搜档网
当前位置:搜档网 › 金属塑性变形对微观结构和力学性能的影响

金属塑性变形对微观结构和力学性能的影响

金属塑性变形对微观结构和力学性能的影响
金属塑性变形对微观结构和力学性能的影响

金属塑性变形对微观结构和力学性能的影响

金属塑性变形定义(plastic deformation of metals )金属零件在外力作用下产生不可恢复的永久变形。

单晶体产生塑性变形的原因是原子的滑移错位。多晶体(实际使用的金属大多是多晶体)的塑性变形中,除了各晶粒内部的变形(晶内变形)外,各晶粒之间也存着变形(称为晶间变形)。多晶体的塑性变形是晶内变形和晶内变形的总和。

人类很早就利用塑性变形进行金属材料的加工成形,但只是在一百多年以前才开始建立塑性变形理论。1864~1868年,法国人特雷斯卡()在一系列论文中提出产生塑性变形的最大切应力条件。1911年德国卡门(Karman)在三向流体静压力的条件下,对大理石和砂石进行了轴向抗压试验;1914年德国人伯克尔ker)对铸锌作了同样的试验。他们的试验结果表明:固体的塑性变形能力(即塑性指标)不仅取决于它的内部条件(如成分、组织),而且同外部条件(如应力状态条件)有关。1913年德国冯·米泽斯Kises)提出产生塑性变形的形变能条件;1926年德国人洛德、1931年英国人泰勒和奎尼分别用不同的试验方法证实了上述结论。

金属晶体塑性的研究开始于金属单晶的制造和X射线衍射的运用。早期的研究成果包括在英国伊拉姆年)、德国施密特(1935年)、美国巴雷特年)等人的著作中。主要研究了金属晶体内塑性变形的主要形式──滑移以及孪晶变形。以后的工作是运用晶体缺陷理论和高放大倍数的观测方法研究塑性变形的机理。

塑性变形微观结构变化

图1塑性变形中产生的滑移

塑性变形中最基本的微观变化是位错滑移和滑移带的产生。分为单滑移,双滑移,多滑移等。另外,还有孪生等现象的产生。

图 2 % Si-Fe单晶体中的平直滑移带

多晶金属在塑性变形过程中,仍然保持着连续性。即每个晶粒的变形都要受到相邻晶粒的制约,并与相邻晶粒的变形相协调。

晶粒越细,屈服强度越高

金属塑性变形的力学性能影响

钢经形变处理后,形变奥氏体中的位错密度大为增加,可

形变量愈大,位错密度愈高,金属的抗断强度也随之增高。随着形变程度增加不但位错密度增加而且位错排列方式也会发生变化由于变

形温度下,原子有一定的可动性,位错运动也较容易进行,因此在形变过程中及形变后

停留时将出现多边化亚结构及位错胞状结构。当亚晶之间的取向差达到几度时,就可象

晶界一样,起到阻碍裂纹扩展的作用,由霍尔一派奇公式,晶粒越小则金属强度越大。

由于亚结构的出现,相变时马氏体成核、长大过程均受到亚晶界的影响,生长的马

氏体片尺寸d减小,从而使相界增加,材料强度提高。

由于形变奥氏体内位错密度增加,亚结构细化,从而为碳化物析出提供了处所,为

碳的扩散开辟了通道,有利于碳化物弥散析出,起到了弥散硬化的作用,其强化效果与

析出粒子间距成反比:

综上所述,形变处理的强化效果是位错强化、细晶强化、弥散硬化和相变强化的

综合表现。

超塑性变形对金属力学性能的影响

材料在外力的作用下,产生变形,而外力过大会产生大

素性变形,而这样的变形对材料的性能产生了巨大的影响,

为了更加准确的研究材料的性能,将材料表面细化至纳米化

或超细晶化。

强塑性变形金属表面纳米化

在外加载荷的重复作用下,材料表面的粗晶组织通过不

同方向产生的强烈塑性变形而逐渐细化至纳米量级。由表面

机械加工处理导致的表面自身纳米化的过程包括:材料表面

通过局部强烈塑性变形而产生大量的缺陷,如位错、孪晶、

层错和剪切带;当位错密度增至一定程度时,发生湮没、重

组,形成具有亚微米或纳米尺度的亚晶,另外随着温度的升

高,表面具有高形变储能的组织也会发生再结晶,形成纳米

晶;此过程不断发展,最终形成晶体学取向呈随机分布的纳

米晶组织。样品表面采用高能振动喷丸技术来实现纳米化。

图1是高能喷丸装置示意图。工作时,整个容器作垂直振动,

使弹丸从各方向与样品下表面发生大能量碰撞,使得样品表

面产生强烈塑性变形而导致晶粒细化。

形变诱发的纳米化机理:高层错能立方系纯铁的塑性变

形方式为位错运动,在外力的作用下晶粒细化的过程包括:

在粗晶内部形成高密度的位错墙和位错缠结;通过不断地吸

收位错,位错墙和位错缠结逐渐演变成小角度亚晶界;小角

度亚晶界继续吸收位错而转变成大角度亚晶界;亚晶内部重复上述过程,使晶粒尺寸不断减小、取向差不断增大,最终

形成等轴状、取向呈随机分布的纳米晶组织。中等层错能立

方系金属纯铜的变形方式主要是位错运动,随着应变量的增

加依次形成了由较厚位错墙分割的等轴状位错胞、晶粒尺寸

逐渐减小,而取向差逐渐增大的亚微晶和取向呈随机分布的

纳米晶。机械孪生只发生在表面附近应变量较大的、晶体学

取向不适合位错运动的晶粒中,其作用主要是调整晶粒取向,

使晶粒碎化易于以位错运动方式进行。较低层错能立方系奥

氏体粗晶内部通过位错湮灭和重组形成位错胞;应变量和应

变速率的增加诱发机械孪生,形成片层状孪晶;孪晶内部通

过位错的运动使显微组织逐渐由片层状向等轴状转变,同时

晶粒尺寸逐渐减小、取向差逐渐增大;最终形成等轴状、取

向呈随机分布的纳米晶组织。低层错能立方系不锈钢的位错

在面上滑移、并相互交割形成网格结构;单系孪晶形成并逐

渐过渡到多系孪晶;多系孪晶相互交割使晶粒尺寸不断减小,

并在孪晶交叉处形成马氏体相;孪晶系增多与孪晶重复交割强度加大使得碎化晶粒的尺寸进一步减小;最终在大应变量、高应变速率等作用下,形成等轴状、取向呈随机分布的马氏体相纳米晶组织。对于立方系金属,高层错能材料的塑性变形一般通过位错运动;而具有低层错能的材料则为机械孪生;对于层错能介于二者之间的材料,位错滑移和机械孪生两种方式均可发生。对于结构对称性较低的金属,由于滑移面较少,即使在层错能较高的材料中(如钛)也存在着机械孪生。急剧塑性变形制备纳米/超细晶材料

急剧塑性变形是具有强烈的细化晶粒的能力,甚至可以

将晶体加工成非晶。急剧塑性变可以在低温下使金属材料的微观组织得到明显细化,从而大大提高其强度和韧性,近年来的研究表明,SPD法可以制备出具有亚微米级甚至纳米级

微观结构的金属材料,因而日益受到人们的关注。急剧塑性变常用的工艺形主要包括等通道角挤压法(ECAP)、高压扭转

法(SPTS)、累积轧焊法(ARB)、多向锻造(MF)多向压缩(MC)

和反复弯曲平法(RCS)等。

急剧大塑性变形法制备块体纳米材料,尚有

许多问题不很清楚。例如,急剧大塑性变形过程中超细结构形成的机理及晶界的变化仍然不清楚,许多研究者得出的结论相互矛盾,有许多试验现象尚不能得到合理的解释。而且,在制备技术方面,存在材料纳米结构的均匀性,生产效率低,对难以变形的材料无法制备纳米材料等问题。

金属的塑性变形和强化

第六章金属的塑性变形和强化 练习与思考题 1 什么叫强化?可能采用那些强化手段来强化金属? 采用各种方式使得金属塑性变形时位错运动的阻力增大,即可实现金属材料的强化。如冷变形的加工硬化,添加合金的固溶强化和析出沉淀强化,细晶强化,亚结构强化,多相组织的相变强化等。 2 面心立方单晶体的应力应变曲线的硬化系数θ为什么各个阶段各不相同?θⅡ最大的原因是什么? 第I阶段一般认为只有一个滑移系开动,强化作用不大,θI较小,为易滑移阶段; 第Ⅱ阶段为线性强化阶段,出现了多系滑移;多系滑移产生大量位错,使得位错运动阻力明显增大,尤其是面角位错的出现,强烈的阻止位错源开动,并强 最大。 烈阻止其他滑移面上的位错运动,从而使得这一阶段硬化指数θ Ⅱ 第Ⅲ阶段出现了交滑移,从而拜托了面角位错的封锁,使原被塞积的位错继续运动,使得位错的自由路程增大。即在加工硬化的同时,存在着动态回复的软化过程,从而造成θⅢ随着γ增大而逐渐降低的现象。 3 晶界对塑性变形有什么影响? 晶界对塑性变形过程的影响,主要是在温度较低时晶界阻碍滑移进行引起的障碍强化作用和变形连续性要求晶界附近多系滑移引起的强化作用。

为使多晶体塑性变形过程不破坏晶界连续性,相邻的晶粒必须协调变形。多晶体塑性变形一旦变形传播到相邻的晶粒,就产生了多系滑移。位错运动遇到的障碍比单系滑移多,阻力要增加。 存在晶界及晶界两侧晶粒取向有差别,多晶体的塑性变形有着很大的不均匀性。在单个晶粒内,晶界变形要低于晶粒中心区域;由于细晶组织中晶界占的比例要大于粗晶组织中的晶界,细晶组织的强化效果高于粗晶组织。 4 多系滑移为何能起到强化作用?金属多晶体塑性变形一开始为什么就出现了多系滑移的强化? 多系滑移产生大量位错,位错间相互作用使得位错运动阻力明显增大,尤其是面角位错的出现,强烈的阻止位错源开动,并强烈阻止其他滑移面上的位错运动。 多晶体材料中,某一晶粒产生滑移变形而不破坏晶界连续性,相邻的晶粒必须协调变形。理论计算证明,相邻晶粒通过滑移协调一个可以变成任意形状的晶粒的变形,至少需六个滑移系统。所以多晶体塑性变形一旦形传播到相邻的晶粒,就产生了多系滑移。位错运动遇到的障碍比单系滑移多,阻力增加很快。 5 细化晶粒对金属材料的力学性能有什么影响?细化晶粒可以解决哪些问题?有哪些途径可以细化晶粒? 根据Hall-Petch关系,流变应力与晶粒直径方根的倒数(D-1/2)有明显的线性关系。 σs=σi+KD-1/2 式中σs——屈服应力; D——平均晶粒直径;σi、K——实验常数。 细化晶粒非常重要,在工程上有重要的应用 (1)在高强度的钢种中,细化晶粒可以提高其韧性;有助于防止脆性断裂发生,可降低脆性转化温度,提高材料使用范围。 (2)在低强度钢中(如低碳结构钢),利用细化晶粒来提高屈服强度有明显效果。尤其是超细晶组织对提高强度和韧性作用更突出。 (3)在超塑性变形时,细化晶粒可以得到理想的超塑性变形。因为超塑性

金属塑性变形与断裂

金属塑性变形与断裂集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

金属材料塑性变形与断裂的关系 摘要:金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原于间结合力遭受破坏,使其出现了裂纹,裂纹经过扩展而使金属断开。任何断裂都是由裂纹形成和裂纹扩展两个过程组成的,而裂纹形成则是塑性变形的结果。金属塑性的好坏表明了它抑制断裂能力的高低。 关键词:塑性变形解理断裂准解理断裂沿晶断裂冷脆疲劳应力腐蚀 氢脆高温断裂 一、解理断裂与塑变的关系 解理断裂在主应力作用下,材料由于原子键的破断而产生的沿着某一晶面的快速破断过程。解理断裂的的产生条件是位错滑移必须遇到阻力,且位错滑移聚集到一定程度。断裂面沿一定的晶面发生,这个平面叫做解理面。解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。 第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。

第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台。 从宏观上看,解理断裂没有塑性变形,但从微观上看解理裂纹是以塑性变形为先导的,尽管变形量很小。解理断裂是塑性变形严重受阻,应力集中非常严重的一种断裂。 二、准解理断裂与塑变的关系 准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。产生原因: (1)、从材料方面考虑,必为淬火加低温回火的组织,回火温度低,易产生此类断裂。 (2)、构件的工作温度与钢材的脆性转折温度基本相同。 (3)、构件的薄弱环节处处于平面应变状态。 (4)、材料的尺寸比较粗大。 (5)、回火马氏体组织的缺陷,如碳化物在回火时的定向析出。 准解理断裂往往开始是因为碳化物,析出物或者夹杂物在外力作用下产生裂纹,然后沿某一晶面解理扩展,之后以塑性变形方式撕裂,其断裂面上显现有较大的塑性变形,特征是断口上存在由于几个地方的小裂纹分别扩展相遇发生塑性撕裂而形成的撕裂岭。准解理断裂面不是一

金属塑性变形理论习题集

《金属塑性变形理论》习题集 张贵杰编 河北联合大学 金属材料与加工工程系 2013年10月

前言 《金属塑性变形理论》是关于金属塑性加工学科的基础理论课,也是“金属材料工程”专业大学本科生的主干课程,同时也是报考材料科学与工程专业方向硕士研究生的必考科目。 《金属塑性变形理论》总学时为72,内容上分为两部分,即“金属塑性加工力学”(40学时)和“塑性加工金属学”(32学时)。 为使学生能够学好本课,以奠定扎实的理论基础,提高分析问题和解决问题的能力,编者集20余年的教学经验特编制本习题集,一方面作为学生在学习本课程时的辅导材料,供课下消化课堂内容时使用,另一方面也可供任课教师在授课时参考,此外对报考研究生的学生还具有指导复习的作用。 本“习题集”在编写时,充分考虑了学科内容的系统性、学生学习的连贯性以及与教材顺序的一致性。该“习题集”中具有前后关联的一个个题目,带有由浅入深的启发性,能够引导学生将所学的知识不断深化。教师也可根据教学进程从中选题,作为课外作业指导学生进行练习。所有这些都会有助于学生理解和消化课堂上所学习的内容,从而提高课下的学习效率。 编者 2013年10月

第一部分 金属塑性加工力学 第一章 应力状态分析 1. 金属塑性加工中的外力有哪几种?其意义如何? 2. 为什么应力分量的表达需用双下标?每个下标都表示何物理意义? 3. 已知应力状态如图1-1所示,写出应力分量,并以张量形式表示。 4. 已知应力状态的六个分量7-=x σ,4-=xy τ,0=y σ,4=yz τ, 8-=zx τ,15-=z σ(MPa),画出应力状态图,写出应力张量。 5. 作出单向拉伸、单向压缩、三向等值压缩、平面应力、平面应变、 纯剪切应力状态的应力Mehr 圆。 6. 已知应力状态如图1-2所示,当斜面法线方向与三个坐标轴夹角余 弦31 ===n m l 时,求该斜面上的全应力S 、全应力在坐标轴上的 分量x S 、y S 、z S 及斜面上的法线应力n σ和切应力n τ。 图 1-1 ?? ?? ? ??------ =1548404847σT x y z 图 1-2 x 10

金属塑性变形原理

金属塑性变形原理 1、变形和应力 1.1塑性变形与弹性变形 金属晶格在受力时发生歪扭或拉长,当外力未超过原子之间的结合力时,去掉外力之后晶格便会由变形的状态恢复到原始状态,也就是说,未超过金属本身弹性极限的变形叫金属的弹性变形。多晶体发生弹性变形时,各个晶粒的受力状态是不均匀的。 当加在晶体上的外力超过其弹性极限时,去掉外力之后歪扭的晶格和破碎的晶体不能恢复到原始状态,这种永久变形叫金属的塑性变形。金属发生塑性变形必然引起金属晶体组织结构的破坏,使晶格发生歪扭和紊乱,使晶粒破碎并且使晶粒形状发生变化,一般晶粒沿着受力方向被拉长或压缩。 1.2应力和应力集中 塑性变形时,作用于金属上的外力有作用力和反作用力。由于这两种外力的作用,在金属内部将产生与外力大小相平衡的内力。单位面积上的这种内力称为应力,以σ表示。 σ=P/S 式中σ——物体产生的应力,MPa: P——作用于物体的外力,N; S——承受外力作用的物体面积,mm2。 当金属内部存在应力,其表面又有尖角、尖缺口、结疤、折叠、划伤、裂纹等缺陷存在时,应力将在这些缺陷处集中分布,使这些缺陷部位的实际应力比正常应力高数倍。这种现象叫做应力集中。 金属内部的气泡、缩孔、裂纹、夹杂物及残余应力等对应力的反应与物体的表面缺陷相同,在应力作用下,也会发生应力集中。 应力集中在很大程度上提高了金属的变形抗力,降低了金属的塑性,金属的破坏往往最先从应力集中的地方开始。 2、塑性变形基本定律 2.1体积不变定律 钢锭在头几道轧制中因其缩孔、疏松、气泡、裂纹等缺陷受压缩而致密,体积有所减少,此后各轧制道次的金属体积就不再发生变化。这种轧制前后体积不变的客观事实叫做体积不变定律。它是计算轧制变形前后的轧件尺寸的基本依据。 H、B、L——轧制前轧件的高、宽、长;h、b、l——轧制后轧件的高、宽、长。根据体积不变定律,轧件轧制前后体积相等,即 HBL=hbl 2.2最小阻力定律 钢在塑性变形时,金属沿着变形抵抗力最小的方向流动,这就叫做最小阻力定律。根据这个定律,在自由变形的情况下,金属的流动总是取最短的路线,因为最短的路线抵抗变形的阻力最小,这个最短的路线,即是从该动点到断面周界的垂线。

第五章 金属及合金的塑性变形 -答案

第五章金属及合金的塑性变形与断裂一名词解释 固溶强化,应变时效,孪生,临界分切应力,变形织构 固溶强化:固溶体中的溶质原子溶入基体金属后使合金变形抗力提高,应力-应变曲线升高,塑性下降的现象; 应变时效:具有屈服现象的金属材料在受到拉伸等变形发生屈服后,在室温停留或低温加热后重新拉伸又出现屈服效应的情况; 孪生:金属塑性变形的重要方式。晶体在切应力作用下一部分晶体沿着一定的晶面(孪晶面)和一定的晶向(孪生方向)相对于另外一部分晶体作均匀的切变,使相邻两部分的晶体取向不同,以孪晶面为对称面形成镜像对称,孪晶面的两边的晶体部分称为孪晶。形成孪晶的过程称为孪生; 临界分切应力:金属晶体在变形中受到外力使某个滑移系启动发生滑移的最小

分切应力; 变形织构:多晶体中位向不同的晶粒经过塑性变形后晶粒取向变成大体一致,形成晶粒的择优取向,择优取向后的晶体结构称为变形织构,织构在变形中产生,称为变形织构。 二填空题 1.从刃型位错的结构模型分析,滑移的 移面为{111},滑移系方向为<110>,构成12 个滑移系。P166. 3. 加工硬化现象是指随变形度的增 大,金属强度和硬度显著 提高而塑性和韧性显著下降的现象 ,加工硬化的结果,使金属对塑性变形的抗力增大,造成加工硬化的

根本原因是位错密度提高,变形抗 力增大。 4.影响多晶体塑性变形的两个主要因素是晶界、晶格位向差。 5.金属塑性变形的基本方式是滑移和孪生,冷变形后金属的 强度增大,塑性降低。6.常温下使用的金属材料以细小晶粒为好,而高温下使用的金属材 料以粗一些晶粒为好。对于在高温下工作的金属材料,晶粒应粗一些。因为在高温下原子沿晶界 的扩散比晶内快,晶界对变形的阻 力大为减弱而致 7.内应力可分为宏观内应力、微观内应力、点阵畸变三种。 三判断题 1.晶体滑移所需的临界分切应力实测值比理论值小得多。(√) 2 在体心立方晶格中,滑移面为{111}×6,滑移方向为〈110〉×2,所以其滑

(完整版)《金属塑性成形原理》习题答案

金属塑性成形原理》 习题答案 一、填空题 1. 衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2. 所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3. 金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4. 请将以下应力张量分解为应力球张量和应力偏张量 5. 对应变张量,请写出其八面体线变与八面体切应变的表达式。 =

6.1864 年法国工程师屈雷斯加( H.Tresca )根据库伦在土力学中研究成果, 并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果 采用数学的方式,屈雷斯加屈服条件可表述为 。 7. 金属塑性成形过程中影响摩擦系数的因素有很多, 归结起来主要有 金属的 种类和 化学成分 、 工具的表面状态 、 接触面上的单位压力 、 变形温度 、 变形速度 等几方面的因素。 8. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切 线方向即 为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态 下,塑性区内各点的应力状态不同其实质只是 平均应力 不同,而各点处 的 最大切应力 为材料常数。 9. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应 的速度 场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场, 称之为 真实 应力场和 真实 速度场,由此导出的载荷,即为 真实 载荷, 它是唯一的。 10. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: 11、金属塑性成形有如下特点: 、 、 、 12、按照成形的特点,一般将塑性成形分为 和 两大类,按 照成形时工件的温度还可以分为 、 和 三类。 13、金属的超塑性分为 和 两大类。 14、晶内变形的主要方式和单晶体一样分为 和 。 其中 变形是主要的,而 变形是次要的,一般仅起调节作用。 ,则单元内任一点外的应变可表示为

塑性变形对金属组织和性能的影响

塑性变形对金属组织和性能的影响 1. 塑性变形对金属组织结构的影响 (1)晶粒发生变形金属发生塑性变形后,晶粒沿形变方向被拉长或压扁。当变形量很大时, 晶粒变成细条状(拉伸时), 金属中的夹杂物也被拉长, 形成纤维组织。 变形前后晶粒形状变化示意图 (2)亚结构形成金属经大的塑性变形时, 由于位错的密度增大和发生交互作用, 大量位错堆积在局部地区, 并相互缠结, 形成不均匀的分布, 使晶粒分化成许多位向略有不同的小晶块, 而在晶粒内产生亚晶粒。 金属经变形后的亚结构 (3)形变织构产生金属塑性变形到很大程度(70%以上)时, 由于晶粒发生转动, 使各晶粒的位向趋近于一致, 形成特殊的择优取向, 这种有序化的结构叫做形变织构。形变织构一般分两种:一种是各晶粒的一定晶向平行于拉拔方向, 称为丝织构, 例如低碳钢经高度冷拔后, 其<100>平行于拔丝方向; 另

一种是各晶粒的一定晶面和晶向平行于轧制方向, 称为板织构, 低碳钢的板织构为{001}<110>。 形变织构示意图 2. 塑性变形对金属性能的影响 (1)形变强化金属发生塑性变形, 随变形度的增大, 金属的强度和硬度显著提高, 塑性和韧性明显下降。这种现象称为加工硬化, 也叫形变强化。 产生加工硬化的原因是:金属发生塑性变形时, 位错密度增加, 位错间的交互作用增强, 相互缠结, 造成位错运动阻力的增大, 引起塑性变形抗力提高。另一方面由于晶粒破碎细化, 使强度得以提高。在生产中可通过冷轧、冷拔提高钢板或钢丝的强度。 (2)产生各向异性由于纤维组织和形变织构的形成, 使金属的性能产生各向异性。如沿纤维方向的强度和塑性明显高于垂直方向的。用有织构的板材冲制筒形零件时, 即由于在不同方向上塑性差别很大, 零件的边缘出现“制耳”。在某些情况下, 织构的各向异性也有好处。制造变压器铁芯的硅钢片, 因沿[100]方向最易磁化, 采用这种织构可使铁损大大减小, 因而变压器的效率大大提高。

金属的塑性变形

二、金属的塑性变形 材料受力后要发生变形,变形可分为三个阶段:弹性变形;弹-塑性变形;断裂。外力较小时产生弹性变形,外力较大时产生塑性变形,而当外力过大时就会发生断裂。在整个变形过程中,对材料组织、性能影响最大的是弹-塑性阶段的塑性变形部分。如:锻造、轧制、拉拔、挤压、冲压等生产上的许多加工方法,都要求使金属产生变形,一方面获得所要求的形状及尺寸,另一方面可引起金属内部组织和结构的变化,从而获得所要求的性能。因此研究塑性变形特征与组织结构之间相互关系的规律性,具有重要的理论和实际意义。 弹性变形(Elastic Deformation) 1.1 弹性变形特征(Character of Elastic Deformation) 1.变形是可逆的; 2.应力与应变保持单值线性函数关系,符合Hooke定律:σ=Eε,τ=Gγ,G=E/2(1-ν) 3.弹性变形量随材料的不同而异。 1.2 弹性的不完整性(Imperfection of Elastane) 工程上应用的材料为多晶体,内部存在各种类型的缺陷,弹性变形时,可能出现加载线与卸载线不重合、应变的发展跟不上应力的变化等现象,称为弹性的不完整性,包括包申格效应、弹性后效、弹性滞后等。 1.包申格效应(Bauschinger effect) 现象:下图为退火轧制黄铜在不同载荷条件下弹性极限的变化情况。 曲线A:初次拉伸曲线,σe=240Pa 曲线B:初次压缩曲线,σe=178Pa 曲线C:B再压缩曲线,σe↑,σe=278Pa 曲线D:第二次拉伸曲线,σe↓,σe=85Pa 可见:B、C为同向加载,σe↑;C、D为反向加载,σe↓。 定义:材料经预先加载产生少量塑性变形,然后同向加载则σe升高,反向加载则σe降低的现象,称为包申格效应。对承受应变疲劳的工件是很重要的。 2.弹性后效(Anelasticity) 理想晶体(Perfect crystals):

金属塑性变形与断裂

金属材料塑性变形与断裂的关系 摘要:金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原于间结合力遭受破坏,使其出现了裂纹,裂纹经过扩展而使金属断开。任何断裂都是由裂纹形成和裂纹扩展两个过程组成的,而裂纹形成则是塑性变形的结果。金属塑性的好坏表明了它抑制断裂能力的高低。 关键词:塑性变形解理断裂准解理断裂沿晶断裂冷脆疲劳应力腐蚀 氢脆高温断裂 一、解理断裂与塑变的关系 解理断裂在主应力作用下,材料由于原子键的破断而产生的沿着某一晶面的快速破断过程。解理断裂的的产生条件是位错滑移必须遇到阻力,且位错滑移聚集到一定程度。断裂面沿一定的晶面发生,这个平面叫做解理面。解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。 第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。 第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台。 从宏观上看,解理断裂没有塑性变形,但从微观上看解理裂纹是以塑性变形为先导的,尽管变形量很小。解理断裂是塑性变形严重受阻,应力集中非常严重的一种断裂。 二、准解理断裂与塑变的关系 准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。产生原因:

金属塑性变形对组织和性能的影响

金属塑性变形对组织和性能的影响 多晶体金属经塑性变形后,除了在晶粒内出现滑移带和孪晶等组织特征外,还具有以下组织结构的变化: ①形成纤维组织,塑性变形后,晶粒沿变形方向逐渐伸长,变形量越大,晶粒伸长的程度也越大。当变形量很大时,晶粒呈现出一片如纤维状的条纹,称为纤维组织.当金属中有杂质存在时,杂质也沿变形方向拉长为细带状(塑性杂质)或粉碎成链状(脆性杂质). ②形变亚结构的形成及细化. ●形变亚结构的形成机理:在切应力作用下,位错源所产生的大量位错沿滑移 面运动时,将遇到各种阻碍位错运动的障碍物,如晶界、亚晶界、第二相颗粒及割阶等,造成位错缠结.这样,金属中便出现了由高密度的缠结位错分隔开的位错密度较低的区域,即形变亚结构。 ●亚结构的细化,形变亚结构的边界是严重晶格畸变区,堆积大量位错,而内 部的晶格则相对完整,仅有稀疏的位错网络,这种亚结构也称为胞状亚结构或形变胞.(内部完整,外部包满位错) ③产生变形织构,与单晶体一样,多晶体在塑性变形时也伴随着晶体的转动过程,故

当变形量很大时,多晶体中原为任意取向的各个晶粒会逐渐调整其取向而趋于一致,这种现象称为晶粒的择优取向,这种由于金属塑性变形使晶粒具有择优取向的组织叫做形变织构。同种材料随着加工方式的不同,可能出现不同类型的织构: ●丝织构:在拉拔时形成,其特征是各晶粒的某一晶向与拉拔方向平行或接近平 行。 ●板织构:在轧制时形成,其特征是各晶粒的某一晶面与平行于轧制平面,而某 一晶向平行于轧制方向。性能特点:显示出各向异性。 塑性变形对金属性能的影响 金属产生加工硬化(也称形变强化) 在塑性变形过程中,随着金属内部组织的变化,金属的力学性能也将产生明显的变化,即随着变形程度的增加,金属的强度、硬度增加,而塑性、韧性下降,这一现象即为加工硬化或形变硬化。 加工硬化的原因:与位错的交互作用有关。随着塑性变形的进行,位错密度不断增大,位错运动时的相互交割加剧,产生固定割阶、位错缠结等障碍,使位错运动的阻力增大.引起形变抗力的增加,金属的强度提高.加工硬化的是强化金属材料的方法之一。对于用热处理方法不能强化的材料来说,用加工硬化方法提高其强度就显得更为重要加工硬化的不利影响:随着变形度的提高,金属变形抗力增加,继续变形困难,因此需要退火热处理消除加工硬化效应,以避免金属变形时开裂。 另外,随着变形度的增大,电阻不断下降。金属的电阻与晶体中点缺陷的密度有关。随着变形度的增大,金属的密度、热导率略有下降;磁导率、磁饱和度下降,但磁滞和矫顽力增加。随着变形度的增大,由于点缺陷密度的升高,金属的内能提高,使其化学活性提高,腐蚀尤其应力腐蚀倾向显著增加。此外,塑性变形后,由于金属中的晶体缺陷(位错及空位)增加,使扩散激活能减少,扩散速度增加。 残余应力 金属在塑性变形过程中,外力所作的功大部分转化为热能,但尚有一部分(约占总变形功的10%)保留在金属内部,形成残余内应力和点阵畸变。有以下分类: 宏观内应力(第一类内应力)由于金属工件或材料各部分的不均匀变形所引起的,它是整个物体范围内处于平衡的力,当除去它的一部分后,这种力的平衡就遭到破坏,

第四章 塑性变形(含答案)

第四章塑性变形(含答案) 一、填空题(在空白处填上正确的内容) 1、晶体中能够产生滑移的晶面与晶向分别称为________和________,若晶体中这种晶面与晶向越多,则金属的塑性变形能力越________。 答案:滑移面、滑移方向、好(强) 2、金属的再结晶温度不仅与金属本身的________有关,还与变形度有关,这种变形度越大,则再结晶温度越________。 答案:熔点、低 3、晶体的一部分沿一定晶面和晶向相对于另一部分发生滑动位移的现象称为________。 答案:滑移 4、由于________和________的影响,多晶体有比单晶体更高的塑性变形抗力。 答案:晶界、晶粒位向(晶粒取向各异) 5、生产中消除加工硬化的方法是________。 答案:再结晶退火 6、在生产实践中,经冷变形的金属进行再结晶退火后继续升高温度会发生________现象。 答案:晶粒xx 7、金属塑性变形后其内部存在着残留内应力,其中________内应力是产生加工硬化的主要原因。 答案:第三类(超微观)

8、纯铜经几次冷拔后,若继续冷拔会容易断裂,为便于继续拉拔必须进行________。 答案:再结晶退火 9、金属热加工时产生的________现象随时被再结晶过程产生的软化所抵消,因而热加工带来的强化效果不显著。 答案:加工硬化 10、纯铜的熔点是1083℃,根据再结晶温度的计算方法,它的最低再结晶温度是________。 答案:269℃ 11、常温下,金属单晶体塑性变形方式有________和________两种。 答案:滑移、孪生 12、金属产生加工硬化后会使强度________,硬度________;塑性 ________,韧性________。 答案:提高、提高、降低、降低 13、为了合理地利用纤维组织,正应力应________纤维方向,切应力应 ________纤维方向。 答案:平行(于)、垂直(于) 14、金属单晶体塑性变形有________和________两种不同形式。 答案:滑移、孪生 15、经过塑性变形的金属,在随后的加热过程中,其组织、性能和内应力将发生一系列变化。大致可将这些变化分为________、________和________。 答案:回复、再结晶、晶粒xx 16、所谓冷加工是指金属在________以下进行的塑性变形。

金属塑性变形对微观结构和力学性能的影响

金属塑性变形对微观结构和力学性能的影响 金属塑性变形定义 (plastic deformation of metals )金属零件在外力作用下产生不可恢复的永久变形。 单晶体产生塑性变形的原因是原子的滑移错位。多晶体(实际使用的金属大多是多晶体)的塑性变形中,除了各晶粒内部的变形(晶内变形)外,各晶粒之间也存着变形(称为晶间变形)。多晶体的塑性变形是晶内变形和晶内变形的总和。 人类很早就利用塑性变形进行金属材料的加工成形,但只是在一百多年以前才开始建立塑性变形理论。1864~1868年,法国人特雷斯卡()在一系列论文中提出产生塑性变形的最大切应力条件。1911年德国卡门( Karman)在三向流体静压力的条件下,对大理石和砂石进行了轴向抗压试验;1914年德国人伯克尔ker)对铸锌作了同样的试验。他们的试验结果表明:固体的塑性变形能力(即塑性指标)不仅取决于它的内部条件(如成分、组织),而且同外部条件(如应力状态条件)有关。1913年德国冯·米泽斯 Kises)提出产生塑性变形的形变能条件;1926年德国人洛德、1931年英国人泰勒和奎尼分别用不同的试验方法证实了上述结论。 金属晶体塑性的研究开始于金属单晶的制造和 X射线衍射的运用。早期的研究成果包括在英国伊拉姆年)、德国施密特(1935年)、美国巴雷特年)等人的著作中。主要研究了金属晶体内塑性变形的主要形式──滑移以及孪晶变形。以后的工作是运用晶体缺陷理论和高放大倍数的观测方法研究塑性变形的机理。 塑性变形微观结构变化 图 1塑性变形中产生的滑移

塑性变形中最基本的微观变化是位错滑移和滑移带的产生。分为单滑移,双滑移,多滑移等。另外,还有孪生等现象的产生。 图 2 % Si-Fe单晶体中的平直滑移带 多晶金属在塑性变形过程中,仍然保持着连续性。即每个晶粒的变形都要受到相邻晶粒的制约,并与相邻晶粒的变形相协调。 晶粒越细,屈服强度越高 金属塑性变形的力学性能影响 钢经形变处理后,形变奥氏体中的位错密度大为增加,可 形变量愈大,位错密度愈高,金属的抗断强度也随之增高。随着形变程度增加不但位错密度增加而且位错排列方式也会发生变化由于变 形温度下,原子有一定的可动性,位错运动也较容易进行,因此在形变过程中及形变后停留时将出现多边化亚结构及位错胞状结构。当亚晶之间的取向差达到几度时,就可象晶界一样,起到阻碍裂纹扩展的作用,由霍尔一派奇公式,晶粒越小则金属强度越大。 由于亚结构的出现,相变时马氏体成核、长大过程均受到亚晶界的影响,生长的马氏体片尺寸d减小,从而使相界增加,材料强度提高。 由于形变奥氏体内位错密度增加,亚结构细化,从而为碳化物析出提供了处所,为碳的扩散开辟了通道,有利于碳化物弥散析出,起到了弥散硬化的作用,其强化效果与析出粒子间距成反比: 综上所述,形变处理的强化效果是位错强化、细晶强化、弥散硬化和相变强化的 综合表现。 超塑性变形对金属力学性能的影响 材料在外力的作用下,产生变形,而外力过大会产生大 素性变形,而这样的变形对材料的性能产生了巨大的影响, 为了更加准确的研究材料的性能,将材料表面细化至纳米化 或超细晶化。 强塑性变形金属表面纳米化

相关主题