搜档网
当前位置:搜档网 › 机械原理知识系统整理

机械原理知识系统整理

机械原理知识系统整理
机械原理知识系统整理

第二章平面机构的结构分析

2.1机构的组成

1.构件与零件

构件:从运动的观点分析机械时,构件是参加运动的最小单元体。构件可以是一个零件,也可以是由多个零件组成的刚性系统。

零件:从制造的观点分析机械时,零件是组成机械的最小单元体。任何机械都由许多零件组合而成的。

2.运动副及其分类

运动副:两构件直接接触所形成的可动联接。

运动副元素:两构件直接接触而构成运动副的点、线、面部分。

构件的自由度:构件所具有的独立运动的数目。

两个构件构成运动副后,构件的某些独立运动受到限制,这种限制称为约束。

约束:运动副对构件的独立运动所加的限制。运动副每引入一个约束,构件就失去一个自由度。

运动副的分类:

1)按运动副的接触形式分:

低副:构件与构件之间为面接触,其接触部分的压强较低。

高副:构件与构件之间为点、线接触,其接触部分的压强较高。

2)按相对运动的形式分

平面运动副:两构件之间的相对运动为平面运动。

空间运动副:两构件之间的相对运动为空间运动。

3)按运动副引入的约束数分类

引入1个约束的运动副称为1级副,引入2个约束的运动副称为2级副,引入3个约束的运动副称为3级副,引入4个约束的运动副称为4级副,引入5个约束的运动副称为5级副。

4.按接触部分的几何形状分

3.运动链

运动链是指两个或两个以上的构件通过运动副联接而构成的系统。

闭式运动链(闭链):运动链的各构件构成首末封闭的系统。

开式运动链(开链):运动链的各构件未构成首末封闭的系统。

在运动链中,如果将某一个构件加以固定,而让另一个或几个构件按给定运动规律相对固定构件运动时,如果运动链中其余各构件都有确定的相对运动,则此运动链成为机构。

机构:具有确定运动的运动链。

机架:机构中固定不动的构件;

原动件:按照给定运动规律独立运动的构件

从动件:其余活动构件。

平面机构:组成机构的各构件的相对运动均在同一平面内或在相互平行的平面内。

空间机构:机构的各构件的相对运动不在同一平面内或平行的平面内。

2.2 运动简图

机器是由机构组成,因此,在对现有机构进行分析,还是构思新机械的运动方案和对组成新机械的各种机构作进一步的运动及动力设计时,需要一种表示机构的简明图形——机构运动简图。

机构运动简图:用国家标准规定的简单符号和线条代表运动副和构件,并按一定比例尺表示机构的运动尺寸,绘制出表示机构的简明图形。它与原机械具有完全相同运动特性。

机构示意图:为了表明机械的组成状况和结构特征,不严格按比例绘制的简图。

功用:

1. 现有机械分析

2. 新机械总体方案的设计

机构简图的绘制步骤:

1. 分析机械的动作原理、组成情况和运动情况;

2. 沿着运动传递路线,分析两构件间相对运动的性质,以确定运动副的类型和数目;

3. 适当地选择运动简图的视图平面;

4. 选择适当比例尺(=实际尺寸(m)/图示长度(mm)),用机构简图符号,绘制机构运动

简图。并从运动件开始,按传动顺序标出各构件的编号和运动副的代号。在原动件上标出箭头以表示其运动方向。

2.3机构自由度的计算及具有确定运动的条件

1. 机构自由度的概念: 机构的独立运动数称为机构的自由度。

2. 平面机构自由度的计算

机构的自由度取决于活动构件的数目、联接各构件的运动副的类型和数目。 (1〕平面机构自由度计算的一般公式

设一个平面机构中共有n 个活动构件,在用运动副将所有构件联接起来前,这些活动构件具有3n 个自由度。

当用h p 个高副、l p 个低副联接成运动链后,这些运动副共引入了h l p p +2个约束。由于每引入一个约束构件就失去了一个自由度,故整个机构相对于机架的自由度数为 h l p p n F --=23 (1.1)

该式称为平面机构的结构公式。 3.计算平面机构自由度的注意事项 (1)复合铰链

定义:两个以上构件在同一处以转动副相连接,所构成的运动副称为复合铰链。 解决问题的方法:若有K 个构件在同一处组成复合铰链,则其构成的转动副数目应为(K -1)个

(2)局部自由度

定义:若机构中某些构件所具有的自由度仅与其自身的局部运动有关,并不影响其他构件的运动,则称这种自由度为局部自由度。

局部自由度经常发生的场合:滑动摩擦变为滚动摩擦时添加的滚子;轴承中的滚珠。 解决的方法:计算机构自由度时,设想将滚子与安装滚子的构件固结在一起,视为一个构件。

(3)虚约束

在特定几何条件或结构条件下,某些运动副所引入的约束可能与其他运动副所起的限制作用一致,这种不起独立限制作用的重复约束称为虚约束。

虚约束经常发生的场合:

a.两构件之间构成多个运动副时;

b.两构件上某两点间的距离在运动过程中始终保持不变时;

c.联接构件与被联接构件上联接点的轨迹重合时;

d.机构中对运动不起作用的对称部分。

a) b) c)

d)

机构中的虚约束都是在一定的几何条件下出现的,如果这些几何条件不满足,则虚约束将变成有效约束,而使机构不能运动。

采用虚约束是为了改善构件的受力情况;传递较大功率;或满足某种特殊需要。 4.机构具有确定运动的条件:机构的自由度数等于机构的原动件数。

【学习指导】

本节的难点是正确判别机构中的虚约束。在学习时应首先搞清楚虚约束的概念,掌握机构中存在虚约束的特定几何条件,以便计算机构自由度时,能正确判定出机构中的虚约束。同时应注意虚约束在特定的几何条件破坏后将成为实际约束。 2.4 平面机构的组成原理分析 1.平面机构的组成原理

任何机构中都包含原动件、机架和从动件系统三部分。由于机架的自由度为零,每个原动件的自由度为1,而机构的自由度等于原动件数,所以,从动件系统的自由度必然为零。

杆组:自由度为零的从动件系统。

基本杆组:不可再分的自由度为零的构件组合称为基本杆组,简称基本组。 杆组的结构式为:l p n 23

机构的组成原理:把若干个自由度为零的基本杆组依次联接到原动件和机架上,就可组成新的机构,其自由度数目与原动件的数目相等。

在进行新机械方案设计时,必须遵循的原则:在满足相同工作要求的前提下,机构的结构越简单、杆组的级别越低、构件数和运动副的数目越少越好。

2.平面机构的结构分析

对已有机构或已设计完的机构进行运动分析和力分析时,首先需要对机构进行结构分析,即将机构分解为基本杆组、原动件和机架,结构分析的过程与由杆组依次组成机构的过程正好相反。通常称此过程为拆杆组。

拆杆组时应遵循的原则:从传动关系离原动件最远的部分开始试拆;每拆除一个杆组后,机构的剩余部分仍应是一个完整的机构;试拆时,按二级组试拆,若无法拆除,再试拆高一级别的杆组。

3.平面机构的高副低代法

目的:为了使平面低副机构结构分析和运动分析的方法适用于含有高副的平面机构。 概念:用低副代替高副

方法:用含两个低副的虚拟构件代替高副 高副低代必须满足的条件: 1.替代前后机构自由度不变 2.替代瞬时速度加速度不变

对于一般的高副机构,在不同位置有不同的瞬时替代机构。经高副低代后的平面机构,可视为平面低副机构。

第三章 平面机构的运动分析和力分析

3.1 机构速度分析的瞬心法

1.速度瞬心的概念

定义:当两构件(即两刚体)1,2作平面相对运动时(如图示),在任一瞬时,都可以认为它们是绕某一重合点作相对转动,而该重合点则称为瞬时速度中心,简称瞬心,以P12(或P21表示)。瞬心是相对运动两构件上相对速度为零的重合点。

瞬心法是利用机构的瞬时速度中心来求解机构的运动问题的。瞬心分绝对瞬心和相对瞬心,前者是指等速重合点的绝对速度为零;后者是指等速重合点的绝对速度不为零。

任意两个构件无论它们是否直接形成运动副都存在一个瞬心。故若机构全部构件数为n,则共有N =n(n-1)/2个瞬心。

2.求瞬心的方法

求瞬心的方法有两种:通过直接观察和利用三心定理。

三心定理:作平面运动的三个构件的三个瞬心位于同一条直线上。

第四章机械中的摩擦和机械效率

4.1移动副中的摩擦

移动副中的摩擦是运动副摩擦的一种简单的方式,广泛存在于机械运动中。有三种情况,即平面摩擦、斜面摩擦和槽面摩擦。

1.平面摩擦

滑块与平面构成的移动副,滑块在自重和驱动力的作用下向右移动。分析滑块的受力如下图。

摩擦角:总反力R21与法向反力N21的夹角Φ。

由图可知

总反力R21与相对运动方向v12的夹角总为钝角。其大小为

2. 斜面摩擦

一滑块置于斜面上,在铅锤载荷Q的作用下滑块沿斜面等速运动,分析使滑块沿斜面等速运动时所需的水平力。

置于斜面上的滑块有两种运动可能即沿斜面等速上升及沿斜面等速下滑。下面分别讨论滑块所受摩擦力。

(1)滑块等速上升(2)滑块等速下滑

当滑块在水平力作用下等速上升时当滑块在水平力作用下等速下滑时

式中F与R的大小未知, 作力的三角形由力的三角形得

a) 平面摩擦b) 滑块等速上升c) 滑块等速下滑d)槽面摩擦

3.槽面摩擦

由力三角形得:故若令则

。式中称当量摩擦系数,相当于把楔形滑块视为平滑块时的摩擦系数。与之对应的摩擦角称为当量摩擦角。引入当量摩擦系数的意义在于:

当量摩擦系数引入后, 在分析运动副中的滑动摩擦系数时, 不管运动副两元素的几何形

状如何, 均可视为单一平面接触来计算其摩擦力。

4.2 螺旋副中的摩擦

螺旋副为一种空间运动副,其接触面是螺旋面。当螺杆和螺母的螺纹之间受有轴向载荷时,拧动螺杆或螺母,螺旋面之间将产生摩擦力。

在研究螺旋副中的摩擦时,通常假设螺杆与螺母之间的作用力Q集中在平均直径为d的螺旋线上。由于螺旋线可以展成平面上的斜直线,螺旋副中力的作用与滑块和斜面间的力的作用相同。就可以把空间问题转化为平面问题来研究。下面就矩形螺纹螺旋副中的摩擦和三角形螺纹螺旋副中的摩擦进行研究。

1.矩形螺纹螺旋副中的摩擦

由力的三角形得:

拧紧力矩:

2. 三角形螺纹螺旋副中的摩擦

三角形螺纹和矩形螺纹的区别在于螺纹间接触面的形状不同。螺母在螺杆上的运动近似的认为是楔形滑块沿斜槽面的运动。

此时,斜槽面的夹角等于2θ(,β称为牙形半

角)

可得拧紧力矩

由于,故三角形螺纹的摩擦力矩较大,宜用于联接紧固。矩形螺纹摩擦力矩较小,宜用于传递动力的场合。

4.3 转动副中的摩擦

转动副在各种机械中应用很广,常见的有轴和轴承以及各种铰链。转动副可按载荷作用情况的不同分成径向轴颈与轴承和止推轴颈与轴承。

1.径向轴颈的摩擦

当载荷垂直于轴的几何轴线时,称为径向轴颈与轴承。轴颈在驱动力矩的作用下,在轴承中等速回转。

由于存在法向反力N12,摩擦力,其中为当量摩擦系数。对

于非跑和的径向轴颈,跑和的径向轴颈,摩擦力矩为

,由力平衡(R21为总反力),力矩平衡

。可得:。

对于具体的轴颈,ρ为定值。以轴颈中心O为圆心,ρ为半径的圆称为摩擦圆,ρ为摩擦圆半径。总反力R21始终切于摩擦圆,大小与载荷Q相等。其对轴颈轴心O之距的方向必与轴颈相对于轴承的角速度的方向相反。上图中用一偏距为e 的载荷Q代替原载

荷及驱动力矩M,则

轴颈将加速运动

轴颈将等速运动

轴颈将减速运动,若加载前静止,则保持静止状态。

2. 止推轴颈的摩擦

轴用以承受载荷的部分称为轴端或轴踵。轴端和承受轴向载荷的止推轴承2构成一转动副。非跑合的止推轴承轴端各处压强相等;跑合的止推轴承,轴端各处的压强不相等,离中心远的地方磨损较快,因而压强减小;离中心近的部分磨损较慢,因而压强增大。

4.4考虑摩擦时机构的受力分析

运动副中的摩擦是客观存在的,考虑摩擦的机构受力分析才能反映机构的实际受力状况。以曲柄滑块机构为例,介绍机构的受力分析方法。

4.5 机械效率及自锁

1.机械的效率

作用在机械上的力可分为驱动力、生产阻力和有害阻力三种。通常把驱动

力所做的功称为驱动功(输入功),克服生产阻力所做的功称为输出功,而克服有害阻力所做之功称为损耗功。

机械稳定运转时,有

式中W d、W r、W f分别为输入功,输出功和损耗功。输出功和输入功的比值反映了输入功在机械中有效利用的程度,称为机械效率。

(1)效率以功或功率的形式表达

根据机械效率的定义

用功率可表示为:

式中P d、P r、P f分别为输入功率、输出功率和损耗功率

,,

由于损耗功率不可能为零,所以机械的效率总是小于1。为提高机械效率,应尽量减少机械中的损耗,主要是减少摩擦损耗。

(2)效率以力或力矩的形式表达

F为驱动力,Q 为生产阻力,v F和v Q分别为F和Q沿该力作用线的速度

假设机械中不存在摩擦,该机械称为理想机械。此时所需的驱动力称为理想驱动力F0,此力必小于实际驱动力F。对于理想机械:

所以

此式表明,机械效率等于理想驱动力与实际驱动力的比。

若用力矩之比的形式表达机械效率为:式中M F0,M F分别表示为了克服同样生产阻力所需的理想驱动力矩和实际驱动力矩。从另一角度讲,同样驱动力F,理想机械所能克服的生产阻力Q0必大于所能克服的生产阻力Q。对于理想机

械:

同理,有下式成立:

式中,M Q ,M Q0分别表示在同样驱动力情况下,机械所能克服的实际生产阻力矩和理想生产阻力矩。

2.机械系统的机械效率

对于由许多机械或机器组成的机械系统的机械效率以及计算,可以根据组成系统的机械效率计算求得。若干机械的连接组合方式一般有串联、并联、混联三种。

(1)串联

系统的总效率为:

结论:串联系统的总效率等于各机器的效率的连乘积。串联的级数越多,机械系统的效率越低。

(2)并联

则系统的总功率:

总输出功率为:

并联系统的总效率不仅与各组成机器的效率有关,而且与各机器所传递的功率也有关。设ηmax和ηmin为各个机器中效率的最大值和最小值则ηmax<η<ηmin。

若各台机器的输入功率均相等,即,则

若各台机器的效率均相等,即

则:

结论:若各台机器的效率均相等,并联系统的总效率等于任一台机器的效率。

(3)混联

由串联和并联组成的混联式机械系统。其总效率的求法按其具体组

合方式而定。图示系统中,设串联部分效率为,并联部分效率为

,则总效率为:

3 机械的自锁

在实际机械中,由于摩擦的存在以及驱动力作用方向的问题,有时会出现无论驱动力如何增大,机械都无法运转的现象,这种现象称为机械的自锁。

在图中所示的移动副中,驱动力有效分力为

阻力为摩擦力

当时有

此时无论F多大,均无法使滑块运动,出现自锁

现象。此时驱动力作用在摩擦角内

图中所示的转动副中,作用在轴颈上的载荷为Q ,当

即Q作用在摩擦圆之内,此时

由于驱动力矩总小于它产生的摩擦阻力矩,故无论Q如

何增大,也不能使轴转动,即出现自锁现象。

总结:

机械是否发生自锁,与驱动力作用线的位置和方向有关。在移动副中,若驱动力作用在摩擦角之外,则不会发生自锁;在转动副中,若驱动力作用在摩擦圆之外,则不会发生自锁;故一个机械是否会发生自锁,可以通过分析组成机械的各个环节的自锁情况来判断。

若一个机械的某个环节发生自锁,则该机械必发生自锁。自锁时,驱动力不超过它产生的摩擦阻力,即此时驱动力所做的功总小于或等于由它所产生的摩擦阻力所作的功。

此时机械的效率小于或等于零,即。故可借机械效率的计算式来判断机械是否自锁和分析自锁产生的条件。

系统任意环节自锁则系统自锁,故在分析机械系统的自锁特性时应注意。机械通

常有正反两个行程,它们的机械效率一般并不相等,反行程的效率小于零的机械称为自

锁机械。自锁机械常用于卡具、螺栓连接、起重装置和压榨机械上。但自锁机械的正行

程效率都较低,因而在传递动力时,只适用功率小的场合。

第五章连杆机构

5.1 平面四杆机构的基本型式

连杆机构是由若干个刚性构件用低副联接所组成。

平面连杆机构若各运动构件均在相互平行的平面内运动,则称为平面连杆机构。

空间连杆机构若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。

平面连杆机构较空间连杆机构应用更为广泛,故着重介绍平面连杆机构。

在平面连杆机构中,结构最简单的且应用最广泛的是由4个构件所组成的平面四杆机构,其它多杆机构可看成在此基础上依次增加杆组而组成。

1.平面四杆机构的基本型式

所有运动副均为转动副的四杆机构称为铰链四杆机构。它是平面四杆机构的基本型式。在铰链四杆机构中,按连架杆能否作整周转动,可将四杆机构分为3种基本型式。

(1)曲柄摇杆机构

定义:在铰链四杆机构中,若两连架杆中有一个为曲柄,另一个为摇杆,则称为曲柄摇杆机构。

(2)双曲柄机构

定义:在铰链四杆机构中,若两连架杆均为曲柄,称为双曲柄机构。

传动特点:当主动曲柄连续等速转动时,从动曲柄一般不等速转动。双曲柄机构中有两种特殊机构:平行四边形机构和反平行四边形机构

定义:在双曲柄机构中,若两对边构件长度相等且平行,则称为平行四边形机构。

传动特点:主动曲柄和从动曲柄均以相同角速度转动。

定义:两曲柄长度相同,而连杆与机架不平行的铰链四杆机构,称为反平行四边形机构(3)双摇杆机构

定义:在铰链四杆机构中,若两连架杆均为摇杆,则称为双摇杆机构。

2. 平面四杆机构的演化

由于各种工程实际的需要,所用四杆机构的型式是多种多样的。这些四杆机构可看作是由铰链四杆机构通过不同方法演化而来的,并与之有着相同的相对运动特性。掌握这些演化方法,有利于对连杆机构进行创新设计。

当取不同的构件为机架时,会得到不同的四杆机构。下面我们看一下表:

表2.1 四杆机构的几种型式

铰链四杆机构可以通过四种方式演化出其他形式的四杆机构。即⑴取不同构件为机架;

⑵转动副变移动副;⑶杆状构件与块状构件互换;⑷销钉扩大。在曲柄摇杆机构或曲柄滑块

机构中,当载荷很大而摇杆(或滑块)的摆角(或行程)不大时,可将曲柄与连杆构成的转动副中的销钉加以扩大,演化成偏心盘结构,这种结构在工程上应用很广。

5.2 平面四杆机构的基本知识

1.平面四杆机构有曲柄存在的条件

周转副:两构件能做360°相对转动的运动副。否则称摆转副。

曲柄:与机架相铰接能整周回转的构件。

下面以图示的四杆机构为例,说明平面四杆机构有曲柄存在的条件。

在图中,设d >a,在杆1绕

转动副A转动过程中,铰链点B

与D之间的距离g 是不断变化的,

当B点到达图示点B1和B2两位置

时,γ? 值分别达到最大值 g max=d

+a 和最小值 g min=d -a。

如要求杆1能绕转动副A

相对杆4作整周转动,则杆1应通

过AB1和AB2这两个关键位置,即

可以构成三角形B1C1D和三角形

B2C2D。根据三角形构成原理经过公式推导可得出如下重要结论:

在铰链四杆机构中,如果某个转动副能成为周转副,则它所连接的两个构件中,必有一个为最短杆,并且四个构件的长度关系满足杆长之和条件

我们考虑一下当选取不同的构件作机架时,会得到什么样的机构?

(1)若取最短杆为机架------得双曲柄机构;

(2)若取最短杆的任一相邻的构件为机架------得曲柄摇杆机构;

(3)若取最短杆对面的构件为机架------得双摇杆机构。

(4)如果四杆机构不满足杆长之和条件,则不论选取哪个构件为机架,所得机构均为双摇杆机构。

得出铰链四杆机构有曲柄存在的条件为:

(1)最短杆与最长杆长度之和小于或等于其它两杆长度之和。

(2)边架杆和机架中必有一杆是最短杆。

2.压力角和传动角

在图示的铰链四杆机构

中,如果不计惯性力、重力、摩

擦力,则连杆2是二力共线的构

件,由主动件1经过连杆2作用

在从动件3上的驱动力F的方

向将沿着连杆2的中心线BC。力

F 可分解为两个分力:沿着受力点C的速度υc方向的分力F t和垂直于υc方向的分力F n。设力F与着力点的速度υc方向之间所夹的锐角为α,则

其中,沿υc方向的分力F t 是使从动件转动的有效分力,对从动件产生有效回转力矩;而F n 则是仅仅在转动副D 中产生附加径向压力的分力。由上式可知:α? 越大,径向压力F n也越大,故称角α 为压力角。压力角的余角称为传动角,用γ表示,γ=90-α。显然,γ角越大,则有效分力F t 越大,而径向压力F n 越小,对机构的传动越有利。因此,在连杆机构中,常用传动角的大小及其变化情况来衡量一机构传力性能的优劣。

在机构的运动过程中,传动角的大小是变化的。当曲柄AB转到与机架AD重叠共线和展开共线两位置AB1、AB2时,传动角将出现极值γ′和γ″(传动角总取锐角)。这两个值的大小为

比较这两个位置时的传动角,即可求得最小传动角γmin。为了保证机构具有良好的传力性能,设计时通常应使γmin≥40°;对于高速和大功率的传动机械,应使γmin≥50°。

3.急回运动和行程速比系数

在图示的曲柄摇杆机构中,当主动曲柄1位于B1A而与连杆2成一直线时,从动摇杆3

位于右极限位置C1D。当曲柄1以等

角速度ω1逆时针转过角φ1而与连

杆2重叠时,曲柄到达位置B2A,而

摇杆3则到达其左极限位置C2D。当

曲柄继续转过角φ2而回到位置B1A

时,摇杆3则由左极限位置C2D 摆

回到右极限位置C1D。从动件的往复

摆角均为ψ 。由图可以看出,曲柄

相应的两个转角φ1和φ2为:

式中,θ为摇杆位于两极限位置时曲柄两位置所夹的锐角,称为极位夹角。介绍急回运动产生的原因,为了表明急回运动的急回程度,通常用行程速度变化系数(或称行程速比系数)K来衡量,即

θ

θ??-+?====

180180212112t t v v K 机构具有急回特性必有K > 1,则极位夹角θ > 0。

θ =180°×(K -1)/(K +1)

有时某一机构本身无急回特性,但当它与另一机构组合后,此组合后的机构并不一定也无急回特性。机构有无急回特性,应从急回特性的定义入手进行分析。 4.死点位置

下面我们来看一下死点位置的形成:在图示的曲柄摇杆机构中,设摇杆 CD 为主动件,则当机构处于图示的两个虚线位置之一时,连杆与曲柄在一条直线上,出现了传动角γ = 0的情况。这时主动件CD 通过连杆作用于从动件AB 上的力恰好通过其回转中心,所以将不能使构件AB 转动而出现"顶死"现象。机构的此种位置称为死点位置。

提出问题:四杆机构中是否存在死点位置,决定于什么? 答:从动件是否与连杆共线。

对于传动机构来说,机构有死点是不利的,应该采取措施使机构能顺利通过死点位置。 措施:

a. 对于连续运转的机器,可以利用从动件的惯性来通过死点位置;

b. 采用机构错位排列的方法,即将两组以上的机构组合起来,而使各组机构的死点位置相互错开;

机构的死点位置的积极作用:在工程实际中,不少场合也利用机构的死点位置来实现一定的工作要求。夹紧工件用的连杆式快速夹具是利用死点位置来夹紧工件的。在连杆2的手柄处

施以压力F 将工件夹紧后,连杆BC 与连架杆CD 成一直线。撤去外力F 之后,在工件反弹力T 作用下,从动件3处于死点位置。即使此反弹力很大,也不会使工件松脱。当飞机起落架处于放下机轮的位置时,此时连杆BC 与从动件CD 位于一直线上。因机构处于死点位置,故机轮着地时产生的巨大冲击力不会使从动件反转,从而保持着支撑状态。

连杆式快速夹具飞机起落架

第六章凸轮机构

6.1凸轮机构的应用和分类

1.凸轮机构的应用

凸轮机构是由具有曲线轮廓或凹槽的构件,通过高副接触带动从动件实现预期运动规律的一种高副机构。

当凸轮运动时,通过其上的曲线轮廓与从动件的高副接触,可使从动件获得预期的运动。凸轮机构是由凸轮、从动件和机架这三个基本构件所组成的一种高副机构。

2.凸轮机构的分类

工程实际中所使用的凸轮机构型式多种多样,常用的分类方法有以下几种:

a.按照凸轮的形状分类

(1)盘形凸轮

这种凸轮是一个绕固定轴转动并且具有变化向径的盘形零件,当其绕固定轴转动时,可推动从动件在垂直于凸轮转轴的平面内运动。它是凸轮的最基本型式,结构简单,应用最广。

(2)移动凸轮

当盘形凸轮的转轴位于无穷远处时,就演化成了移动凸轮(或楔形凸轮)。凸轮呈板状,它相对于机架作直线移动。

在以上两种凸轮机构中,凸轮与从动件之间的相对运动均为平面运动,故又统称为平面凸轮机构。

(3)圆柱凸轮

如果将移动凸轮卷成圆柱体即演化成圆柱凸轮。在这种凸轮机构中凸轮与从动件之间的相对运动是空间运动,故属于空间凸轮机构。

移动凸轮圆柱凸轮b)

c)按照从动件的运动形式分类

按照从动件的运动形式分为移动从动件和摆动从动件凸轮机构。移动从动件凸轮机构又可根据其从动件轴线与凸轮回转轴心的相对位置分成对心和偏置两种。

d)按照凸轮与从动件维持高副接触的方法

(1)力封闭型凸轮机构

所谓力封闭型,是指利用重力、弹簧力或其它外力使从动件与凸轮轮廓始终保持接触。(2)形封闭型凸轮机构

所谓形封闭型,是指利用高副元素本身的几何形状使从动件与凸轮轮廓始终保持接触。

以上介绍了凸轮机构的几种分类方法。将不同类型的凸轮和从动件组合起来,就可以得到各种不同形式的凸轮机构。设计时,可根据工作要求和使用场合的不同加以选择。

6.2从动件的运动规律

设计凸轮机构时,首先应根据工作要求确定从动件的运动规律,然后按照这一运动规律设计凸轮廓线。以尖端移动从动件盘形凸轮机构为例,说明从动件的运动规律与凸轮廓线之间的相互关系。

从动件的运动规律:指从动件的位移s、速度v、加速度a 及加速度的变化率j随时间t 和凸轮转角?变化的规律。

从动件的运动线图:从动件的s、v、a、j 随时间t 或凸轮转角?变化的曲线。

常用运动规律:在工程实际中经常用到的运动规律,它们具有不同的运动和动力特性。

●几种常用运动规律的运动线图和特点

机械原理基础知识考试

昆明理工大学2010年硕士研究生招生入学考试试卷(A卷) 考试科目代码:810 考试科目名称:机械原理 试卷适用招生专业:080201机械制造及其自动化、080202机械电子工程、080203机械设计及理论、080204车辆工程、430102机械工程 考生答题须知 1.所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试卷册上无效。 请考生务必在答题纸上写清题号。 2.评卷时不评阅本试卷册,答题如有做在本试卷册上而影响成绩的,后果由考生自己负责。 3.答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。 4.答题时不准使用涂改液等具有明显标记的涂改用品。

2、试求机构在图示位置的全部瞬心。(10分) 3、标出图示位置时凸轮机构的压力角,凸轮从图示位置转过90度后推杆的位移。(10分) 四、(15分,所有考生做)计算图示机构的自由度,若有复合铰链、局部自由度和虚约束,请指出。 五、计算题 A B C 2 3 1 4

1、在图示的车床变速箱中,移动三联齿轮a 使齿轮3’和4’啮合。又移动双联齿轮b 使齿轮5’和6’啮合。已知各轮的齿数为48',50',42',38',58,42654321======z z z z z z ,电动机的转速 m in /14451r n =,求带轮转速的大小和方向。 (10分,所有考生做) 2、已知一渐开线规范外啮合圆柱齿轮机构,其模数mm m 10=,中心距mm a 350=,传动比 5/912=i ,试计算该齿轮机构的几何尺寸(各轮的齿数、分度圆直径、齿顶圆直径、齿根圆直径、 齿厚)。(16分,所有考生做) 3、在图示的轮系中,已知各轮的齿数20,50,40,60,2536421======z z z z z z (右旋) ,且各轮均为正确安装的规范齿轮,各齿轮的模数相同。当轮1以900r/min 按图示方向转动时,求轮6转速的大小和方向。 (全日制学术型,15分)

机械原理与人体平衡知识分析报告

机械原理与人体平衡知识分析 -----------------------作者:-----------------------日期:

三:综合训练 一:填空题: 1、一长直扁担长1.5m,前端挂200N的货,后端挂300N的货,则肩膀应该位于离扁担前端________m处,才能使扁担平衡,平衡后肩受到的压力为________N.(不计扁担的重力) 2、如图所示,用滑轮组匀速提升物体A时,测力计的示数为 N,如果不计滑轮重 和摩擦,物体A的重力为 N。 3.在图1所示的两种常用工具中,属于省力杠杆的是 (选填“甲”或“乙”).使用这两种工具都省功(选填“能”或“不能”). 4、如图所示,杠杆AC(刻度均匀,不计杠杆重)可绕支点O自由转动,在B点挂一重为G 的物体。为使杠杆平衡,应在杠杆上的_________点施加一个作用力,才能使作用力最小,该最小作用力与物重G的比值是___________。 5、如图2所示,物体 A 和 B 的质量相等(滑轮重力不计),当分别用力匀速提升物体A和B时,F A︰F B= 。 图1

6、钓鱼时,钓鱼竿可看成一根杠杆,如图3,它是一个________杠杆,其支点位于图中的________点.要使钓起鱼时省力一些,则钓鱼者两只手之间的距离应________一些(填增大或减小). 7、如图4,利用定滑轮匀速提升重物G ,需要拉力F 或'F ,F 和'F 大小的关系是F 'F 。(填大于、小于、等于) 8、 一辆汽车不小心陷入了泥潭中,司机按图5所示的甲乙两种方式可将汽车从泥潭中拉出,其中省力的是 图。 9、如图6所示,动滑轮重为50N ,绳重和摩擦不计,人对绳子的拉力是 260N ,则物体的重是 N ;若重物上升的高度是0.2m ,则绳子自由端 下降 m 。 10.如图7,每个钩码重0.49N,杠杆上每格长度相等,现用一弹簧测力计要求钩在支点右侧,使它的示数为0.98N,且杠杆在水平位置保持平衡,则弹簧测力计应钩在 点 图3 图4 图6

哈工大(威海)机械原理知识点整理

哈工大(威海)《机械原理》知识点整理 整理人:131310405郭勇辰 第一章 1.机械是机器与机构的总称。 2.机器是一种人为实物组合的具有确定机械运动的装置,用来完成有用功、转 换能量或处理信息,以代替或减轻人类的劳动。 3.现代化机器具有四个组成部分:原动机、传动机、执行机构和控制系统。 4.一部机器通常包含一个或若干个机构。机构是一个具有相对机械运动的构件 系统,或称它是用来传递与变换运动和动力的可动装置。 第二章 1.构件与零件的区别在于:构件是运动的单元,而零件是制造的单元。一个构 件既可以是一个零件,也可以是由若干零件装配而成的刚性体。 2.运动副:两构件间的直接接触又能产生一定相对运动的活动连接成为运动副。 3.一个运动副引入的约束数目最多只能是5个,最少是1个。 4.运动链:若干构件通过运动副连接而成的构件系统称为运动链。运动链中各 构件首位封闭,则称为闭式链,否则为开式链。 5.机构:如果将运动链中的一个构件固定作为参考坐标系,则这种运动链称为 机构。 6.运动副的分类:把引入1个约束的运动副称为Ⅰ级副,以此类推;以面接触 的运动副称为低副,以点或线接触的运动副称为高副;如果两运动副元素间只能相互做平面平行运动,则称之为平面运动副,否则为空间运动副; 7.不按比例绘制的运动简图成为机构示意图。 8.机构运动简图的单位为m/mm(图纸上1mm所代表的真实长度)。 9.自由度:确定一个构件或机构的运动(或位置)所需的独立参数的数目。 10.机构具有确定运动的条件是:机构的自由度大于零,且机构的原动件数目等 于机构的自由度数。 11.计算自由度时注意三种情况:复合铰链、局部自由度、虚约束。 12.复合铰链:由两个以上构件在同一处构成的重合转动副。 13.局部自由度:不影响整个机构运动的自由度。

(完整版)机械原理知识点归纳总结

第一章绪论 基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。 第二章平面机构的结构分析 机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。 1. 机构运动简图的绘制 机构运动简图的绘制是本章的重点,也是一个难点。 为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。 2. 运动链成为机构的条件 判断所设计的运动链能否成为机构,是本章的重点。 运动链成为机构的条件是:原动件数目等于运动链的自由度数目。 机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。 机构自由度计算是本章学习的重点。 准确识别复合铰链、局部自由度和虚约束,并做出正确处理。 (1) 复合铰链 复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。 正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。 (2) 局部自由度 局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。 正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。 (3) 虚约束 虚约束是机构中所存在的不产生实际约束效果的重复约束。 正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。 虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。 3. 机构的组成原理与结构分析 机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。 第三章平面机构的运动分析 1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。 2.瞬心法在简单机构运动分析上的应用。 3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解? 4.“速度影像”和“加速度影像”的应用条件。 5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方向的确定。 6.哥氏加速度出现的条件、大小的计算和方向的确定。 第四章平面机构的力分析 1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。 2.各种构件的惯性力的确定: ①作平面移动的构件; ②绕通过质心轴转动的构件;

机械原理基础知识点总结,复习重点

机械原理知识点总结 第一章平面机构的结构分析 (3) 一. 基本概念 (3) 1. 机械: 机器与机构的总称。 (3) 2. 构件与零件 (3) 3. 运动副 (3) 4. 运动副的分类 (3) 5. 运动链 (3) 6. 机构 (3) 二. 基本知识和技能 (3) 1. 机构运动简图的绘制与识别图 (3) 2.平面机构的自由度的计算及机构运动确定性的判别 (3) 3. 机构的结构分析 (4) 第二章平面机构的运动分析 (6) 一. 基本概念: (6) 二. 基本知识和基本技能 (6) 第三章平面连杆机构 (7) 一. 基本概念 (7) (一)平面四杆机构类型与演化 (7) 二)平面四杆机构的性质 (7) 二. 基本知识和基本技能 (8) 第四章凸轮机构 (8) 一.基本知识 (8) (一)名词术语 (8) (二)从动件常用运动规律的特性及选用原则 (8) 三)凸轮机构基本尺寸的确定 (8) 二. 基本技能 (9) (一)根据反转原理作凸轮廓线的图解设计 (9) (二)根据反转原理作凸轮廓线的解析设计 (10) (三)其他 (10) 第五章齿轮机构 (10) 一. 基本知识 (10) (一)啮合原理 (10) (二)渐开线齿轮——直齿圆柱齿轮 (11) (三)其它齿轮机构,应知道: (12) 第六章轮系 (14) 一. 定轴轮系的传动比 (14) 二.基本周转(差动)轮系的传动比 (14)

三.复合轮系的传动比 (15) 第七章其它机构 (15) 1.万向联轴节: (15) 2.螺旋机构 (16) 3.棘轮机构 (16) 4. 槽轮机构 (16) 6. 不完全齿轮机构、凸轮式间歇运动机构 (17) 7. 组合机构 (17) 第九章平面机构的力分析 (17) 一. 基本概念 (17) (一)作用在机械上的力 (17) (二)构件的惯性力 (17) (三)运动副中的摩擦力(摩擦力矩)与总反力的作用线 (17) 二. 基本技能 (18) 第十章平面机构的平衡 (18) 一、基本概念 (18) (一)刚性转子的静平衡条件 (18) (二)刚性转子的动平衡条件 (18) (三)许用不平衡量及平衡精度 (18) (四)机构的平衡(机架上的平衡) (18) 二. 基本技能 (18) (一)刚性转子的静平衡计算 (18) (二)刚性转子的动平衡计算 (18) 第十一章机器的机械效率 (18) 一、基本知识 (19) (一)机械的效率 (19) (二)机械的自锁 (19) 二. 基本技能 (20) 第十二章机械的运转及调速 (20) 一. 基本知识 (20) (一)机器的等效动力学模型 (20) (二)机器周期性速度波动的调节 (20) (三)机器非周期性速度波动的调节 (20) 二. 基本技能 (20) (一)等效量的计算 (20) (二)飞轮转动惯量的计算 (20)

机械原理知识点

1构件:具有确定运动的单元体组成的,这些运动单元体称为构件 零件:组成构件的制造单元体 运动副:两构件直接接触的可动联接 构件的自由度:构件的独立运动数目 运动链:若干个构件通过运动副所构成的系统 机架:固定的构件 原动件:机构中做独立运动的构件 从动件:机构中除原动件外其余的活动构件 运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构 2机构运动简图:表示机构中各构件间相对运动关系的简单图形。机构运动简图必须与原机械具有完全相同的运动特性。 示意图:只为了表明机械的结构,不按比例来绘制简图 3约束和自由度的关系:增加一个约束,构件就失去一个自由度 4机构具有确定运动的条件:机构自由度等于机构的原动件数 5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心 绝对瞬心:运动构件上瞬时绝对速度为零的点 相对瞬心:两运动构件上瞬时绝对速度相等的重合点 6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。 7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O 为圆心,ρ为半径做一圆,该圆成为摩擦圆。 8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。自锁条件:η≤0 机械发生自锁 9连杆机构(低副机构):若干个构件通过低副联接所组成的机构 10平面四杆机构基本形式:铰链四杆机构 11曲柄:在两连杆中能做整周回转机构 摇杆:只能在一定角度范围内摆动的构件 周转副:将两构件能做360°相对转动的转动副 摆动副:不能将两构件能做360°相对转动的转动副 12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和 2连架杆和机架中有一杆是最短杆 13最短杆为连杆时,该机构为双摇杆机构;最短杆为连架杆时,该机构为曲柄摇杆机构;最短杆为机架时,该机构为双曲柄机构; 14有急回运动:θ≠0时,偏置曲柄滑块机构和导杆机构 无急回运动:对心曲柄滑块机构和双摇杆机构

机械原理知识点归纳总结

机械原理知识点归纳总结 第一章绪论 基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。 第二章平面机构的结构分析 机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。 1. 机构运动简图的绘制 机构运动简图的绘制是本章的重点,也是一个难点。 为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。 2. 运动链成为机构的条件 判断所设计的运动链能否成为机构,是本章的重点。 运动链成为机构的条件是:原动件数目等于运动链的自由度数目。 机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。 机构自由度计算是本章学习的重点。 准确识别复合铰链、局部自由度和虚约束,并做出正确处理。 (1) 复合铰链 复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。 正确处理方法: k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。 (2) 局部自由度 局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。 正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。

(3) 虚约束 虚约束是机构中所存在的不产生实际约束效果的重复约束。 正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。 虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。 3. 机构的组成原理与结构分析 机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。 第三章平面机构的运动分析 1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。 2.瞬心法在简单机构运动分析上的应用。 3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在 瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解? 4.“速度影像”和“加速度影像”的应用条件。 5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方 向的确定。 6.哥氏加速度出现的条件、大小的计算和方向的确定。 第四章平面机构的力分析 1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩 擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。 2.各种构件的惯性力的确定: ①作平面移动的构件;

(新)机械原理基础知识点

《机械原理》基础知识点 1构件:具有确定运动的单元体组成的,这些运动单元体称为构件 零件:组成构件的制造单元体 运动副:两构件直接接触的可动联接 构件的自由度:构件的独立运动数目 运动链:若干个构件通过运动副所构成的系统 机架:固定的构件 原动件:机构中做独立运动的构件 从动件:机构中除原动件外其余的活动构件 运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构 2机构运动简图:表示机构中各构件间相对运动关系的简单图形。机构运动简图必须与原机械具有完全相同的运动特性。 示意图:只为了表明机械的结构,不按比例来绘制简图 3约束和自由度的关系:增加一个约束,构件就失去一个自由度 4机构具有确定运动的条件:机构自由度等于机构的原动件数 5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心 绝对瞬心:运动构件上瞬时绝对速度为零的点 相对瞬心:两运动构件上瞬时绝对速度相等的重合点 6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。 7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O为圆心,ρ为半径做一圆,该圆成为摩擦圆。 8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。自锁条件:η≤0 机械发生自锁 9连杆机构(低副机构):若干个构件通过低副联接所组成的机构 10平面四杆机构基本形式:铰链四杆机构 11曲柄:在两连杆中能做整周回转机构 摇杆:只能在一定角度范围内摆动的构件 周转副:将两构件能做360°相对转动的转动副 摆动副:不能将两构件能做360°相对转动的转动副 12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和 2连架杆和机架中有一杆是最短杆 13最短杆为连杆时,该机构为双摇杆机构;最短杆为连架杆时,该机构为曲柄摇杆机构;最短杆为机架时,该机构为双曲柄机构; 14有急回运动:θ≠0时,偏置曲柄滑块机构和导杆机构

机械原理考试知识点.doc

机械原理》考试知识点 第一篇基本机构及常用机构的运动学设计 第一章绪论 1.了解机械原理的研究对象及主要内容; 2.了解机械原理的地位和作用;3.了解机械原理的学习目的和方法。 第二章机构的结构分析与综合 1.掌握有关机构的概念,如构件、运动副、运动链、杆组等;2.掌握平面机构运动简图的绘制方法和步骤,能根据实际机械正确绘制机构运 动简图; 3.掌握机构具有确定运动的条件及平面机构自由度的计算,并注意复合铰 链、局部自由度和虚约束等情况; 4.掌握平面机构中高副低代的方法,要求代替前后,机构的自由度和机构的瞬 时运动不变; 5.掌握平面低副机构的结构分析和组成原理,能根据给定的机构运动简图进行 拆杆组,进行机构的结构分析,并确定机构的级别。 第三章平面连杆机构及其设计 1.了解平面连杆机构的类型、应用及其主要特点; 2.掌握平面连杆机构特别是它的基本形式——平面铰链四杆机构的一些基本概 念和基本知识及其演化方法和应用; 3.掌握平面连杆机构的运动特性和传力特性:如有曲柄的条件、急回特性和行 程速度变化系数、压力角与传动角、死点位置、运动连续性等; 4.掌握等视角定理及几何法刚体导引机构的设计;5.掌握机构的刚化反转法及几何法函数生成机构的设计;6.掌握急回机构的设计;

7.掌握用速度瞬心法作平面机构的速度分析方法; 8.掌握用相对运动图解法进行机构的运动分析方法; 9.掌握用复数矢量法进行机构的运动分析的方法。 第四章 凸轮机构及其设计 1.掌握凸轮机构的基本概念、凸轮机构的分类及应用; 2.掌握从动件常用的运动规律及从动件运动规律的设计原则; 3.掌握凸轮机构的反转法原理; 4.掌握图解法设计平面凸轮轮廓曲线的设计方法; 5.掌握解析法设计平面凸轮轮廓曲线的设计方法; 6.掌握凸轮机构的压力角及基本尺寸的设计。 第五章 齿轮机构及其设计 10. 掌握标准直齿圆锥齿轮的传动特点及其基本尺寸的计算。 第六章 轮系及其设计 1.掌握轮系的类型及功用; 1. 了解齿轮机构的类型和应用; 2. 3. 掌握齿廓啮合基本定律; 掌握渐开线的形成及其性4. 5. 掌握渐开线标准直齿圆柱齿轮的基本参数和几何尺寸计算; 掌握渐开线直齿圆柱齿轮的啮合传动特点,包括: 1)定传动比; 2)啮合线 与啮合角; 3)中心距的可分性; 3)正确啮合条件; 4)连续传动条件; 标准中心距和安装中心距; 6)无侧隙啮合条件等。 6. 掌握渐开线齿轮的范成法切齿原理、根切现象及最少齿数; 7. 8. 掌握渐开线齿轮的变位和变位齿轮的几何尺寸计算; 掌握平行轴斜齿圆柱齿轮齿廓曲面的形成、啮合、传动特点及标准几何尺寸计算; 9. 掌握蜗杆蜗轮传动的特点及其基本尺寸的计算;

机械原理知识点

选择 1.具有确定运动的差动轮系中,其原动件书目至少2个。 2.如果作用在轴颈上的外力增大,那么轴颈的摩擦圆不变。 3.机械出现自锁是由于机械效率小于零。 4.下列铰链四杆机构中,能实现急回运动的是曲柄摇杆机构。 5.正弦加速度运动既无柔性冲击,也无刚性冲击。 6.蜗杆传动的正确啮合条件:模数、压力角和螺旋方向均相同。 7.圆锥齿轮当量齿数:Zv=z/cosa。 ` 8.齿轮经过变为修正后,其分度圆同未修正时相比,分度圆不变。 9.渐开线齿轮中心距稍有改变,其角速度比扔保持原值不变的 原因是基圆不变。 10.刚性转子的动平衡是使惯性合力为0,惯性力合力偶矩也为0. 11.基本杆组是自由度等于0的运动链。 12.曲柄摇杆机构处于死点位置时,传动角等于零。 13.外槽轮:0.5-1/z;内槽轮:0.5+1/z。 ! 14.减小凸轮基圆半径,则压力角增大。 15.回转件的平衡问题,主要是讨论机构的惯性力和惯性矩对 从动件的平衡。 16.渐开线标准直齿轮不发生根切的最小齿数为Zmin=2ha/sina^2. 17.渐开线直齿圆柱齿轮与齿条啮合时,其啮合角恒等于齿轮 分度圆压力角。 18.飞轮安装在高速轴上可以减轻重量。 《 19.阿基米德圆柱蜗杆与涡轮传动的中间平面模数,应符合标准值。 20.标准压力角和标准模数均在分度圆上。21.滚子半径应小于理论轮廓线的最小曲率半径。 22.曲柄滑块机构是由曲柄摇杆机构演化而来。 23.棘轮机构的主动件是棘爪。 24.渐开线直齿圆柱齿轮传动中,中心距不影响传动比。 填空 》 1.机械是机构和机器的总称。 机器是一种用来变换和传递能量、物料与信息的机构的组合。 10.什么叫构件?机械中独立运动的单元体 2.平面四杆机构有6个速度瞬心,其中3个是绝对瞬心。 3.渐开线斜齿圆柱齿轮正确啮合的条件是模数、压力角和螺旋角 分别相等。 4.根切现象:用范成法切制齿轮时,有时刀具会过多的切入齿轮的底部,因而将齿轮的渐开线 ! 切除一部分的现象。 5.一对渐开线齿轮正确啮合的条件: 直齿轮:两齿轮的模数和压力角应分别相等,m1=m2=m ,d1=d2=d 斜齿轮:两齿轮的模数和压力角应分别相等,还有他们的螺旋角必须满足:外啮合B1=-B2, 内 啮合B1=B2. 锥齿轮:当量齿轮的模数和压力角与锥齿轮断面的模数和压力角相等。 蜗轮蜗杆:Mx1=Mt2=M Dx1=Dt2=D : 当蜗杆和涡轮的轴线交错角为90°时,还需保证蜗杆的导程角等于涡轮的螺旋角,即使y1=B2, 并且螺旋线的方向相等。 6.齿廓啮合基本定律:相互啮合传动的一对

机械原理课程教学大纲

《机械原理》课程教学大纲 课程名称:机械原理课程代码:MEAU3005 英文名称:Theory of Machines and Mechanisms 课程性质:大类基础课程学分/学时:3学分/54学时 开课学期:第4学期 适用专业:机械工程、机械电子工程、材料成型及控制工程 先修课程:高等数学、工程图学、理论力学、C语言程序设计等 后续课程:无 开课单位:机电工程学院课程负责人:司广琚 大纲执笔人:司广琚大纲审核人:倪俊芳 一、课程性质和教学目标(在人才培养中的地位与性质及主要内容,指明学生需掌握知识与能力及其应达到的水平) 课程性质:机械原理课程是机械类各专业中研究机械共性问题的一门主干技术基础课。它的任务是使学生掌握机构学和机械动力学的基本理论、基本知识和基本技能,并初步具有拟定机械运动方案、分析和设计机构的能力。它在培养高级工程技术人才的全局中,具有增强学生对机械技术工作的适应能力和开发创造能力的作用。 教学目标:本课程以《理论力学》知识作为理论基础,将所学《理论力学》知识应用到机器和机构分析设计中,但因为机器和机构的复杂和多样性,因而它不是理论力学知识简单重复和堆砌,具有很强的工程实践性。基于此本课程在理论上具有基本概念多、逻辑性强、内容分散等特点,实践上又具有工程中解决问题方法的灵活和巧妙、设计的多方案性、求解问题方法的多样性等特点,是一门理论性和实践性均较强的课程。目标是使学生掌握机构学和机器动力学基本理论、基本知识和基本技能,学会各种常用基本机构分析和综合方法,并具有按照机械使用要求进行机械传动系统方案设计的初步能力和机械创新设计的素质。 本课程的具体教学目标如下: 1.掌握机械、机器、机构、构件、零件等基本概念; 2.掌握平面机构的表示方法和机构运动的基本条件; 3.掌握平面连杆机构、凸轮机构、齿轮机构、螺旋机构等机械中常用机构的组成、工作原理、工作特性、应用特点等基本知识。; 4.掌握齿轮系的类型、功用和传动比的计算方法。掌握圆柱齿轮传动、圆锥齿轮传动和蜗杆传动的知识; 5.了解间歇运动机构的类型、基本特性和应用特点; 6.了解机械动力学的基本理论。

机械原理基础知识及答案

1.在曲柄摇杆机构中,当摇杆为主动件,且曲 柄与连杆两次共线时,则机构出现死点位置。2.当四杆机构的压力角α=90°时,传动角等于0°,该 机构处于死点位置。 3.铰链四杆机构ABCD中,已知:l AB=60mm,l BC=140mm, l CD=120mm,l AD=100mm。若以AB杆为机架得双曲柄机构;若以CD杆为机架得双摇杆机构;若以AD杆为机架得曲柄摇杆机构。 4.铰链四杆机构的基本形式有曲柄摇杆机构、双曲柄 机构和双摇杆机构。 5.曲柄摇杆机构 B 存在急回特性。 6. A . 一定 B. 不一定 C. 一定不一对渐开线直齿圆柱齿轮刚好连续传 动的重合度等于1。(√) 7.负变位直齿圆柱齿轮与标准直齿轮相比,其齿厚将会 减小。 8.重合度大于1是齿轮的连续传动条件。 9.渐开线标准直齿圆柱齿轮传动的正确啮合条件是两 齿轮的模数和压力角分别相等。 10.用范成法加工齿轮,当刀具齿顶线超过啮合极限点时, 将会发生根切现象。 11.渐开线直齿圆柱外齿轮齿廓上各点的压力角是不同的,

它在 基圆 圆上的压力角为零,在 分度 圆上的压力角 则取为标准值。 12. 直齿圆柱齿轮机构的重合度愈大,表明同时参与啮合的 轮齿对数愈 多 ,传动愈 平稳 。 13. 正变位直齿圆柱齿轮与标准直齿圆柱齿轮相比,两者在 分度圆上的压力角α大小_相_等、模数m 大小_ 相__等、 分度圆大小 不 变。 14. 负变位齿轮分度圆上的齿距应是( C )πm 。 15. A .大于 B .小于 C .等于渐开线齿轮的齿廓离基圆越远,渐开线压力角 就( A )。 16. A 越大 B 越小 C 趋 近 于当一对渐开线齿轮切制成后,即使两轮的中心 距稍有变化,其角速度比仍保持不变,原因是( B )。 A 节圆半径不变 B 基圆半径不变 C 啮合角不 1. 渐开线标准直齿圆柱外齿轮的齿数增加,齿顶圆压力角将( C )。 A 不变 B 增大 C 减小 2. 标准蜗杆传动的中心距a 为( B )。 A 2) (21z z m + B 2)(2z q m + C 22 1a a d d + 3. 斜齿轮传动比直齿轮传动平稳,是因为( B )。

机械原理基础知识复习资料

第二讲平面机构的运动分析 一用速度瞬心法作机构的速度分析 1 速度瞬心的定义:作平面相对运动两构件上任一瞬时其速度相等的点,称为这个瞬时的速度中心。分类: 相对瞬心-重合点绝对速度不为零绝对瞬心-重合点绝对速度为零 2 瞬心数目 K=N(N-1)/2 3 机构瞬心位置的确定 直接观察法:适用于求通过运动副直接相联的两构件瞬心位置。 1)两构件组成转动副时,转动副中心即是它们的瞬心。 2)若两构件组成移动副时,其瞬心位于移动方向的垂直无穷远处。 3)若两构件形成纯滚动的高副时,其高副接触点就是它们的瞬心。 4)若两构件组成滚动兼滑动的高副时,其瞬心应位于过接触点的公法线上。 不直接形成运动副的两构件利用三心定理来确定其具体位置。 三心定理:三个彼此作平面平行运动的构件共有三个瞬心,且它们位于同一条直线上。此法特别适用于两构件不直接相联的场合。 4传动比的计算 ωi /ωj=P1j P ij / P1i P ij 两构件的角速度之比等于绝对瞬心至相对瞬心的距离之反比 5.角速度方向的确定 相对瞬心位于两绝对瞬心的同一侧,两构件转向相同 相对瞬心位于两绝对瞬心之间,两构件转向相反。 常见题型: 1.速度瞬心的求解、 2利用速度瞬心求解速度。

二、用矢量方程图解法作机构的速度和加速度分析 1.同一构件上两点之间速度,加速度的关系。 ①由各速度矢量构成的图形称为速度多边形(或速度图);由各加速度矢量构成的图形称为加速度多边形(或加速度图)。p ,' p 称为极点。 ②在速度多边形中,由极点p 向外放射的矢量,代表构件上相应点的绝对速度。而连接两绝对速度矢端的矢量,则代表构件上相应两点间的相对速度,方向与角标相反,如代表CB v (C 点相对B 点的速度)。 ③在加速度多边形中,由极点' p 向外放射的矢量代表构件上相应点的绝对加速度。而连接两绝对加速度矢量端的矢量代表构件上相应两点间的相对加速度,方向与角标相反。相对加速度可用其法向加速度和切向加速度来表示。 ④极点p 代表机构图上的绝对瞬心。 ⑤构件的速度影像:利用速度影像,若已知构件上两点的速度,可求第三点速度。 ⑥同理' ' 'd c b 称为加速度影像。 ⑦速度影像及加速度影像的相似原理只能应用与同一构件上的各点,而不能应用于机构的不同构件上的各点(例如:不能把图上E 点用影像法求出)。 2.两构件重合点间的速度,加速度的关系 正确判断科氏加速度的存在及其方向:

机械原理知识点归纳总结

16235741.阅读下面两首宋诗,然后回答问题。钟山晚步王安石小雨轻风落楝花,细红如雪点平沙。槿篱竹屋江村路,时见宜城卖酒家。. 1623574晚步西园范成大料峭轻寒 结晚阴,飞花院落怨春深。吹开红紫还吹落,一种东风两样心。.1623574(1)简要分析诗句“细红如雪点平沙”的表达效果。(2)两诗中“晚步”而生的情感有什么不同?请简要分析。答案(1)“细红”代指楝花的色彩,“如雪”喻指楝花在轻风中轻盈飘飞的姿态,“点平

沙”生动地描写出楝花坠落平地的美态。. 1623574(2)王诗是闲适之情,“时见”一词显得悠闲,“晚步”赏景见情趣;范诗表达的是一种“怨”情,怨春风吹开红紫花赏景见情趣、理趣。”晚步“朵又吹落,有情也无情, 16235742.阅读下面两首唐诗,然后回答问题。秋夜曲张仲素丁丁漏水夜何长,漫漫轻云露月光。秋逼暗虫通夕响,征衣未寄莫飞霜。. 1623574秋思赠远(其一)王涯当年只

自守空帷,梦里关山觉别离。不见乡书传雁足,唯看新月吐蛾眉。. 1623574(1)这两首诗分别是以什么人的口吻来写的?(2)“漫漫轻云露月光”和“唯看新月吐蛾眉”都写到月亮,各有什么作用?答案(1)张诗是以思妇的口吻写的,王诗是以征夫的口吻写的。(2)“漫漫”句渲染了朦胧幽静的氛围,衬托出孤枕难眠的思妇形象。“唯看”句由新月联想到远方的妻子,写出了思念和无可奈何的怅惘。.16235743.阅读下面两首唐诗,然后

回答问题。吴城览古陈羽吴王旧国水烟空,香径无人兰叶红,春色似怜歌舞地,年年先发馆娃宫。]注[ 1623574馆娃宫怀古皮日休绮阁飘香下太湖,乱兵侵晓上姑苏。越王大有堪羞处,只把西施赚得吴。馆娃宫:故址在今苏州市西南灵岩山上,宫以西施得名。注春秋时期吴王夫差在砚石山建造宫殿以馆西施,吴人谓美女为娃,故曰馆娃。. 1623574(1)诗人指责越王“大有堪羞处”的用意是什么?请简要分析。 (2)结合标题,说说两首怀古诗在

机械原理课程设计(格式)知识讲解

湖南工业大学 课程设计 资料袋 学院(系、部)20 ~ 20 学年第学期 课程名称指导教师职称 学生姓名专业班级学号 题目 成绩起止日期年月日~年月日 目录清单

6 机械原理 设计说明书 15吨压片机的加压机构设计 起止日期:2009 年6 月28 日至2009 年7 月2 日学生姓名 班级 学号 成绩 指导教师(签字) 机械工程学院(部) 2009年5 月29 日

目录(黑体,三号,居中) 0.设计任务书(黑体,三号) (2) 1.工作原理和工艺动作分解 (3) 2.根据工艺动作和协调要求拟定运动循环图 (3) 3.执行机构选型…………………………………………… 4.机械运动方案的选择和评定…………………………… 5.机械传动系统的速比和变速机构……………………… 6.机构运动简图…………………………………………… 7. 主加压机构的尺度设计………………………………… 8主加压机构三维建模………………………………… 9,主加压机构速度与加速度分析(分析一个位置)…….. 10.参考资料…………………………………………………. 11.设计总结…………………………………………………

湖南工业大学 课程设计任务书 2010 —2011 学年第2 学期 机械工程学院(系、部)材料成型专业材1 班级 课程名称:机械原理课程设计 设计题目:15吨压片机的加压机构设计 完成期限:自2010 年7 月 5 日至2010 年7 月9 日共 1 周 内容及任务一、设计的任务与主要技术参数 压片机是将陶瓷干粉料压制成直径为34mm、厚度为5mm的圆形片坯。其工艺过程是: (1) 干粉料均匀筛入团筒形型腔(图a); (2) 下冲头下沉3mm,预防上冲头进入型腔时将粉料扑出(图b); (3) 上、下冲头同时加压(图c),并保压一段时间; (4) 上冲头退出,下冲头随后顶出压好的片坯(图d); (5) 料筛推出片坯(图e) 其余设计参数是:冲头压力 15 吨(150000N); 生产率每分钟25片; 机器运转不均匀系数 10%; 驱动电机 2.8kw,1410r/min 二、设计工作量 要求:对设计任务课题进行工作原理和工艺动作分解,根据工艺动作和协调要求拟定运动循环图,进行执行机构选型,构思该机械运动方案,并进行的选择和评定,确定机械运动的总体方案,根据任务书中的技术参数,确定该机械传动系统的速比和变速机构,作出机构运动简图,对相关执行机构的具体尺度进行分析与设计。 要求有设计说明书一份,相关图纸一至两张。(有条件的要求用三维动画表述)。 进度安排 起止日期工作内容 7.5-7.7 构思该机械运动方案 7.7-7.8 运动分析及作图 7.9 整理说明书与答辩 主要参考资料[1]朱理.机械原理[M].北京:高等教育出版社,2008:15-200 [2]邹慧君.机械原理课程设计[M].北京:高等教育出版社,2009:15-250 指导教师:邹培海2010 年6 月1 日

(完整版)机械设计复习大纲

第一章机械设计总论 本章节包括5个知识点, 1.机械零件的主要失效形式及计算准则;(重点) 2.机械零件设计的一般步骤; 3.材料的疲劳特性 4.机械零件的强度计算;(重点) 5.机械零件的抗剪裂强度和接触强度。 在复习每一个知识点的过程中,首先要了解知识点,通过熟悉教材内容,识记一般的知识点,尽可能脑中对零件有总体的认识,再通过本讲义如下内容对应的例题,从分析、解题、注意易错点到完成老师布置的作业完成相应知识点的掌握过程。 【知识点1】机械零件的主要失效形式及计算准则 【例题1】机械零件的主要失效形式有哪些? 分析:基本知识点的熟记 解题:断裂,表面压碎,表面点蚀,塑形变形,过量弹性变形,共振,过热,过量磨损 易错点:回答不够全面 作业:《机械设计与机械原理考研指南》P18 页第20、21、22 等题 习题:简述机械零件的计算准则 【知识点2】机械零件的强度计算 【例题2】简述应力特征r 的取值范围及应力分类 分析:基本知识点的熟记 解题:-1≤r≤1,r=1 时为静应力,r=-1 是为循环变应力,r=0 时为脉动变应力 易错点:分类理解不清 作业:《机械设计与机械原理考研指南》P19 页第36、37 等题 习题:简述载荷与应力的类型 第二章平面连杆机构及其设计(不考) 第三章凸轮机构及其设计(不考) 第四章步进机构及其设计(不考) 第五章齿轮传动设计 本章节包括6 个知识点, 1.齿轮传动的主要参数及几何尺寸计算; 2.齿轮常用材料及热处理方法; 3.硬齿面,软齿面,开式传动,闭式传动等概念 4.齿轮传动的的常见失效形式,受力分析;(重点) 5.直齿,斜齿圆柱齿轮传动的强度计算 6.齿轮设计准则。(重点) 其中必须掌握的知识点是3 个,1.硬齿面,软齿面,开式传动,闭式传动等概念 2.齿轮传动的的常见失效形式,受力分析; 3.齿轮设计准则。 【知识点1】齿轮传动的的常见失效形式 【例题1】简述齿轮传动的常见失效形式 分析:这一考题在历年考研试卷中比较常见,或考简答,或变换形式考填空 解题:1.轮齿折断,多发生在脆性材料轮齿根部

(完整word版)机械原理基本知识点

机械原理基本知识点 2机器里每一个独立的运动单元体称为一个构件。 两个构件直接接触而构成的可动的连接称为运动副。 自由度:机构具有确定运动时所必须给定的独立运动参数的数目。 高副:点线接触,2自由度。低副:面接触,1自由度。 机械运动简图和机构示意图。 机构自由度:F=3n-(2Pl+Ph-p撇)-F撇 (虚约束:重复约束) (局部自由度:产生局部运动而不影响其他构件的运动) 复合铰链有n-1个转动副。 低副:移动副,转动副.自由度为1 机构具有确定运动条件:原动件数等于其所具有的自由度。 基本杆组:最后不能再拆的最简单的自由度为零的构件组(2构三低,四狗六地) 速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点,即为两构件的速度瞬心。(Pij) 三心定理:三个作彼此平面平行运动的构件的三个瞬心必位于同一直线上。 科氏加速度----是动点的转动与动点相对运动相互耦合引起的加速度。科氏加速度的方向垂直于角速度矢量和相对速度矢量。 4运动副中摩擦力的确定:ψ=arctanf.摩擦圆半径ρ=fv·r. 运动副中法向反力和摩擦力的合力称为运动副中的总反力。 总反力方向:1总反力与法向反力偏斜一摩擦角ψ。2总反力Fr21与法向反力偏斜的方向与构件1相对于构件2的相对速度V12的方向相反。 构件组的静定条件:3n=2Pl+Ph 总反力方位的确定:1不计摩擦时确定总反力的方向2计摩擦力时总反力与摩擦圆相切3轴承2对轴颈1的总反力对轴颈中心之距离的方向必与轴颈1相对于轴承2的相对较速度w12的方向相反。(可根据铰接处两者转向判断,摩擦力与之相反,或总反力看作推力,推动摩擦圆与铰接处转向相反。) 5效率=理想比实际。串联等于相乘,并联分别计算功率,理论功率比实际功率。 运动副自锁条件:作用在轴颈上的驱动力为单力F,且作用于摩擦圆之内,即a<ρ.(力矩小于最大摩擦力矩) 移动副自锁条件:作用于滑块的驱动力作用在其摩擦角之内。 6动平衡:惯性力与惯性力矩平衡。(必为静) 静平衡:惯性力平衡。 质径积mr. J=mr平方,E=jw平方/2 7各种原动机的作用力与其运动参数之间的关系称为原动机的机械特性。 等效转动惯量;Je=∑【Mi(Vsi/w)平方+Jsi(wi/w)平方】

机械原理基础知识考试题(doc 7页)

机械原理基础知识考试题(doc 7页)

昆明理工大学2010年硕士研究生招生入学考试试题(A卷) 考试科目代码:810 考试科目名称:机械原理 试题适用招生专业:080201机械制造及其自动化、080202机械电子工程、080203机械设计及理论、080204车辆工程、430102机械工程 考生答题须知 1.所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。 请考生务必在答题纸上写清题号。 2.评卷时不评阅本试题册,答题如有做在本试题册上而影响成绩的,后果由考生自己负责。 3.答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。 4.答题时不准使用涂改液等具有明显标记的涂改用品。

相邻杆 C. 最短杆的相对杆 D. 任何一 杆 6.当凸轮机构的从动件选用等速运动规律时,其从 动件的运动将产生[ ] A .将产生刚性冲击 B. 将产生柔 性冲击 C. 没有冲击 D. 既有刚 性冲击又有柔性冲击 7. 普通圆柱蜗杆传动的正确啮合条件是[ ] A .2t1m a m =,21a t αα=,βγ= B. 2a1m t m =,21t a αα=,βγ= C. 2t1m a m =,21a t αα=,βγ-= D. 2a1m t m =,21t a αα=,βγ-= (备注:下标t 表示端面,a 表示轴向,1表示蜗 杆,2表示蜗轮。) 8. 平面低副引入约束个为[ ] A .0 B .1 C .2 D .3 9. 齿数和压力角相同的齿轮,模数越小,渐开线 的齿廓越[ ] A .弯曲 B .平缓 C .不一定 10. 两圆柱齿轮啮合构成的运动副是[ ]

《机械原理》基础知识点讲解学习

《机械原理》基础知 识点

《机械原理》基础知识点 1构件:具有确定运动的单元体组成的,这些运动单元体称为构件 零件:组成构件的制造单元体 运动副:两构件直接接触的可动联接 构件的自由度:构件的独立运动数目 运动链:若干个构件通过运动副所构成的系统 机架:固定的构件 原动件:机构中做独立运动的构件 从动件:机构中除原动件外其余的活动构件 运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构 2机构运动简图:表示机构中各构件间相对运动关系的简单图形。机构运动简图必须与原机械具有完全相同的运动特性。 示意图:只为了表明机械的结构,不按比例来绘制简图 3约束和自由度的关系:增加一个约束,构件就失去一个自由度 4机构具有确定运动的条件:机构自由度等于机构的原动件数 5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心 收集于网络,如有侵权请联系管理员删除

绝对瞬心:运动构件上瞬时绝对速度为零的点 相对瞬心:两运动构件上瞬时绝对速度相等的重合点 6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。 7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O 为圆心,ρ为半径做一圆,该圆成为摩擦圆。 8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。自锁条件:η≤0 机械发生自锁 9连杆机构(低副机构):若干个构件通过低副联接所组成的机构 10平面四杆机构基本形式:铰链四杆机构 11曲柄:在两连杆中能做整周回转机构 摇杆:只能在一定角度范围内摆动的构件 周转副:将两构件能做360°相对转动的转动副 摆动副:不能将两构件能做360°相对转动的转动副 12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和 2连架杆和机架中有一杆是最短杆 13最短杆为连杆时,该机构为双摇杆机构;最短杆为连架杆时,该机构为曲柄摇杆机构;最短杆为机架时,该机构为双曲柄机构; 14有急回运动:θ≠0时,偏置曲柄滑块机构和导杆机构 收集于网络,如有侵权请联系管理员删除

相关主题