搜档网
当前位置:搜档网 › 确定一次函数表达式典型例题

确定一次函数表达式典型例题

确定一次函数表达式典型例题
确定一次函数表达式典型例题

第12周 《确定一次函数表达式》

例1 已知一次函数4)36(-++=n x m y ,求;

(1)m 为何值时,y 随x 增大而减小;

(2)n 为何值时,函数图像与y 轴的交点在x 轴下方; (3)m ,n 分别取何值时,函数图像经过原点;

(4)若3

1

=m ,5=n ,求这个一次函数的图像与两个坐标轴交点的坐标; (5)若图像经过一、二、三象限,求m ,n 的取值范围.

例2 设一次函数)0(≠+=k b kx y ,当2=x 时,3-=y ,当1-=x 时,4=y 。

(1)求这个一次函数的解析式;

(2)求这条直线与两坐标轴围成的三角形的面积。

例3(1)已知一次函数图像经过点(0,2)和(2,1).求此一次函数解析式. (2)已知一次函数图像平行于正比例函数x y 2

1

-=的图像,且经过点(4,3).求此一次函数的

解析式.

例4求下列一次函数的解析式: (1)图像过点(1,-1)且与直线52=+

y x 平行;

(2)图像和直线23+-=x y 在y 轴上相交于同一点,且过(2,-3)点.

例5 已知一次函数b kx y +=的图像与另一个一次函数23+=x y 的图像相交于y 轴上的点A ,且x 轴下方的一点),3(n B 在一次函数b kx y +=的图像上,n 满足关系式n

n 16

-

=,求这个一次函数的解析式。

例6 已知一次函数的图象交正比例函数图象于M 点,交x 轴于点N(-6,0),又知点M 位于第二象限,其横坐标为-4,若△MON 面积为15,求正比例函数和一次函数的解析式.

例7 求直线012=++y x 关于x 轴成轴对称的图形的解析式。

例8 如图,ABC ?是边长为4的等边三角形,求直线AB 和BC 的解析式.

例9 如图,直线y=x +3的图象与x 轴、y 轴交于A 、B 两点.直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1两部分.求直线l 的解析式.

即学即练:

1、下面图像中,不可能是关于x 的一次函数)3(--=m mx y 的图像的是( )

2、已知:

)0(≠++=+=+=+c b a k c

b

a b c a a c b ,那么k kx y +=的图像一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限

3、已知直线)0(≠+=k b kx y 与x 轴的交点在x 轴的正半轴,下列结论:①0,0>>b k ;②

0,0<>b k ;③0,0>

A .1

B .2

C .3

D .4

4、正比例函数的图像如图所示,则这个函数的解析式是( )

A .x y =

B .x y -=

C .x y 2-=

D .x y

2

1

-=

5、已知直线m x y +-=2与两坐标轴围成的三角形面积为4,求这条直线的函数解析式.

6、已知直线b kx y +=过点(

25,0),且与坐标轴所围成的三角形的面积为4

25,求该直线的函数解析式.

小专题:图像的平移规律

1. 直线y=5x-3向左平移2个单位得到直线 。

2. 直线y=22

3

+-

x 向左平移2个单位得到直线 3. 直线y=2x+1向上平移4个单位得到直线 4. 直线y=-3x+5向下平移6个单位得到直线

5. 直线

x y 31

=

向上平移1个单位,再向右平移1个单位得到直线 。 6. 直线14

3

+-=x y 向下平移2个单位,再向左平移1个单位得到直线 。

7. 过点(2,-3)且平行于直线y=2x 的直线是 。 8. 过点(2,-3)且平行于直线y=-3x+1的直线是 .

9.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________; 10.直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;

过手练习

1、已知直线12)31(-+-=k x k y

1) 当k__________________时,直线过原点;

2) 当k__________________时,直线与y 轴的交点坐标是(0,-2); 3) 当k__________________时,直线与x 轴交于点(

)0,4

3

4) 当k__________________时,y 随x 的增大而增大; 5)

当k__________________时,该直线与直线

53--=x y 平行。

2、已知点A )1,2(a a -+在函数12+=x y 的图像上,则a=____________。

3、一次函数

k kx y -=,若y 随x 的增大而减小,则该函数的图像经过 象限。

4、已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )

A B C D 5、一次函数y=ax+b 与y=ax+c (a>0)在同一坐标系中的图象可能是( )

A B C D 6、已知直线m x y +-=2与两坐标轴围成的三角形面积为4,求这条直线的函数解析式.

7、已知:函数y = (m+1) x+2 m ﹣6

(1)若函数图象过(﹣1 ,2),求此函数的解析式。

(2)求满足(1)条件的直线与y = ﹣3 x + 1 的交点并求这两条直线 与y 轴所围成的三角形面积

【能力提升训练】

1、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .

2、若直线

y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .

3、函数

3

12

y x =

-,如果0y <,那么x 的取值范围是 4、若直线

11y k x =+与24y k x =-的交点在x 轴上,那么

12

k k 等于( )

.4A .4B - 1.

4C 1.4

D - 5、已知关于x 的一次函数

27y mx m =+-在15x -≤≤上的函数值总是正数,则m 的取值范围是( )

A .7m >

B .1m >

C .17m ≤≤

D .都不对 6、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )

7、已知一次函数

2y x a =+与y x b =-+的图像都经过(2,0)A -,且与y 轴分别交于点B ,c ,则ABC ?的

面积为( )

A .4

B .5

C .6

D .7

参考答案

例1 分析 (1)已知一次函数图像上两个点的坐标,代入解析式中可以求k 、b 值。(2)求出直线与

x 轴、y 轴两个交点,利用这两个交点与坐标轴所围的三角形是直角三角形可求出面积。

解 (1)由题意,得???+-=+=-.4,23b k b k 解得???

????=-=.

35,3

7b k

∴ 所求一次函数的解析式为

.3

537+-=x y

(2)直线3537+-=x y 与x 轴交于)0,75(,与y 轴交于)3

5

,0(.

∴ 这条直线与两坐标轴围成的三角形的面积为.42

25

357521=

??

例2 分析 由于23+=x y 与y 轴的交点很容易求出,因此,要求b kx y +=的解析式,只要再求出

b kx y +=上另一点的坐标就可以了,而),3(n B 在x 轴下方,因此0

n 16

-

=求出n 的值就知道B 点的坐标了。

解 设点A 的坐标为),0(m ,∵ 点),0(m A 在一次函数23+=x y 的图像上, ∴ 2203=+?=m ,即点A 的坐标为)2,0(. ∵ 点),3(n B 在x 轴下方,∴ 0

2±==-=-n n n

n ,,,而0

又点)2,0(A ,)4,3(-B 在一次函数b kx y +=的图像上,

∴ ??

?-=+=+?.

43,

20b k b k 解得22=-=b k ,

∴ 这个一次函数的解析式为.22+-=x y

例3 解 设所求的直线解析式为b kx y +=. ∵ 012=++y x , ∴ .12--=x y

0=y 时,21-=x ,即图像过对称轴上)0,2

1

(-点,显然这一点也在b kx y +=上。

在012=++y x 上任取一点P ,如2=x 时,5-=y ,则)5,2(-P 可以知道P 点关于x 轴对称点的坐标为)5,2(P '。

∴ )5,2()0,21(,-都在所求的直线上,∴ ?????=+=+-.

52,02

1

b k b k ∴ ?

?

?==.1,

2b k ∴ 所求直线的解析式为12+=x y . 例4 分析:要确定一次函数的解析式,必须知道图象的两个已知点的坐标,而要确定正比例函数又

必须知道图象上一个点的坐标,但题设中都缺少条件,它们交点坐标中不知道纵坐标的值.已知条件中给出了△MON 的面积,而△MON 的面积,因底边NO 可以求到,因此实际上需要把△MON 的面积转化为M 点的纵坐标

解:根据题意画示意图,过点M 作MC ⊥ON 于C

∵点N 的坐标为(-6,0) ∴|ON|=6

∴MC=5

∵点M 在第二象限 ∴点M 的纵坐标y=5 ∴点M 的坐标为(-4,5) ∵一次函数解析式为y=k 1x+b 正比例函数解析式为y=k 2x 直线y=k 1x+b 经过(-6,0)

∵正比例函数y=k 2x 图象经过(-4,5)点,

例5 解:(1)把52=+

y x 变形为52+-=x y .

∵所求直线与52+-=x y 平行,且过点(1,-1).

∴设所求的直线为b x y +-=2,将1,1-==y x 代入,解得1=b . ∴所求一次函数的解析式为12+-=x y .

(2)∵所求的一次函数的图像与直线23+-=x y 在y 轴上的交点相同. ∴可设所求的直线为2+=kx y .

把3,2-==y x 代入,求得25

-=k

.

∴所求一次函数的解析式为22

5

+-=x y .

说明:如果两直线2211,b x k y b x k y +=+=平行,则21k k =;如果两直线

2211,b x k y b x k y +=+=在y 轴上的交点相同,则21b b =.掌握以上两点,在求一次函数解析式时,

有时很方便.

例6 解:(1)由A 可得?

?

?>-->,0)3(,

0m m 故30<

由B 可得?

??>=--,0,

0)3(m m 故3=m ,∴B 可能;

由C 可得??

?<--<,

0)3(,

0m m 此不等式组无解.故C 不可能,答案应选C.

(2)由已知得???

??=+=+=+,,,kc b a kb c a ka c b 三式相加得:

0 ,)()(2≠++?++=++c b a k c b a c b a Θ,

∴2=k

,故直线k kx y +=即为22+=x y .

此直线不经过第四象限,故应选D.

(3)直线b kx y +=与x 轴的交点坐标为:

0,0,0,<>-??

?

??-k b k b k b Θ即b k ,异号,∴②、③正确,故应选B.

(4)∵正比例函数)0(≠+=k b kx y 经过点(1,-1), ∴x y k -=∴-= ,1,故应选B.

说明:一次函数)0(≠+=k b kx y 中的b k ,的符号决定着直线的大致位置,题(3)还可以通过

b k ,的符号画草图,来判断各个结论的正确性,这类题型历来都是各地中考中的热点题型,同学们一

定要熟练掌握.

例7 解:(1)因为y 随x 增大而减小,

所以036<+m ,解得:2-

所以当2-

所以???<-≠+,04,036n m 解得?

??<-≠.4,2n m

所以当2-≠m 且4

所以??

?=-≠+,04,036n m 解得???=-≠.

4,

2n m

所以2-≠m 且4=n ,图像经过原点.

(4)把3

1

=

m ,5=n 代入)4()36(-++=n x m y 中得,

17+=x y .

令0=x ,解得1=y ,

所以图像与y 轴交点为(0,1). 令

0=y ,解得7

1

-=x ,

所以图像与x 轴交点为??

?

??-

0,71. (5)因为图像经过一、二、三象限,

所以??

?>->+,04,036n m 解得???>->.

4,2n m

所以当2->m 且4>n 时,图像经过一、二、三象限.

说明:主要考查一次函数的知识。

例8 分析:求一次函数

)0(≠+=k b kx y 的解析式,也就是确定k 、b 的值。根据题目已知条件列

出关于k 、b 的二元一次方程组即可.

解:(1)设函数解析式为)0(≠+=k b kx y

因为图像经过(0,2)和(2,1),

所以???+=+?=,21,02b k b k 解得?????=-=.

2,21b k

所以所求函数解析式为

22

1

+-=x y ;

(2)设函数解析式为)0(≠+=k b kx y

因为函数图像是平行于

x y 2

1

-=的图像,

所以2

1-=k

.

因为直线过(4,3),

所以.42

1

3b +?-

=所以5=b , 所以所求函数解析式为52

1

+-=x y .

说明:本题考查一次函数的知识,确定一次函数的解析式,必须确定k 、b 的值,根据题目的已知条件列出关于它们的方程或方程组即可.

例9 解:由图像可知一次函数的图像经过点(-1,0)和(0,-2),可用待定系数法解.

设一次函数的解析式为b kx y +=,则有

???-==+-,2,0b b k 解得?

?

?-=-=.2,

2b k 所以一次函数的解析式为22--=x y . 故选A.

说明:本题主要考查学生的识图能力。

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

一次函数经典题及答案

一次函数经典题一.定义型是一次函数,求其解析式。已知函数1. 例解:由一次函数定义知,。y=-6x+3,故一次函数的解析式为。0≠m-3。如本例中应保证 0≠k解析式时,要保证y=kx+b注意:利用定义求一次函数 . 二点斜型,求这个函数的解析式。(2, -1)的图像过点y=kx-3已知一次函数2. 例,(2, -1)解:一次函数的图像过点。y=x-3。故这个一次函数的解析式为k=1,即,求这个函数的解析式。y=-1时,x=2,当y=kx-3 变式问法:已知一次函数两点型. 三3.例,则这个函数的(0, 4)、(-2, 0)轴的交点坐标分别是y轴、x已知某个一次函数的图像与。_____解析式为,由题意得y=kx+b 解:设一次函数解析式为 y=2x+4 故这个一次函数的解析式为,图像型. 四。__________已知某个一次函数的图像如图所示,则该函数的解析式为4. 例y=kx+b解:设一次函数解析式为(0, 2) 、(1, 0)由图可知一次函数的图像过点 y=-2x+2 故这个一次函数的解析式为有斜截型. 五 ,则直线的解析式为2轴上的截距为y平行,且在y=-2x与直线y=kx+b已知直线5. 例。___________时,b≠b,=kk。当;解析:两条直线2121平行,y=-2x与直线y=kx+b直线。 y=-2x+2 ,故直线的解析式为2轴上的截距为y在y=kx+b直线又平移型. 六。___________个单位得到的图像解析式为2向下平移y=2x+1把直线6. 例,y=kx+b 解析:设函数解析式为 y=2x+1直线平行y=2x+1与直线y=kx+b个单位得到的直线2向下平移,故图像解析式为b=1-2=-1 轴上的截距为y在 y=kx+b直线七实际应用型. (升)Q则油箱中剩油量分钟,/升0.2流速为油从管道中匀速流出,升,20某油箱中存油7. 例。___________(分钟)的函数关系式为t与流出时间 Q=- 0.2t+20 ,即Q=20-0.2t 解:由题意得)(Q=-0.2t+20 故所

高考数学-指数函数图像和性质及经典例题

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

指数函数经典例题(问题详细讲解)

指数函数 1.指数函数の定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 の图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且の图象和性质。 a>1 0

()x f c の大小关系是_____. 分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间. 解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x の取值围是___________. 分析:利用指数函数の单调性求解,注意底数の取值围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x の取值围是14 ??+ ??? , ∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数の值域是[)01, .

一次函数经典练习题精心整理

1.小骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线 所示,小骑摩托车匀速从乙地到甲地,比小晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示. (1)小到达甲地后,再经过___小时小到达乙地;小骑自行车的速度是___千米/小时. (2)小出发几小时与小相距15千米? (3)若小想在小休息期间与他相遇,则他出发的时间x 应在什么围?(直接写出答案) 2,甲、乙两人骑自行车前往 A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所 提供的信息解答下列问题: (1)甲、乙两人的速度各是多少?(4分) (2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个) .(3分) (3)在什么时间段乙比甲离A 地更近?(3分) 3.(2011,23, 12分) 周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小名离家的路程y (干米) 与x (小时)之间的函致图象如图所示, (1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时; (2)求线段CD 所表示的函敛关系式; (3)问小明能否在12:0 0前回到家?若能,请说明理由:若不能,请算出12:00时他离家的路程, (第23题图) x (小时) 图13

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =1 2+x 与y =2 2+x . ⑵y =12 -x 与y =2 2 -x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)1241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

一次函数知识点总结及典型试题(用)

一次函数知识点总结及经典试题 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正

最新指数函数典型例题详细解析

精品文档 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

一次函数经典测试题及答案解析

一次函数经典测试题及答案解析 一、选择题 1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( ) A .甲的速度为20km/h B .甲和乙同时出发 C .甲出发1.4h 时与乙相遇 D .乙出发3.5h 时到达A 地 【答案】C 【解析】 【分析】 根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地. 【详解】 解:A .甲的速度为:60÷2=30,故A 错误; B .根据图象即可得出甲比乙早出发0.5小时,故B 错误; C .设1l 对应的函数解析式为111y k x b =+, 所以:111 60 20b k b =??+=?, 解得113060k b =-??=? 即1l 对应的函数解析式为13060y x =-+; 设2l 对应的函数解析式为222y k x b =+, 所以:22220.503.560k b k b +=??+=?, 解得 22 20 10k b =??=-? 即2l 对应的函数解析式为22010y x =-, 所以:30602010y x y x =-+?? =-?, 解得 1.4 18 x y =?? =? ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;

D .根据图形即可得出乙出发3h 时到达A 地,故D 错误. 故选:C . 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答. 2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( ) A .0x > B .0x < C .2x > D .2x < 【答案】C 【解析】 【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】 解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】 本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键. 3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠ 【答案】D 【解析】 【分析】 根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

一次函数经典题型+习题(精华,含答案)

1 一次函数 题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限; 2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________; 3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________; 若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第 ______象限。 题型二、关于点的距离的问题 方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________; 到原点的距离是____________; 2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原 点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ????- ? ????? ,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°, 则C 点坐标为___________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2323y k x x =-++-是一次函数; 2、当m_____________时,()21345m y m x x +=-+-是一次函数; 3、当m_____________时,()21445m y m x x +=-+-是一次函数; 题型四、函数图像及其性质 ☆一次函数y=kx+b (k≠0)中k 、b 的意义: k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度; b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。 ☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线相交。 ☆特殊直线方程: X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

最新一次函数的应用典型练习题

一次函数的应用典型练习题 1、若点(1,2)及(m ,3)都在正比例函数y=kx 的图象上,求m 的值. 2、已知直线y=kx+b 经过点(-2,-1)和点(2,-3),求这条直线的函数解析式. 3、某一次函数的图象平行于直线 ,且过点(4,7),求函数解析式. 4、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)与时间t(分)之间的函数关系式. 5、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,求y 与x 之间的函数关系式. 6、 声音在空气中传播的速度y (米/秒)(简称音速)是气温x (℃)的一次函数,下表列出了一组不同气温时的音速: (1)求y 与x (2)气温x=22(℃)时,某人看到烟花燃放5秒后才听到声音响,那么此人与燃放的烟花所在地约相距多远? x y 2 1

7、去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用 水,采取分段收费标准,若某居民每月应交水费是用水量的函数,其函数图象如图所示: (1)分别写出x≤5和x>5时,y与x的函数解析式; (2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准. (3)若某户居民该月用水3.5吨,则应交水费多少元?若该月交水费9元,则用水多少吨? 8、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓 球每盒5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价 的9折优惠,某班级需要购球拍4付,乒乓球若干盒(不少于4盒). (1)、设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的 付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系 式. (2)就乒乓球盒数讨论去哪家商店购买合算? 9、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这 两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示. (1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系 式; (2)两种租书方式每天租书的收费分别是多少元? (3)若两种租书卡的使用期限均为一年,则在这一年中如何选择这两种租书方式比较合 算?

一次函数经典题型

一次函数经典题型 题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限; 2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________; 3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_____,b=_____;若A,B 关于y 轴对称,则a=_____,b=_____;若若A ,B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第_____象限。 题型二、关于点的距离的问题 方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点(,)A A A x y 1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 2、 点C (0,-5)到x 轴的距离是______;到y 轴的距离是_____;到原点的距离是______; 3、 点D (a,b )到x 轴的距离是______;到y 轴的距离是______;到原点的距离是______ 4、 已知点P (3,0),Q(-2,0),则PQ=_____,已知点110,,0,22M N ? ??? - ? ????? ,则MQ=_____; ()()2,1,2,8E F --,则EF 两点之间的距离是_______;已知点G (2,-3) 、H (3,4),则G 、H 两点之间的距离是_________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为_________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次 函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2 323y k x x =-++-是一次函数; 2、当m_____________时,()21 345m y m x x +=-+-是一次函数; 3、当m_____________时,()21 445m y m x x +=-+-是一次函数;

相关主题