搜档网
当前位置:搜档网 › 动量与能量专题1

动量与能量专题1

动量与能量专题1
动量与能量专题1

动量和能量专题

高考试题

1.(2006年·全国理综Ⅰ)一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体

伸直并刚好离开地面,速度为v .在此过程中,

A .地面对他的冲量为mv +mg Δt ,地面对他做的功为212

mv B .地面对他的冲量为mv +mg Δt ,地面对他做的功为零

C .地面对他的冲量为mv ,地面对他做的功为212

mv D .地面对他的冲量为mv -mg Δt ,地面对他做的功为零

提示:运动员向上起跳的过程中,由动量定理可得,I mg t mv -?=,则I m v m g t =+?;起跳过程中,地面对运动员的作用力向上且其作用点的位移为零(阿模型化,认为地面没有发生形变),所以,地面对运动员做的功为零.

2.(2006年·全国理综Ⅱ)如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,

质量相等.Q 与轻质弹簧相连.设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于

A .P 的初动能

B .P 的初动能的1/2

C .P 的初动能的1/3

D .P 的初动能的1/4

提示:设P 的初速度为v 0,P 、Q 通过弹簧发生碰撞,当两滑块速度相等时,弹簧压缩到最短,弹性势能最大,设此时共同速度为v ,对P 、Q (包括弹簧)组成的系统,由动量守恒定律,有

02mv mv = ①

由机械能守恒定律,有

22Pm 01122

E mv mv =

-×2 ② 联立①②两式解得22Pm 00111422E mv mv ==× 3.(2006年·江苏)一质量为m 的物体放在光滑的水平面上,今以恒力F 沿水平方向推该

物体,在相同的时间间隔内,下列说法正确的是

A .物体的位移相等

B .物体动能的变化量相等

C .F 对物体做的功相等

D .物体动量的变化量相等

提示:物体在恒力的作用下做匀加速直线运动,在相同的时间内,其位移不相等,故力对物体做的功不相等,由动能定理可知,物体动能的变化量不相等;根据动量定理,有F t p ?=?,所以,物体动量的变化量相等.

4.(2003年·辽宁大综合)航天飞机在一段时间内保持绕地心做匀速圆周运动,则

A .它的速度大小不变,动量也不变

B .它不断克服地球对它的万有引力做功

C .它的速度大小不变,加速度等于零

D .它的动能不变,引力势能也不变

5.(2003年·上海)一个质量为0.3kg的弹性小球,在光滑水平面上以6m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv和碰撞过程中墙对小球做功的大小W为

A.Δv=0 B.Δv=12m/s C.W=0 D.W=10.8J 6.(2002年·广东大综合)将甲、乙两物体自地面同时上抛,甲的质量为m,初速为v,乙的质量为2m,初速为v/2.若不计空气阻力,则

A.甲比乙先到最高点

B.甲和乙在最高点的重力势能相等

C.落回地面时,甲的动量的大小比乙的大

D.落回地面时,甲的动能比乙的大

7.(2002年·全国理综)在光滑水平地面上有两个弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰.已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P,则碰前A球的速度等于

A B C.D.

8.(2001年·全国理综)下列是一些说法:

①一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲

量一定相同

②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的

功或者都为零,或者大小相等符号相反

③在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反

④在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反

以上说法正确的是

A.①②B.①③C.②③D.②④9.(1998年·全国)在光滑水平面上,动能为E0、动量的大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反.将碰撞后球1的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2.则必有

A.E1<E0B.p1<p0C.E2>E0D.p2>p0 10.(1996年·全国)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是

A.甲球的速度为零而乙球的速度不为零

B.乙球的速度为零而甲球的速度不为零

C.两球的速度均不为零

D.两球的速度方向均与原方向相反,两球的动能仍相等

11.(1995年·全国)一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,则

A.过程Ⅰ中钢珠动量的改变量等于重力的冲量

B.过程Ⅱ中阻力的冲量的大小等于过程Ⅰ中重力冲量的大小

C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ与过程Ⅱ中钢珠所减少的重力势能之和

D.过程Ⅱ中损失的机械能等于过程Ⅰ中钢珠所增加的动能

12.(1992年·全国)如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿

水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中

A .动量守恒、机械能守恒

B .动量不守恒、机械能不守恒

C .动量守恒、机械能不守恒

D .动量不守恒、机械能守恒

13.(1991年·全国)有两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b .它们的初动能

相同.若a 和b 分别受到不变的阻力F a 和F b 的作用,经过相同的时间停下来,它们的位移分别为s a 和s b ,则

A .F a >F b 且s a

B .F a >F b 且s a >s b

C .F a s b

D .F a

以5.0m/s 的水平速度与物体A 相撞,碰撞后物体B 以1.0m/s 的速度反向弹回.相撞过程中损失的机械能是_________J .

【答案】6.0

15.(1993年·全国)如图所示,A 、B 是位于水平桌面上的两个质

量相等的小木块,离墙壁的距离分别为L 和l ,与桌面之间的滑

动摩擦系数分别为μA 和μB .今给A 以某一初速度,使之从桌面

的右端向左运动.假定A 、B 之间,B 与墙之间的碰撞时间都很

短,且碰撞中总动能无损失.若要使木块A 最后不从桌面上掉下

来,则A 的初速度最大不能超过_______.

16.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A

从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为m 2的档板B 相连,弹簧处于原长时,B 恰位于滑道的末端O 点.A 与B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:

(1)物块A 在与挡板B 碰撞前瞬间速度v 的大小;

(2)弹簧最大压缩量为d 时的弹性势能E p (设弹簧处于原长时弹性势能为零).

【答案】(1)gh 2;(2)211212

()m gh m m gd m m μ-++ 解析:(1)由机械能守恒定律,有

21112

m gh m v =

解得v =gh 2 (2)A 、B 在碰撞过程中内力远大于外力,由动量守恒,有

112()m v m m v '=+

碰后A 、B 一起压缩弹簧,)到弹簧最大压缩量为d 时,A 、B 克服摩擦力所做的功 12()W m m gd μ=+

由能量守恒定律,有

212P 121()()2

m m v E m m gd μ'+=++ 解得21P 1212

()m E gh m m gd m m μ=-++ 17.(2006年·重庆理综)如图,半径为R 的光滑圆形轨道固定在竖

直面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从

左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点

的B 球相撞,碰撞后A 、B 球能达到的最大高度均为14

R ,碰撞中无机械能损失.重力加速度为g .试求:

(1)待定系数β;

(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;

(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度.

【答案】(1)3;(2)1v =,方向水平向左;2v =4.5mg ,方向竖直向下.(3)见解析

解析:(1)由于碰撞后球沿圆弧的运动情况与质量无关,因此,A 、B 两球应同时达到最大高度处,对A 、B 两球组成的系统,由机械能守恒定律得

44

mgR mgR mgR β=+,解得β=3 (2)设A 、B 第一次碰撞后的速度分别为v 1、v 2,取方向水平向右为正,对A 、B 两球组成的系统,有

2212112

mgR mv mv β=

+

12mv mv β=+

解得1v =,方向水平向左;2v = 设第一次碰撞刚结束时轨道对B 球的支持力为N ,方向竖直向上为正,则

22v N mg m R

ββ-=,B 球对轨道的压力 4.5N N mg '=-=-,方向竖直向下.

(3)设A 、B 球第二次碰撞刚结束时的速度分别为V 1、V 2,取方向水平向右为正,则 1212mv mv mV mV ββ--=+

22121122

mgR mV mV β=

+ 解得V 1=-gR 2,V 2=0.(另一组解V 1=-v 1,V 2=-v 2不合题意,舍去) 由此可得:

当n 为奇数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第一次碰撞刚结束时相同;

当n 为偶数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同.

18.(2006年·江苏)如图所示,质量均为m 的A 、B 两个弹性小

球,用长为2l 的不可伸长的轻绳连接.现把A 、B 两球置于距

地面高H 处(H 足够大),艰巨为l .当A 球自由下落的同时,

B 球以速度v0指向A 球水平抛出间距为l .当A 球自由下落的

同时,B 球以速度v 0指向A 球水平抛出.求:

(1)两球从开始运动到相碰,A 球下落的高度.

(2)A 、B 两球碰撞(碰撞时无机械能损失)后,各自速度的

水平分量.

(3)轻绳拉直过程中,B 球受到绳子拉力的冲量大小.

【答案】(1)2202gl v ;(2)A 0B ,0x x v v v ''==;(3)012

mv 解析:(1)设到两球相碰时A 球下落的高度为h ,由平抛运动规

律得

0l v t =

① 212

h gt = ② 联立①②得2

202gl h v = ③

(2)A 、B 两球碰撞过程中,由水平方向动量守恒,得

0A B x x mv mv mv ''=+ ④

由机械能守恒定律,得

22222220B A A A B B 1111()()()2222

y y x y x y m v v mv m v v m v v ''''++=+++ ⑤

式中A A B B ,y y y y v v v v ''== 联立④⑤解得A

0B ,0x x v v v ''== (3)轻绳拉直后,两球具有相同的水平速度,设为v B x ,,由水平方向动量守恒,得 0B 2x mv mv = 由动量定理得B 012

x I mv mv == 19.(2005年·广东)如图所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,

它们的间距s=2.88m .质量为2m ,大小可忽略的物块C 置于A 板的左端.C 与A 之间的动摩擦因数为μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力.开始时,三个物体处于静止状态.现给C 施加一个水平

向右,大小为mg 5

2的恒力F ,假定木板A 、B 碰撞时间极短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板的长度至少应为多少?

【答案】0.3m

解析:设A 、C 之间的滑动摩擦力大小f 1,A 与水平地面之间的滑动摩擦力大小为f 2 0.220.10μμ==12,,则

11225F mg f mg μ=<= 且222(2)5

F mg f m m g μ=>=+ 说明一开始A 和C 保持相对静止,在F 的作用下向右加速运动,有

2211()(2)2

F f s m m v -=+ A 、B 两木板的碰撞瞬间,内力的冲量远大于外力的冲量,由动量守恒定律得:

mv 1=(m +m )v 2

碰撞结束后三个物体达到共同速度的相互作用过程中,设木板向前移动的位移s 1,选三个物体构成的整体为研究对象,外力之和为零,则

2mv 1+(m +m )v 2=(2m +m +m )v 3

设A 、B 系统与水平地面之间的滑动摩擦力大小为f 3,则A 、B 系统,由动能定理: 2211313232112222(2)f s f s mv mv f m m m g

m -=-=++

对C 物体,由动能定理得221113111(2)(2)2222

F l s f l s mv mv +-+=- 联立以上各式,再代入数据可得l =0.3m .

20.(2005年·全国理综Ⅰ)如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量

为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态.一

条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开

始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上

升一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地

面但不继续上升.若将C 换成另一个质量为(m 1+m 2)的物体D ,仍

从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小

是多少?已知重力加速度为g .

解析:开始时,A 、B 静止,设弹簧压缩量为x 1,有kx 1=m 1g ①

挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为x 2,有

kx 2=m 2g ②

B 不再上升,表示此时A 和

C 的速度为零,C 已降到其最低点.由机械能守恒,与初

始状态相比,弹簧弹性势能的增加量为ΔE =m 3g (x 1+x 2)-m 1g (x 1+x 2) ③

C 换成

D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得

22311311211211()()()()22

m m v m v m m g x x m g x x E ++=++-+-D ④ 由③④式得2131121(2+)=(+)2

m m v m g x x ⑤ 由①②⑤

式得v = ⑥

21.(2005年·全国理综Ⅱ)质量为M 的小物块A 静止在离地面高h 的水平桌面的边缘,

质量为m 的小物块B 沿桌面向A 运动并以速度v 0与之发生正碰(碰撞时间极短).碰后A 离开桌面,其落地点离出发点的水平距离为L .碰后B 反向运动.求B 后退的距离.已知B 与桌面间的动摩擦因数为μ.重力加速度为g .

【答案】201

)2v g m

解析:设t 为A 从离开桌面至落地经历的时间,V 表示刚碰后A 的速度,有

212

h gt =

① L =Vt

② 设v 为刚碰后B 的速度的大小,由动量守恒,mv 0=MV -mv

③ 设B 后退的距离为l ,由功能关系,212mgl mv μ= ④

由以上各式得201

)2l v g m = ⑤

22.(2005年·全国理综Ⅲ)如图所示,一对杂技演

员(都视为质点)乘秋千(秋千绳处于水平位

置)从A 点由静止出发绕O 点下摆,当摆到最

低点B 时,女演员在极短时间内将男演员沿水

平方向推出,然后自己刚好能回到高处A .求

男演员落地点C 与O 点的水平距离s .已知男

演员质量m 1和女演员质量m 2之比12

2m m =,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .

【答案】8R

解析:设分离前男女演员在秋千最低点B 的速度为v B ,由机械能守恒定律,得

212121()()2

B m m gR m m v +=

+ 设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒:(m 1+m 2)v 0=m 1v 1-m 2v 2

分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t

,根据题给

条件,从运动学规律,21142R gt s v t ==

根据题给条件,女演员刚好回到A 点,由机械能守恒定律得222212m gR m v =

已知m 1=2m 2,由以上各式可得s=8R

23.(2005年·天津理综)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与

水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E kA 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取10m/s 2,求:

(1)瞬时冲量作用结束时木板的速度v 0; (2)木板的长度L . 【答案】0.50m

解析:(1)设水平向右为正方向,有I =m A v 0 ①

代入数据得v 0=3.0m/s ②

(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 滑行的时间为t ,B 离开A 时A 和B 的速度分别为v A 和v B ,有

-(F BA +F CA )t =m A v A -m A v A ③

F AB t =m B v B ④

其中F AB =F BA F CA =μ(m A +m B )g ⑤

设A 、B 相对于C 的位移大小分别为s A 和s B , 有22011()22BA CA A A A A F F s m v m v -+=

- ⑥ F AB s B =E kB ⑦

动量与动能之间的关系为A A m v = ⑧

B B m v =

⑨ 木板A 的长度L =s A -s B ⑩

代入数据解得L =0.50m

24.(2005年·北京春招)下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停

着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为

L ,撞车后共同滑行的距离825

l L =

.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍. (1)设卡车与故障车相撞前的速度为v 1,两车相撞后的速度变为v 2,求12

v v ; (2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生.

【答案】(1)54;(2)32

L 解析:(1)由碰撞过程动量守恒 M v 1=(M +m )v 2 ①

则1254

v v = (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122

Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2

M m v M m gl μ+-=+ ③ 由②式得v 02-v 12=2μgL

由③式得v 22 =2μgL 又因208,325

l L v gL μ==得 如果卡车滑到故障车前就停止,由20102

Mv MgL μ'-= ④ 故32

L L '= 这意味着卡车司机在距故障车至少32

L 处紧急刹车,事故就能够免于发生. 25.(2004年·广东)如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平

导轨上,弹簧处在原长状态,另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离L 1时,与B 相碰,

碰撞时间极短,碰后A 、B 紧贴在一起运动,但

互不粘连,已知最后A 恰好返回出发点P 并停

止.滑块A 和B 与导轨的滑动摩擦因数都为μ,

运动过程中弹簧最大形变量为L 2,求A 从P 出

发时的初速度v 0.

解析:令A 、B 质量均为m ,A 刚接触B 时速度为v 1(碰前),由动能关系,有

220111122

mv mv mgl μ-= A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2,有mv 1=mv 2

碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这过程中,弹簧势能始末两态都为零.

2223211(2)(2)(2)(2)22

m v m v m g l μ-= 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有23112

mv mgl μ=

由以上各式解得0v =26.(2004年·全国理综Ⅱ)柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞

间有柴油与空气的混合物.在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动.现把柴油打桩机和打桩过程简化如下:

柴油打桩机重锤的质量为m ,锤在桩帽以上高度为h 处

如图(a )从静止开始沿竖直轨道自由落下,打在质量

为M (包括桩帽)的钢筋混凝土桩子上.同时,柴油燃

烧,产生猛烈推力,锤和桩分离,这一过程的时间极

短.随后,桩在泥土中向下移动一距离l .已知锤反跳

后到达最高点时,锤与已停下的桩帽之间的距离也为h

如图(b ).已知m 1=1.0×103kg ,M =2.0×103kg ,h =2.0m ,

l =0.2m ,重力加速度g=10m/s 2,混合物的质量不计.设

桩向下移动的过程中泥土对桩的作用力F 是恒力,求此力的大小.

【答案】2.1×105N

解析:考察锤m 和桩M 组成的系统,在碰撞过程中动量守恒(因碰撞时间极短,内力远大于外力),选取竖直向下为正方向,则mv 1=Mv -mv 2

其中12v v 碰撞后,桩M 以初速v 向下运动,直到下移距离l 时速度减为零,此过程中,根据动能定理,有2102

Mgl Fl Mv -=-

由上各式解得()[2mg m F mg h l l M

=+-+ 代入数据解得F =2.1×105N

27.(2004年·全国理综Ⅲ)如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质

量为M=4.0kg ,a 、b 间距离s=2.0m .木板位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,

它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木

板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a

端而不脱离木板.求碰撞过程中损失的机械能.

【答案】2.4J

解析:设木块和物块最后共同的速度为v ,由动量守恒定律得

v M m mv )(0+= ①

设全过程损失的机械能为E ,则

220)(2121v M m mv E +-= ②

用s 1表示从物块开始运动到碰撞前瞬间木板的位移,W 1表示在这段时间内摩擦力对木板所做的功.用W 2表示同样时间内摩擦力对物块所做的功.用s 2表示从碰撞后瞬间到物块回到a 端时木板的位移,W 3表示在这段时间内摩擦力对木板所做的功.用W 4表示同样时间内摩擦力对物块所做的功.用W 表示在全过程中摩擦力做的总功,则

W 1=1mgs μ ③

W 2=)(1s s mg +-μ ④

W 3=2mgs μ-

⑤ (a ) (b )

W 4=)(2s s mg -μ ⑥

W =W 1+W 2+W 3+W 4 ⑦

用E 1表示在碰撞过程中损失的机械能,则 E 1=E -W

⑧ 由①~⑧式解得

mgs v M m mM E μ221201-+= ⑨

代入数据得E 1=2.4J ⑩

28.(2004年·全国理综Ⅳ)如图所示,在一光滑的水平面上有两块相同的木板B 和C .重

物A (视为质点)位于B 的右端,A 、B 、C 的质量相等.现A 和B 以同一速度滑向静止的C 、B 与C 发生正碰.碰后B 和C 粘在一起运

动,A 在C 上滑行,A 与C 有摩擦力.已知A 滑到

C 的右端而未掉下.试问:从B 、C 发生正碰到A

刚移到C 右端期间,C 所走过的距离是C 板长度的

多少倍. 【答案】73

解析:设A 、B 、C 的质量均为m .碰撞前,A 与B 的共同速度为v 0,碰撞后B 与C 的共同速度为v 1.对B 、C ,由动量守恒定律得

mv 0=2mv 1 ①

设A 滑至C 的右端时,三者的共同速度为v 2.对A 、B 、C ,由动量守恒定律得

2mv 0=3mv 2 ②

设A 与C 的动摩擦因数为μ,从发生碰撞到A 移至C 的右端时C 所走过的距离为s ,对B 、C 由功能关系2122)2(2

1)2(21v m v m mgs -=μ ③ 设C 的长度为l ,对A ,由功能关系 22202121)(mv mv l s mg -=+μ

④ 由以上各式解得73

s l = ⑤ 29.(2004年·天津)质量m =1.5kg 的物块(可视为质点)在水平恒力F 作用下,从水平面

上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t =2.0s 停在B 点,已知A 、B 两点间的距离s =5.0m ,物块与水平面间的动摩擦因数μ=0.20,求恒力F 多大.(g =10m/s 2).

【答案】15N

解析:设撤去力F 前物块的位移为s 1,撤去力F 时物块速度为v .

物块受到的滑动摩擦力F 1=μmg

撤去力F 后,由动量定理得-F 1t =-mv

由运动学公式得s -s 1=vt /2

全过程应用动能定理得Fs 1-F 1s =0 由以上各式得222mgs

F s gt μμ=-

代入数据得F =15N

30.(2003年·江苏)如图(a )所示,为一根竖直悬挂的不可伸长的轻绳,下端拴一小物

块A ,上端固定在C 点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m 0的子弹B 沿水平方向以速度v 0射入A 内(未穿透),接着两者一起绕C 点在竖直面内做圆周运动.在各种阻力都可忽略的条件下测力传感器测得绳的拉力F 随时间t 变化关系如图(b )所示,已知子弹射入的时间极短,且图(b )中t =0为A 、B 开始以相同的速度运动的时刻.根据力学规律和题中(包括图)提供的信息,对反映悬挂系统本身性质的物理量(例如A 的质量)及A 、B 一起运动过程中的守恒量,你能求得哪些定量的结果?

【答案】06m g F m m -=;g F v m l m

22020536=;22003m m v E g F = 解析:由图2可直接看出,A 、B 一起做周期性运动,运动的周期T =2t 0 ①

令m 表示A 的质量,l 表示绳长.1v 表示B 陷入A 内时即0=t 时A 、B 的速度(即圆周运动最低点的速度),2v 表示运动到最高点时的速度,

F 1表示运动到最低点时绳的拉力,F 2表示运动到最高点时绳的拉力,根据动量守恒定律,得

1000)(v m m v m += ② 在最低点和最高点处应用牛顿定律可得t

v m m g m m F 21001)()(+=+- ③ t

v m m g m m F 22002)()(+=++ ④

根据机械能守恒定律可得 2202100)(2

1)(21)(2v m m v m m g m m l +-+=+ ⑤ 由图2可知 02=F ⑥ m F F =1

⑦ 由以上各式可解得,反映系统性质的物理量是

06m g F m m -= ⑧ g F v m l m 2

20

20536= ⑨

A 、

B 一起运动过程中的守恒量是机械能E ,若以最低点为势能的零点,则

2011()2E m m v =+ ⑩ 由②⑧⑩式解得22003m

m v E g F =

31.(2003年·江苏)(1)如图(a ),在光滑水平长直轨道上,放着一个静止的弹簧振子,

它由一轻弹簧两端各联结一个小球构成,两小球质量相等.现突然给左端小球一个向右的速度μ0,求弹簧第一次恢复到自然长度时,每个小球的速度.

(2)如图(b ),将N 个这样的振子放在该轨道上,最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E 0.其余各振子间都有一定的距离,现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后,继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰.求所有可能的碰撞都发生后,每个振子弹性势能的最大值.已知本题中两球发生碰撞时,速度交换,即一球碰后的速度等于另一球碰前的速度.

【答案】(1)021,0u u u ==;(2)014

E 解析:(1)设每个小球质量为m ,以1u 、2u 分别表示弹簧恢复到自然长度时左右两端小球的速度.由动量守恒和能量守恒定律有

021mu mu mu =+(以向右为速度正方向)

2022212

12121mu mu mu =+,解得021201,00,u u u u u u ====或 由于振子从初始状态到弹簧恢复到自然长度的过程中,弹簧一直是压缩状态,弹性力使左端小球持续减速,使右端小球持续加速,因此应该取解:021,0u u u ==

(2)以v 1、v 1’分别表示振子1解除锁定后弹簧恢复到自然长度时左右两小球的速度,规定向右为速度的正方向,由动量守恒和能量守恒定律,mv 1+mv 1’=0

021212121E v m mv ='+,解得1111v v v v ''=== 在这一过程中,弹簧一直是压缩状态,弹性力使左端小球向左加速,右端小球向右加速,故应取解:m

E v m E v 0101,='-= 振子1与振子2碰撞后,由于交换速度,振子1右端小球速度变为0,左端小球速度仍为1v ,此后两小球都向左运动,当它们向左的速度相同时,弹簧被拉伸至最长,弹性势能最大,设此速度为10v ,根据动量守恒定律,有

1102mv mv =

用E 1表示最大弹性势能,由能量守恒有 2112102102

12121mv E mv mv =++

解得014

1E E 32.(2003年·全国理综)一传送带装置示意如图,其中传送带经过AB 区域时是水平的,

经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切.现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h ,稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L ,每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以

后也不再滑动(忽略经BC 段时的微小滑

动).已知在一段相当长的时间T 内,共运送

小货箱的数目为N .这装置由电动机带动,传

送带与轮子间无相对滑动,不计轮轴处的摩擦.求电动机的平均输出功率P . 【答案】T Nm [22

2T

L N +gh ] 解析:以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有

s =1/2at 2 ①

v 0=at ②

在这段时间内,传送带运动的路程为

s 0=v 0t ③

由以上可得

s 0=2s ④

用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为

A =fs =1/2mv 02 ⑤

传送带克服小箱对它的摩擦力做功

A 0=fs 0=2·1/2mv 02 ⑥

两者之差就是克服摩擦力做功发出的热量

Q =1/2mv 02 ⑦

可见,在小箱加速运动过程中,小箱获得的动能与发热量相等.

T 时间内,电动机输出的功为

W =P T ⑧

此功用于增加小箱的动能、势能以及克服摩擦力发热,即

W =1/2Nmv 02+Nmgh +NQ ⑨

已知相邻两小箱的距离为L ,所以

v 0T =NL ⑩

联立⑦⑧⑨⑩解得P =T Nm [22

2T

L N +gh ] 33.(2003年·春招理综)有一炮竖直向上发射炮弹,炮弹的质量为M =6.0kg (内含炸药

的质量可以忽略不计),射出的初v 0=60m/s .当炮弹到达最高点时爆炸为沿水平方向运动的两片,其中一片质量为m =4.0kg .现要求这一片不能落到以发射点为圆心、以R

=600m 为半径的圆周范围内,则刚爆炸完时两弹片的总动能至少多大?(g =10m/s 2,忽略空气阻力)

【答案】46.010J ?

解析:设炮弹止升到达最高点的高度为H ,根据匀变速直线运动规律,有

202v gH =

设质量为m 的弹片刚爆炸后的速度为V ,另一块的速度为v ,根据动量守恒定律,有 ()mV M m v =-

设质量为m 的弹片运动的时间为t ,根据平抛运动规律,有

21

2

H gt R Vt

== 炮弹刚爆炸后,两弹片的总动能 221

1

()22k E mV M m v =+- 解以上各式得22

2012()k MmR g E M m v =-

代入数值得46.010J k E =?

34.(2000年·全国)在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交

换反应”.这类反应的前半部分过程和下述力学模型类似.两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态.在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图所示.C 与B 发生碰撞并立即结成一个整体D .在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变.然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连.过一段时间,突然解

除锁定(锁定及解除锁定均无机械能损失).已

知A 、B 、C 三球的质量均为m .求:

(1)弹簧长度刚被锁定后A 球的速度;

(2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能.

【答案】(1)013

v ;(2)20136mv 解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒,有

10)(v m m mv += ①

当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒,有

2132mv mv =

② 由①②两式解得201

3

v v = ③ (2)设弹簧长度被锁定后,贮存在弹簧中的势能为Ep ,由能量守恒,有

2212112322p mv mv E =+ ④

撞击P 后,A 与D 的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转变成D 的动能,设D 的速度为v 3,则有

231(2)2p E m v = ⑤

以后弹簧伸长,A 球离开挡板P ,并获得速度.当A 、D 的速度相等时,弹簧伸至最长.设此时的速度为v 4,由动量守恒,有

4332mv mv = ⑥

当弹簧伸到最长时,其势能最大,设此势能为p E ',由能量守恒,有

2234112322

p mv mv E '=+ ⑦ 由以上各式解得'201

36

p E mv = ⑧ 35.(1998年·全国)一段凹槽A 倒扣在水平长木板C 上,槽内有一

小物块B ,它到槽两侧的距离均为l /2,如图所示.木板位于光

滑水平的桌面上,槽与木板间的摩擦不计,小物块与木板间的

摩擦系数为μ.A 、B 、C 三者质量相等,原来都静止.现使槽A

以大小为v 0的初速向右运动,已知当A 和B 发生碰撞时,两者速

度互换.求:

(1)从A 、B 发生第一次碰撞到第二次碰撞的时间内,木板C 运动的路程;

(2)在A 、B 刚要发生第四次碰撞时,A 、B 、C 三者速度的大小. 【答案】(1)204v l g μ-;(2)A 014v v =,B C 038

v v v == 解析:(1)A 与B 刚发生第一次碰撞后,A 停下不动,B 以初速v 0向右运动.由于摩擦,B 向右作匀减速运动,而C 向右作匀加速运动,两者速率逐渐接近.设B 、C 达到相同速度v 1时B 移动的路程为s 1.设A 、B 、C 质量皆为m ,由动量守恒定律,得

Mv 0=2mv 1 ①

由功能关系,得

221011122mgs mv mv μ=-

② 由①得1012

v v = 代入②式得2

0138v s g

μ=

根据条件0

s l ③ 可见,在B 、C 达到相同速度v 1时,B 尚未与A 发生第二次碰撞.B 与C 一起将以v 1向右匀速运动一段距离(l -s 1)后才与A 发生第二次碰撞.设C 的速度从零变到v 1的过程中,C 的路程为s 2.由功能关系,得

22112mgs mv μ=

④ 解得2

028v s g μ= 因此在第一次到第二次碰撞间C 的路程为

2

0214v s s l s l g μ=+-=- ⑤

(2)由上面讨论可知,在刚要发生第二次碰撞时,A 静止,B 、C 的速度均为v 1.刚碰撞后,B 静止,A 、C 的速度均为v 1.由于摩擦,B 将加速,C 将减速,直至达到相同速度v 2.由动量守恒定律,得

Mv 1=2mv 2 ⑥ 解得2101124

v v v =

= 因A 的速度v 1大于B 的速度v 2,故第三次碰撞发生在A 的左壁.刚碰撞后,A 的速度变为v 2,B 的速度变为v 1,C 的速度仍为v 2.由于摩擦,B 减速,C 加速,直至达到相同速度v 3.由动量守恒定律,得

Mv 1+mv 2=2mv 3 ⑦ 解得3038

v v = 故刚要发生第四次碰撞时,A 、B 、C 的速度分别为

A 2014

v v v == ⑧ B C 3038

v v v v === ⑨

36.(1997年·全国)质量为m 的钢板与直立轻弹簧的上端连接,弹簧

下端固定在地上.平衡时,弹簧的压缩量为x 0,如图所示.一物

块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与

钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已

知物块质量也为m 时,它们恰能回到O 点.若物块质量为2m ,仍

从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度.求

物块向上运动到达的最高点与O 点的距离. 【答案】0

2

x 解析:物块自由下落3x 0的过程中,由机械能守恒定律得 200132

mg x mv = ① 物块与钢板碰撞,由动量守恒定律得 012mv mv = ②

设刚碰完时弹性势能为p E ,根据机械能守恒定律

2101(2)22

p E m v mgx += ③ 设质量为2m 的物块与钢板碰后一起向下运动的速度为v 2,则 0223mv mv =

由机械能守恒定律得 222011(3)3(3)22

p E m v mgx m v '+=+ ⑤ 以上两种情况下,弹簧的初始压缩量都为x 0,故有 p p E E '= ⑥

物体从O 点再向上以初速v 做竖直上抛运动.到达的最高点与O 点的距离

202v l g = ⑦ 由以上各式解得02

x l = 37.(1996年·全国)一质量为M 的长木板静止在光滑水平桌面上.一质量为m 的小滑块以

水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板.滑块刚离开木板时的速度为v 0/3.若把该木板固定在水平桌面上,其它条件相同,求滑块离开木板时的速度v .

解析:设第一次滑块离开木板时木板的速度为v 1,对系统,由动量守恒定律,得

0013

v mv m Mv =+ ① 设滑块与木块间摩擦力为F ,木板长为L ,木板滑行距离为s .根据动能定理 对木板,有2112

Fs Mv = ② 对滑块,有220011()()223

v F s L mv m +=- ③ 当木板固定时,对滑块,有2201122

FL mv mv =- ④

联立以上各式解得v = 38.(1992年·全国)如图所示,一质量为M 、长为l 的

长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A ,m

A 和

B 以大小相等、方向相反的初速度(如图),使A

开始向左运动、B 开始向右运动,但最后A 刚好没有

滑离木板.以地面为参考系.

(1)若已知A 和B 的初速度大小为v 0,求它们最后的速度的大小和方向;

(2)若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发

v 0 v 0

点的距离.

【答案】(1)0M m v M m -+,方向向右;(2)4M m l M

+ 解析:(1)A 刚好没有滑离B 板,表示当A 滑到B 板的最左端时,A 、B 具有相同的速度.设此速度为v ,A 和B 的初速度的大小为v 0,由动量守恒可得

00()Mv mv M m v -=+ 解得0M m v v M m -=+,方向向右 ①

(2)A 在B 板的右端时初速度向左,而到达B 板左端时的末速度向右,可见A 在运动过程中必经历向左作减速运动直到速度为零,再向右作加速运动直到速度为v 的两个阶段.设l 1为A 开始运动到速度变为零过程中向左运动的路程,l 2为A 从速度为零增加到速度为v 的过程中向右运动的路程,L 为A 从开始运动到刚到达B 的最左端的过程中B 运动的路程,如图所示.设A 与B 之间的滑动摩擦力为f ,根据动能定理,

对B ,有22

01122

fL Mv Mv =

- ② 对A ,有21012

fl mv = ③ 2212fl mv = ④ 由几何关系L +(l 1-l 2)=l

⑤ 由①②③④⑤式解得14M m l l M

+= ⑥ 39.(1991年·全国)在光滑的水平轨道上有两个半径都是r 的小球A 和B ,质量分别为m

和2m ,当两球心间的距离大于l (l 比2r 大得多)时,两球之间无相互作用力;当两球心间的距离等于或小于l 时,两球间存在相互作用的恒定斥力F .设A 球从远离B 球处以速度v 0沿两球连心线向原来静止的B 球运动,如图所示.欲

使两球不发生接触,v 0必须满足什么条件? 【答案】03(2)F l r m

v -< 解析:A 球向B 球接近至A 、B 间的距离小于l 之后,A 球的速度逐步减小,B 球从静止开始加速运动,两球间的距离逐步减小.当A 、B 的速度相等时,两球间的距离最小.若此距离大于2r ,则两球就不会接触.所以不接触的条件是

v 1=v 2

① l +s 2-s 1>2r ②

其中v 1、v 2为当两球间距离最小时A 、B 两球的速度;s 1、s 2为两球间距离从l 变至最小的过程中,A 、B 两球通过的路程.

设v 0为A 球的初速度,由动量守恒定律得

0122mv mv mv =+

由动能定理得 221101122Fs mv mv =- ④

2221(2)2

Fs m v = ⑤ 联立解得03(2)

F l r m

v -< ⑥ 训练试题

40.两相同的物体a 和b ,分别静止在光滑的水平桌面上,因分别受到水平恒力作用,同时

开始运动.若b 所受的力是a 的2倍,经过t 时间后,分别用I a ,W a 和I b ,W b 分别表示在这段时间内a 和b 各自所受恒力的冲量的大小和做功的大小,则

A .W b =2W a ,I b =2 I a

B .W b =4W a ,I b =2 I a

C .W b =2 W a ,I b =4 I a

D .W b =4 W a ,I b =4 I a

41.木块A 从斜面底端以初速度v 0冲上斜面,经一段时间,回到斜面底端.若木块A 在斜

面上所受的摩擦阻力大小不变.对于木块A ,下列说法正确的是

A .在全过程中重力的冲量为零

B .在全过程中重力做功为零

C .在上滑过程中动量的变化量的大小大于下滑过程中动量的变化量

D .在上滑过程中机械能的变化量大于下滑过程中机械能的变化量

42.质量为m 的小物块,在与水平方向成α角的力F 作用下,

沿光滑水平面运动,物块通过A 点和B 点的速度分别是

v A 和v B ,物块由A 运动到B 的过程中,力F 对物块做功

W 和力F 对物块作用的冲量I 的大小是

A .221122

B A W mv mv =- B .221122

B B W mv mv >-

C .B A I mv mv =-

D .B A I mv mv >-

43.A 、B 两物体质量分别为m A 、m B ,且3m A =m B ,它们以相同的初动能在同一水平地面上

滑行.A 、B 两物体与地面的动摩擦因数分别为μA 、μB ,且μA =2μB ,设物体A 滑行了s A 距离停止下来,所经历的时间为t A 、而物体B 滑行了s B 距离停止下来,所经历的时间为t B .由此可以判定

A .s A >s

B t A >t B

B .s A >s B t A < t B

C .s A t B

D .s A

44.质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相

同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为p 1、p 2和E 1、E 2,比较它们的大小,有

A .1212p p E E >>和

B .1212p p E E ><和

C .1212p p E E <>和

D .1212p p

E E <<和

45.竖直向上抛出的物体,从抛出到落回到抛出点所经历的时间是t ,上升的最大高度是H ,

所受空气阻力大小恒为f ,则在时间t 内

A .物体受重力的冲量为零

B .在上升过程中空气阻力对物体的冲量比下降过程中的冲量大

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

2019高考物理动量与能量专题测试题及答案及解析

2019高考物理动量与能量专题测试题及答案及解析 一、单选题 1.【河北省衡水中学2019届高考模拟】如图所示,A、B、C三球的质量分别为m、m、2m,三个小球从同 一高度同时出发,其中A球有水平向右的初速度,B、C由静止释放。三个小球在同一竖直平面内运动,小球与地面之间、小球与小球之间的碰撞均为弹性碰撞,则小球与小球之间最多能够发生碰撞的次数为() A.1次 B.2次 C.3次 D.4次 2.【河北省武邑中学2018-2019学年高考模拟】如图所示,有一条捕鱼小船停靠在湖边码头,一位同学想用一个卷尺粗略测定它的质量。他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船。他用卷尺测出船后退的距离为d,然后用卷尺测出船长L,已知他自身的质量为m,则船的质量为( ) A.B.C.D. 3.【全国百强校山西大学附属中学2018-2019学年高考模拟】如图所示,倾角θ = 30°的光滑斜面固定在水平地面上,斜面长度为60m。质量为3kg的滑块A由斜面底端以初速度v0 = 15 m/s沿斜面向上运动,与此同时,一质量为2kg的物块B从静止由斜面顶端沿斜面向下运动,物块A、B在斜而上某处发生碰撞,碰后A、B粘在一起。已知重力加速度大小为g =10 m/s2。则

A.A、B运动2 s后相遇 B.A、B相遇的位置距离斜面底端为22.5 m C.A、B碰撞后瞬间,二者速度方向沿斜而向下,且速度大小为1m/s D.A、B碰撞过程损失的机械能为135J 4.【湖北省宜昌市英杰学校2018-2019学年高考模拟】光滑水平地面上,A,B两物块质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩到最短时 A.A、B系统总动量为2mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 5.【陕西省西安市远东第一中学2018-2019学年高考模拟】如图所示,质量为0.5kg的小球在距离车底面高20m处以一定的初速度向左平抛,落在以7.5m/s速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4kg,设小球在落到车底前瞬间速度是25m/s,则当小球与小车相对静止时,小车的速度是() A.5m/s B.4m/s C.8.5m/s D.9.5m/s 二、多选题 6.【山东省烟台二中2019届高三上学期10月月考物理试题】如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。一个人站在车上用大锤敲打车的左端,在连续的敲打下,下列说法正确的是

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

高中物理复习专题 动量与能量(精选.)

专题三动量与能量 思想方法提炼 牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题. 一、能量 1.概述 能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度. 高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。在每年的高考物理试卷中都会出现考查能量的问题。并时常发现“压轴题”就是能量试题。 2.能的转化和守恒定律在各分支学科中表达式 (1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。(动能定理) (2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。(功能原理) 注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能 (2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。 (3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。重力势能 变化只与重力做功有关,与其他做功情况无关。 (4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。 注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。 (5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。 (6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之 差。 (7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。(可以以粒子的动

专题四:动量与能量(含答案)

专题四:动量与能量 1、如图所示,A 、B 两物体质量比为3∶2,原来静止在平板小车上,A 、B 之间有一根被压缩的弹簧,A 、B 与车面间的摩擦系数相同,平板小车与地之间的摩擦不计。当弹簧释放后,若弹簧释放时弹力大于两物体与车间的摩擦力,则下列判断正确的是:AD A 、小车将向左运动; B 、小车将向右运动; C 、A 、B 两物体的总动量守恒; D 、A 、B 与小车的总动量守恒。 2、如图所示,质量分别为m 1和m 2的物块,分别以速度v 1、v 2沿斜面上的同一条直线向下匀速滑行,且v 1> v 2。m 2的右端安有轻弹簧。在它们发生相互作用后,两物块又分开。在m 1和m 2(包括弹簧) 相互作用的过程中,下列说法中正确的是 C A .由于有重力和摩擦力作用,所以该过程不适用动量守恒定律 B .由于系统所受合外力为零,所以该过程一定适用动量守恒定律 C .当m 1∶m 2的值足够大时,该过程一定适用动量守恒定律 D .当m 1∶m 2的值足够小时,该过程一定适用动量守恒定律 3、在质量为M 的小车中挂有一单摆,摆球的质量为m 0,小车和单摆一起以恒定的速度v 沿光滑水平面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪个说法是可能发生的( )BC (A)小车、木块、摆球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M +m)v=Mv 1+mv 2+m 0v 3 (B)摆球的速度不变,小车和木块的速度分别变为v 1和v 2,满足Mv=Mv 1+mv 2 (C)摆球的速度不变,小车和木块的速度都变为v 1,满足Mv=Mv 1+mv 1 (D)小车和摆球的速度都变为v 1,木块的速度变为v 2,满足(M +m 0)v=(M +m 0)v 1+mv 2 4、如图所示,沙车沿光滑水平面以速度V 0作匀速直线运动,运动过程中,从沙车上方落入一只质量不能忽略的铁球,使沙车的 速度变为V ,则 C A 、V=V 0,沙车仍作匀速直线运动; B 、V

动量与能量结合综合题附答案汇编

动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则() A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

动量与能量之难点解析专题5

动量与能量之难点解析 专题01 动量与能量分析之“碰撞模型” 专题02 动量与能量分析之“板-块模型” 专题03 动量与能量分析之“含弹簧系统” 专题04 动量与能量分析之“爆炸及反冲问题” 专题05 动量与能量观点在电磁感应中的应用 专题5 动量与能量观点在电磁感应中的应用 【方法总结】 解决电磁感应问题往往需要力电综合分析,在电磁感应问题中需要动量与能量分析求解时,学生往往无从下手,属于压轴考查,需要学生平时吃透典型物理模型和积累解题经验,现将动量与能量观点求解电磁感应综合问题时常出现典型模型和思路总结如下: 1. “双轨+双杆”模型 以“2019全国3卷第19题”物理情景为例:如图,方向竖直向下的匀强磁场中有两根位于同一水 平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好: 模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab 棒受到水平向左安培力,向右减速;cd 棒受到水平向右安培力,向右加速,最终导体棒ab 、cd 系统共速,感应电流消失,一起向右做匀速直线运动,该过程由导体棒ab 、cd 组成的系统合外力为零,动量守恒:共v m m v m cd ab ab )(0+= 2. 巧用“动量定理”求通过导体电荷量q 思路:动量定理得:p t BIL p t F ?=????=??安,由于t I q ??=,所以p BLq ?=,

即:BL p q ?= 【精选试题解析】 1. (2019全国Ⅲ卷)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的 平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示。下列图像中可能正确的是( ) 2. [多选]如图所示,两根相距为d 的足够长的光滑金属导轨固定在水平面上,导轨电阻不计。磁感应强度为B 的匀强磁场与导轨平面垂直,长度等于d 的两导体棒M 、N 平行地放在导轨上,且电阻均为R 、质量均为m ,开始时两导体棒静止。现给M 一个平行导轨向右的瞬时冲量I ,整个过程中M 、N 均与导轨接触良好,下列说法正确的是( ) A .回路中始终存在逆时针方向的电流 B .N 的最大加速度为B 2Id 2 2m 2R C .回路中的最大电流为BId 2mR D .N 获得的最大速度为I m 3. (2019浙江选考)如图所示,在间距L =0.2m 的两光滑平行水平金属导轨间存在方向垂直于 纸面(向内为正)的磁场,磁感应强度为分布沿y 方向不变,沿x 方向如下: 10.2{50.20.2 10.2Tx m B xT m x m Tx m >=-≤≤-<- 导轨间通过单刀双掷开关S 连接恒流源和电容C =1F 的未充电的电容器,恒流源可为电路提供恒定电流I =2A ,电流方向如图所示。有一质量m =0.1kg 的金属棒ab 垂直导轨静止放置于x 0=0.7m 处。开关S 掷向1,棒ab 从静止开始运动,到达x 3=-0.2m 处时,开关S 掷向2。已知棒ab 在运动过程中始终与导

(江浙选考1)202x版高考物理总复习 专题四 动量与能量观点的综合应用 考点强化练42 动量与能量

考点强化练42动量与能量观点的综合应用 1.如图所示,水平放置的宽L=0.5 m的平行导体框,质量为m=0.1 kg,一端接有R=0.2 Ω的电阻,磁感应强度B=0.4 T的匀强磁场垂直导轨平面方向向下。现有一导体棒ab垂直跨放在框架上,并能无摩擦地沿框架滑动,导体棒ab的电阻r=0.2 Ω。当导体棒ab以v=4.0 m/s的速度向右匀速滑动时,试求: (1)导体棒ab上的感应电动势的大小及感应电流的方向? (2)要维持导体棒ab向右匀速运动,作用在ab上的水平拉力为多大? (3)电阻R上产生的热功率为多大? (4)若匀速后突然撤去外力,则棒最终静止,这个过程通过回路的电荷量是多少? 2.(2018浙江嘉兴选考模拟)如图甲,两条足够长、间距为d的平行光滑非金属直轨道MN、PQ与水平面成θ角,EF上方存在垂直导轨平面的如图乙所示的磁场,磁感应强度在0~T时间内按余弦规律变化(周期为T、最大值为B0),T时刻后稳定为B0。t=0时刻,正方形金属框ABCD在平行导轨向上的恒定外力作用下静止于导轨上。T时刻撤去外力,框将沿导轨下滑,金属框在CD边、AB边经过EF 时的速度分别为v1和v2。已知金属框质量为m、边长为d、每条边电阻为R,余弦磁场变化产生的正弦交流电最大值E m=,求: (1)CD边刚过EF时,A、B两点间的电势差; (2)撤去外力到AB边刚过EF的总时间; (3)从0时刻到AB边刚过EF的过程中产生的焦耳热。

3.(2018浙江台州高三上学期期末质量评估)如图所示,两根相同平行金属直轨道竖直放置,上端用导线接一阻值为R的定值电阻,下端固定在水平绝缘底座上。底座中央固定一根绝缘弹簧,长L质量为m 的金属直杆ab通过金属滑环套在轨道上。在直线MN的上方分布着垂直轨道面向里,磁感应强度为B的足够大匀强磁场。现用力压直杆ab使弹簧处于压缩状态,撤去力后直杆ab被弹起,脱离弹簧后以速度为v1穿过直线MN,在磁场中上升高度h时到达最高点。随后直杆ab向下运动,离开磁场前做匀速直线运动。已知直杆ab与轨道的摩擦力大小恒等于杆重力的k倍(k<1),回路中除定值电阻外不计其他一切电阻,重力加速度为g。求: (1)杆ab向下运动离开磁场时的速度v2; (2)杆ab在磁场中上升过程经历的时间t。 4.(2018浙江宁波六校期末)如图所示,两根平行金属导轨MN、PQ相距d=1.0 m,两导轨及它们所在平面与水平面的夹角均为α=30°,导轨上端跨接一阻值R=1.6 Ω的定值电阻,导轨电阻不计。整个装置处于垂直两导轨所在平面且向上的匀强磁场中,磁感应强度大小B=1.0 T。一根长度等于两导轨间距的金属棒ef垂直于两导轨放置(处于静止),且与导轨保持良好接触,金属棒ef的质量m1=0.1 kg、电阻r=0.4 Ω,到导轨最底端的距离s1=3.75 m。另一根质量m2=0.05 kg的绝缘棒gh,从导轨最底端以速度v0=10 m/s沿两导轨上滑并与金属棒ef发生正碰(碰撞时间极短),碰后金属棒ef沿两导轨上滑s2=0.2 m后再次静止,此过程中电阻R产生的焦耳热Q=0.2 J。已知两棒(ef和gh)与导轨间的动摩擦因数均为μ=,g取10 m/s2,求:

高中物理《动量能量》专题复习

《动量、能量》二轮复习方案 一、命题趋向及热点情景 从04到08高考题演变来看,动量、能量知识在09高考中应表现为选择题一道,实验题无,25题为动量与能量的压轴题,这种布局可能性很高. 因为压轴情形大增故此板块我市二轮备考应有重点突破. 选择题通常借助一幅不太复杂的情景考查学生对动量能量主要知识初步理解能力,特别地近些年来能图像式的选项来影响考生的判断…… 计算题则以生活中或从实际中抽象出来的理想的相对复杂情景,考查学生物理理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 通常考查对象通常两个或以上,考查情景中的全程或局部,对象的全部或局部含有能量和动量变化或守恒.考查的情形有关碰撞的问题、滑块问题、传送带、绳杆管轨道类等问题…… 二、重难点突破意义及对策 得综合者得高考,得物理者得理综,物理中有关热点主干知识重难点突破者得物理.物理题目是否顺手关键在于选择中一两道、设计型实验、压轴题的突破.这几个方面解决得好会对理综成绩提升会有乘数效应,相反就会是一种伤心的痛. 通常一道题学生做得如何在于对题的情景感知程度和对情景的把握.这里面有属于学生层面的千差万别的个体因素,还有属于教师层面的引导传授的群体因素.前者我们很多时候无法把握,后者正要我们作为教者对症下药. 【对策1】创设丰富的情景引导学生分析研究 老师应手头上必备近些年来高考和模拟题库,最好是分成板快的,还要借助学校及本组教师的资源优势从网上、从来往学校组织题源,老师多做多探索结合本校学生过去和现在的训练,把那些学生没有经历的相对新颖有代表性最能本板块新题型、新情景及时补充到课堂、训练和考试中.除此外在二轮复习中还应把学生过去分散感受过经典爱错的老情景集中呈现,增强学生实考中快速切入的能力. 【对策2】形成分类专题突破 要精讲一道题要像学生刚做该题那样,分析题目已知条件,建立此情景全局画面,寻找连结各画面的逻辑连结关系,建立学生最熟悉的模型,用最恰当定理公式建立物理量的关系. 一类题要精讲一道,学生最需要的是如何切入,整体把握以及提醒关键细节的易错点. 做好这方面的事老教师往往在自己头脑里有一套成熟的题集,但也要结合集体智慧不断结合高考和学生实际推陈出新. 专题目标形成一类题的解题方法和套路,进一步提高学生理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 【对策3】强化必要的物理思维定势 动量和能量的综合题注定要呈现两个及以上物体分析的优势;相对复杂的情景也注定有大过程中包含许多子过程,大过程和子过程有着复杂的连接关系;相对复杂的情景也注定耗时较多,解这类题很注重效率. A. 用动量、能量观解题优先级别高于牛顿运动定律。 B.尽可能列出动量、能量转化始末的全程方程。 列方程中,要关注公式定理及守恒条件,做到粗中有细. 特别是涉及有碰撞或爆炸类动能定理方程时类情形时则应在撞前撞后分别列方程而不应该列出贯穿大过程始末的方程,这并不是全程方程有什么问题而是像碰撞中能量转化涉及作用力,作用时间位移小,这些力的作功在方程中无法呈现的缘故。 C. 两个及以上物体系的优先系统分析法 系统分析法在牛顿运动定律和动量定理中获取了极大的成功,但在动能定理中却受到了极大的压制,但系统分析法从来就是一种优化的解题观念。这里最难办的就是系统内力作功问题,关于内力作功大量的选择题来强化学生的认识,不是无的放矢。系统动能定理不是不能用,但不可滥用。系统动能定量完全可表述为:多物体构成的系统中所有系统外力作功和所有系统内力作功的代数和等于系统内各物体动能变化的总和。但这样一个结论下了和没下没什么差别,因为它在很多时候不能给我们带来便利。

能量和动量的综合应用(超详细)

【本讲主要内容】 能量和动量的综合应用 相互作用过程中的能量转化及动量守恒的问题 【知识掌握】 【知识点精析】 1. 应用动量和能量的观点求解的问题综述: 该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。 2. 有关机械能方面的综述: (1)机械能守恒的情况: 例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。等等…… (2)机械能增加的情况: 例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。等等…… (3)机械能减少的情况: 例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析: 如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。 滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。 A 、 B 为系统,动量守恒。(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。 由动量守恒定律可求出共同速度0 v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。由图可知,s A ≠s B , 且s A =(s B +Δs ),根据动能定理: 对A :W fA =2020202B 2 1)(212121)(mv m M mv m mv mv s s f -+=-=?+-

专题20 动量与能量综合问题(解析版)

2021届高考物理一轮复习热点题型归纳与变式演练 专题20 动量与能量综合问题 【专题导航】 目录 热点题型一 应用动量能量观点解决“子弹打木块”模型 ..................................................................................... 1 热点题型二 应用动量能量观点解决“弹簧碰撞”模型 ......................................................................................... 4 热点题型三 应用动量能量观点解决“板块”模型 ............................................................................................... 9 热点题型四 应用动量能量观点解决斜劈碰撞现象 ............................................................................................. 13 【题型演练】 (16) 【题型归纳】 热点题型一 应用动量能量观点解决“子弹打木块”模型 子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。 设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。 从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……① 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有d s s =-21 对子弹用动能定理:20212 121mv mv s f -=?- ……① 对木块用动能定理:222 1 Mv s f =? ……① ①相减得:()() 2 22022121v m M Mm v m M mv d f +=+-= ? ……① 对子弹用动量定理:0 -mv mv t f -=? ……① s 2 d s 1 v 0

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

2010届高三物理备考专题复习:动量与能量

2010届高三物理专题复习:动量与能量 一、知识概要 注意汽车的两种启动方式。 二、对比区别基本概念和基本规律 1、?????? ?? ????? ?=?? ?=总功 总冲量一般由动能定理求解変力做功,方法较多, 恒力做功功(标量)定理求解変力冲量,一般由动量恒力冲量的方向决定)冲量(矢量,方向有力αcos FS W Ft I 2、??? ? ?????==--=----=--k K k mE P m P E v mv E v mv p 22212 2或二者大小关系瞬时状态量大小有关)(只跟动能(标量)瞬时状态量同向)(方向与动量(矢量) 3 、

?? ?----差(顺序不能变)等于末动能与初动能之动能变化量(标量) 要规定正方向)矢量差(顺序不能变,等于末动量与初动量的动量变化量(矢量) ???? ? ?? ???????????-=???++-=?? ?-=???++-=2022 1202021021212 121cos 4mv mv W W mv mv S F mv mv Ft Ft mv mv t F t t t t 于动能变化量各外力所做功的总和等变化量合外力做的功等于动能)动能定理(标量表达式于动量变化量各外力冲量的矢量和等 变化量合外力的冲量等于动量 )动量定理(矢量表达式、合合α 5 、 ?? ? ? ? ??? ????某个系统的机械能守恒单个物体的机械能守恒意问题)表达式,守恒条件,注机械能守恒定律(标量问题)达式,守恒条件,注意动量守恒定律(矢量表 6、功能原理 ????? ? ?-=-=初 末其他初 末其他于系统机械能增量其他力所做功代数和等内部弹簧弹力做功外,对系统,除重力及系统 于机械能增量其他力所做功代数和等对单个物体,除重力外E E W E E W 7、重力做功与重力势能变化 三、注意事项 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对位移的积累,其作用效果是改变物 体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,对此,要像熟悉力和运动的关系一样熟悉。在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。 应用动量定理和动能定理时,研究对象可以是单个物体,也可以是多个物体组成的系统,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点: 1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。

2020年高考一轮复习:限时规范专题练(2) 动量与能量问题综合应用

限时规范专题练(二) 动量与能量问题综合应用 时间:60分钟 满分:100分 一、选择题(本题共6小题,每小题8分,共48分。其中 1~4为单选,5~6为多选) 1.如图所示,在光滑水平面上的两小车中间连接有一根处于压缩状态的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中错误的是( )

A.两手同时放开后,系统总动量始终为零 B.先放开左手,再放开右手之后动量不守恒 C.先放开左手,后放开右手,总动量向左 D.无论何时放手,在两手放开后、弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零 答案 B 解析当两手同时放开时,系统所受的合外力为零,所以系统的动量守恒,又因开始时总动量为零,故两手同时放开后系统总动量始终为零,A正确;先放开左手,左边的物体向左运动,再放开右手后,系统所受合外力为零,故系统在两手都放开后动量守恒,且总动量方向向左,故B错误,C、D正确。 2.(2019·湖南六校联考)如图所示,质量为m的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射手。首先左侧射手开枪,子弹水平射入木块的最大深度为d1,然后右侧射手开枪,子弹水平射入木块的最大深度为d2。设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同。当两颗子弹均相对于木块静止时,下列判断正确的是( )

A .木块静止,d 1=d 2 B .木块向右运动,d 1

2020年高考物理专题复习 动量和能量

2020年高考物理专题复习 动量和能量 第一讲 基本知识介绍 一、冲量和动量 1、冲力(F —t 图象特征)→ 冲量。冲量定义、物理意义 冲量在F —t 图象中的意义→从定义角度求变力冲量(F 对t 的平均作用力) 2、动量的定义 动量矢量性与运算 二、动量定理 1、定理的基本形式与表达 2、分方向的表达式:ΣI x =ΔP x ,ΣI y =ΔP y … 3、定理推论:动量变化率等于物体所受的合外力。即t P ??=ΣF 外 三、动量守恒定律 1、定律、矢量性 2、条件 a 、原始条件与等效 b 、近似条件 c 、某个方向上满足a 或b ,可在此方向应用动量守恒定律 四、功和能 1、功的定义、标量性,功在F —S 图象中的意义 2、功率,定义求法和推论求法 3、能的概念、能的转化和守恒定律 4、功的求法

a 、恒力的功:W = FScos α= FS F = F S S b 、变力的功:基本原则——过程分割与代数累积;利用F —S 图象(或先寻求F 对S 的平均作用力) c 、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点 五、动能、动能定理 1、动能(平动动能) 2、动能定理 a 、ΣW 的两种理解 b 、动能定理的广泛适用性 六、机械能守恒 1、势能 a 、保守力与耗散力(非保守力)→ 势能(定义:ΔE p = -W 保) b 、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达 2、机械能 3、机械能守恒定律 a 、定律内容 b 、条件与拓展条件(注意系统划分) c 、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。 七、碰撞与恢复系数 1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类) 碰撞的基本特征:a 、动量守恒;b 、位置不超越;c 、动能不膨胀。 2、三种典型的碰撞 a 、弹性碰撞:碰撞全程完全没有机械能损失。满足—— m 1v 10 + m 2v 20 = m 1v 1 + m 2v 2 21 m 1210v + 21 m 2220v = 21 m 121v + 2 1 m 222v 解以上两式(注意技巧和“不合题意”解的舍弃)可得:

高中物理运用动量和能量观点解题的思路

运用动量和能量观点解题的思路 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点:1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是:1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。 2.若是多个物体组成的系统,优先考虑两个守恒定律。 3.若涉及系统内物体的相对位移(路程)并涉及摩擦力的,要考虑应用能量守恒定律。 例1图1中轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处于原长状态。另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行。当A 滑过距离时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好回到出发点P并停止。滑块A和B与导轨的摩擦因数都为,运动过程中弹簧最大形变量为,重力加速度为。求A从P点出发时的初速度。 解析:首先要将整个物理过程分析清楚,弄清不同阶段相互作用的物体和运动性质,从而为正确划分成若干阶段进行研究铺平道路。即A先从P点向左滑行过程,受摩擦力作用做 匀减速运动。设A刚接触B时的速度为,对A根据动能定理,有