅高度差阈值不同) 针对问题三,对于双面英文碎片的复原问题,我们提出了单词残缺程度的定义,定量的描述了英文碎片的特征信息,构成了算法的核心内容,运用编程和人工干预将碎纸片分为11类,每类19个碎片,在此基础上利用前两问所建的0-1规划模型,再加上双面的一些约束条件,得到双面英文复原序号,并绘出英文双面复原图片。 关键词:差异度指数;0-1规划;LINGO软件;聚类分析;高度差;残缺程度;

碎纸片的拼接复原.

碎纸片的拼接复原 摘要 本文利用MATLAB软件将附件图像数字化,把图像转化为灰度矩阵进行处理。 问题一,本文利用边缘匹配模型和灰度匹配模型对碎纸片的边缘作分析。基于,边缘部分的黑白分布越相近,两者相连的可能性越高的原理,得到附件1的排序是008,014,012,015,013,010,002,016,001,004,005,009,013,018,011,007,017,000,006 。附件2的排序是003,006,002,007,015,018,011,000,005,001,009,013,010,008,012,014,017,016,004。 问题二,本文首先按行将小块进行分类,以简化模型。在附件3中,将碎纸片分组,对分完组后的碎纸片采用字体矩形模型,实现同行间排序,将得到的行再通过匹配模型,从而拼出原文。而对于附件4,本文建立四线格位置模型,将碎纸片进行分组。计算过程中发现部分标号基线相同,但却与不同的行对应匹配,此时进行人工干涉。然后运用行内匹配模型,对同行间的碎纸片排序。附件3、附件4的排序结果见附录一。 关键词:灰度矩阵,匹配模型,相关性分析,三线格基线,人工干涉,最优化

一.问题重述 破碎文件的拼接一直以来都以人工为主,其准确度较高,但效率较为低下,不能承担短时间内完成巨大数量的碎片拼接任务,遏制了在司法物证复原、历史文献修复以及军事情报获取等领域的进一步发展。随着计算机技术的发展,我们尝试运用计算机软件来实现对破碎文件的迅速拼接。现问题如下: (1)、对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达。 (2)、对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。 说明:附件1、附件2为纵切碎片数据,每页纸被切为19条碎片。附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片。其中每一附件为同一页纸的碎片数据。 二.模型假设 1.附件中所给的拼接碎纸片毫无缺失。 2.附件中的英文严格按照四线格方式打印。 3.机器印刷时的字间距和行间距大致相同。 4.碎纸机切割图片是垂直的。 5.碎纸机切割的碎纸片大小相同、质地均匀。 6.所有的碎纸片由同一碎纸机切割。 7.每个附件中所有的碎纸片来自于同一页文字文件。 三.符号说明 符号符号说明 ,R r相关系数 M灰度矩阵 Y碎纸片左边缘矩阵 1 Y碎纸片右边缘矩阵 2 ai编号为i的碎纸片,第j行k列的灰度值 ,j k (), R u v相关系数 四.问题分析 碎纸片拼接技术是模式识别领域中一个较为新颖但很典型的应用。他涉及到数字图

碎纸片的拼接复原分析模型完整版

碎纸片的拼接复原分析 模型 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

碎纸片拼接复原的设计与实现 摘要 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。由于人工拼接效率较低,我们利用MATLAB 软件编写程序,实现碎纸片拼接技术的计算机化,实现批量拼接,以节省人力和时间。 (一)为寻找最吻合拼接方案,利用MATLAB 软件中的imread 函数,实现了碎纸片与矩阵之间的形式转化以便于碎纸图片的拼接比对。数值0至255表示图中某一像素点由黑到白的变化程度。再根据纸张的边界留白较多,通过计算每个矩阵第一列中各向量的元素和,可将所得和数值最大的列向量所在矩阵对应的碎纸片确定为左边界。经计算知:008图为整体图片的左边界。根据使吻合参数 1980 ,,72,11 {}{}i j k k k P i P j ρ==-∑最小的原则,可计算出下一张图片。重复此步骤,以此类 推,每次都挑选出剩余图片中与前一幅图片吻合参数,i j ρ最小的作为与之相连接的碎纸图片。最后可得到 来进行优化。附件3类比于问题一,用相同的方法找到所有碎纸片的左边界,共11 一行作为入手点,利用MATLAB 软件进行图片拼接。但由于碎纸图片的行特征值有误差,故图片大块拼接正确,但与实际情况有细微差别。通过简单的人工检测得到准确行的排列顺序,由于行信息充足,借用第一问最终达到正确拼接效果。结果矩阵如 表12 所示。 第二种情况的关键点是找出准确的行特征,由于汉字与英文书写格式不同,汉字均为方块字,易于定位。而英文由于特殊的书写方式,上下位置不同,不易于找到行特征值。如:英文字母最为密集行中点位置。需将附件4图片对应的矩阵转化为0-1列向量(空白行为0,反之则为1)。利用此方法筛选出位于同一行的碎纸片并进行纸片拼接。后续拼接方法同附件3。结果矩阵如 表13 所示。 (三)结合双面信息处理边界,得到边界特点。根据元音字母中心位置得出行高,从而更准确筛选同行图片。双面信息同时校准,更容易得到拼接顺序,人工干预少。结果矩阵如 表5 所示。 模型一简单易处理,适用于含大量信息的碎纸片拼接且准确度高;模型二针对文字内容的中英文差异分别利用吻合参数和行高作为标准来筛选图片;模型三深入生活实际,考虑日常生活中反正面印刷情况并结合英文印刷特点,实用性高,双面信息同时校准,人工干预少。

相关主题