搜档网
当前位置:搜档网 › 文科高考数学立体几何大题求各类体积方法

文科高考数学立体几何大题求各类体积方法

文科高考数学立体几何大题求各类体积方法
文科高考数学立体几何大题求各类体积方法

A

B

C

D

P

A

B

C

D

P

文科高考数学立体几何大题求各类体积方法

【三年真题重温】

1.【2011?新课标全国理,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,

∠DAB =60,2AB AD =,PD ⊥底面ABCD . (Ⅰ) 证明:PA ⊥BD ;

(Ⅱ) 若PD AD =,求二面角A PB C --的余弦值.

2.【2011 新课标全国文,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形.60,2,DAB AB AD PD ∠==⊥底面ABCD . (Ⅰ) 证明:PA BD ⊥;

(Ⅱ) 设1

PD AD

==,求棱锥D PBC

-的高.

根据

DE PB PD BD

?=?,得

DE=

.即棱锥D PBC

-.

3.【2010新课标全国理,18】如图,已知四棱锥P-ABCD的底面为等腰梯

形,AB CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点.

(1)证明:PE⊥BC

(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值

【解析】命题意图:本题主要考查空间几何体中的位置关系、线面所成的角

等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.

4.【

2010 新课标全国文,18】如图,已知四棱锥P ABCD -的底面为等腰梯形,AB ∥CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高。

(Ⅰ)证明:平面PAC ⊥ 平面PBD ;

(Ⅱ)若AB =

,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积。

5.【2012 新课标全国理】(本小题满分12分) 如图,直三棱柱11

1

ABC A B C -中,

11

2

AC BC AA ==

D 是棱1AA 的中点,BD DC ⊥1

(1)证明:BC DC ⊥1

(2)求二面角1

1C BD A --的大小。

6.【2012 新课标全国文】(本小题满分12分)

如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1

2AA 1,D 是棱AA 1

的中点

(I)证明:平面BDC 1⊥平面BDC

(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。

【命题意图猜想】

1.纵观2011年和2010年高考对本热点的考查,均以四棱锥为背景,并且建立空间直角坐标系较为容易,在第一问中均考查线线垂直的证明,这种位置关系的证明已经连续三年进行了考查.理科考查了线面角和二面角,这两种角的考查有隔年考查的规律.两年的文科试题考查了体积问题.在2012年以三棱柱为背景,考查垂直关系的证明和二面角的求解,文科考查了面面垂直的证明和几何体的体积求解.猜想2013年很可能以棱锥或者球相关的组合体为背景,在建坐标系上不会太直观,考查线面平行位置关系,理科第二问可能给出某个角,考查点的位置或设置一问探索性问题,而文科第二问仍以求体积或表面积为主.

2.从近几年的高考试题来看,直线与平面平行的判定,以及平面与平面平行的判定是高考的热点,题型既有选择题、填空题,也有解答题,难度为中等偏低;主要考查线面平行的判定,考查线∥线?线∥面?面∥面的转化思想,并且考查学生的空间想象能力以及逻辑推理能力.预测2013年仍将以线面平行的判定为主要考查点,重点考查学生的空间想象能力和逻辑推理能力.

3.从近几年的高考试题来看,线面垂直的判定、面面垂直的判定与性质、线面角(理)等是高考的热点,题型既有选择题、填空题又有解答题,难度中等偏高,客观题主要考查线面垂直、面面垂直的判定与性质,考查线面角的概念及求法;而主观题不仅考查以上内容,同时还考查学生的空间想象能力、逻辑推理能力以及分析问题、解决问题的能力.预测2013年高考仍将以线面垂直、面面垂直、线面角为主要考查点,重点考查学生的空间想象能力以及逻辑推理能力.

4.从近几年的理科高考试题来看,利用空间向量证明平行与垂直,以及求空间角是高考的热点,题型主要为解答题,难度属于中等,主要考查向量的坐标运算,以及向量的平行与垂直的充要条件,如何用向量法解决空间角问题等,同时注重考查学生的空间想象能力、运算能力.预测2013年高考仍将以用向量证明平行与垂直,以及利用向量求空间角为主要考点,重点考查向量的数量积及学生的空间想象能力、运算能力等.

【最新考纲解读】

1.点、直线、平面之间的位置关系

(1)理解空间直线、平面位置关系的定义.了解可以作为推理依据的公理和定理.

(2)以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定.

(3)能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.

2.空间向量及其运算(理)

(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及

其坐标表示.

(2)掌握空间向量的线性运算及其坐标表示.

(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.

(4)理解直线的方向向量与平面的法向量定义.

(5)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.

(6)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).

(7)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的作用.

【回归课本整合】

1.直线与平面平行的判定和性质

(1)判定:①判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;

②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行. (2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交,那么这条直线和交线平行.

注意:在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用线面平行的性质.

2.直线和平面垂直的判定和性质

(1)判定:①如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线和这个平面垂直.②两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直. (2)性质:①如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直.②如果两条直线都垂直于同一个平面,那么这两条直线平行.

3.平面与平面平行

(1)判定:一个如果平面内有两条相交直线和另一个平面平行,则这两个平面平行.

注意:这里必须清晰“相交”这个条件.如果两个平面平行,那么在其中一个平面内的所有直线与另一个平面无公共点,即这些直线都平行于另一个平面.

(2)性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.

注意:这个定理给出了判断两条直线平行的方法,注意一定是第三个平面与两个平行平面相交,其交线平行.

4.两个平面垂直的判定和性质

(1)判定:①判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

②定义法:即证两个相交平面所成的二面角为直二面角;

注意:在证明两个平面垂直时,一般先从已知有的直线中寻找平面的垂线,若不存在这样的直线,则可以通过添加辅助线解决,而作辅助线应有理论依据;如果已知面面垂直,一般先用面面垂直的性质定理,即在一个平面内作交线的垂直,使之转化为线面垂直,然后进一步转化为线线垂直.

(2)性质:①如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.

②两个平面垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内. 注意:性质定理中成立有两个条件:一是线在平面内,二是线垂直于交线,才能有线面垂直.

(3)立体几何中平行、垂直关系的证明的基本思路是利用线面关系的转化,即:

线∥线线∥面面∥面

判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面

←→?←→??→??←→?←→?←???←→?←→?

5.(理)直线与平面所成的角

(1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。当直线和平面垂直时,就说直线和平面所称的角为直角;当直线与平面平行或在平面内时,就说直线和平面所称的角为0角. (2)范围:[0,90];

(3)求法:作出直线在平面上的射影,关键是找到异于斜足的一点在平面内的垂足,可根据面面垂直的性质定理来确定垂线。

(4)最小角定理:斜线与平面中所有直线所成角中最小的角是斜线与平面所成的角。 6.(理) 二面角

(1)二面角定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面.二面角的大小是通过其平面角来度量的平面角,而二面角的平面角的三要素:①顶点在棱上;②角的两边分别在两个半平面内;③角的两边与棱都垂直。

(2)作平面角的主要方法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;②三垂线法:过其中一个面内一点作另一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;③垂面法:过一点作棱的垂面,则垂面与两个半平面的交线所成的角即为平面角; (3)二面角的范围:[0,]π;

7(理) 利用向量处理平行问题

(1)证明线线平行,找出两条直线的方向向量,证明方向向量共线;

(2)证明线面平行的方法:①证明直线的方向向量与平面内的某一向量是共线(平行);②证明直线的方向向量与平面的两个不共线向量是共线向量,即利用共面向量定理进行证明;③证明直线的方向向量与该平面的法向量垂直.

(3)平面与平面平行的证明方法:证明两个平面的法向量平行. 8(理)利用向量处理垂直问题

(1)证明线线垂直,可证明两条线的方向向量的数量积为0;

(2)证明线面垂直方法:①根据线面垂直的判定定理利用向量证明直线与平面内的两条相交直线垂直;②转化为证明直线的方向向量与平面的法向量共线.

(3)证明面面垂直的方法:①根据面面垂直的判定定理利用向量证明一个平面内的一条直线方向向量为另一个平面的法向量;②证明一个平面的法向量与另一人平面平行;③转化为证明这两个平面的法向量互相垂直. 9.(理)利用向量处理角度问题

1.求异面直线所成的角的向量法:其基本步骤是(1)在a 、b 上分别取,AB CD ;或者建立

空间直角坐标系用坐标表示

,AB CD ;(2)由公式

cos ||

||||

AB CD

AB CD θ?=?确定异面直线a 与b

所成角θ的大小。

2.求直线和平面所成的角的向量法:在斜线上取一方向向量a ,并求出平面α的一个法向量n ,若设斜线和平面所成的角为θ,由

sin cos ,||

||||

a n

a n a n θ?=<>=?.

3.求二面角的向量法:方法(1)设n ,m 分别是平面,βα的法向量,则向量n 和m 的夹角与二面角l αβ--的平面角相等或互补. 方法(2)二面角的棱l 上确定两个点B A 、,过B A 、分别在平面βα、内求出与l 垂直的向量21n n 、,则二面角βα--l 的大小等于向量

2

1n n 、的夹角,即

|

|||cos 2121n n ?=

θ

【方法技巧提炼】

1. 线线平行与垂直的证明

证明线线平行的方法:(1)平行公理;(2)线面平行的性质定理;(3)面面平行的性质定理;(4)向量平行.要注意线面、面面平行的性质定理的成立条件. 证明线线垂直的方法:(1)异面直线所成的角为直角;(2)线面垂直的性质定理;(3)面面垂直的性质定理;(4)三垂线定理和逆定理;(5)勾股定理;(6)向量垂直.要注意线面、面面垂直的性质定理的成立条件.解题过程中要特别体会平行关系性质的传递性,垂直关系的多样性. 2.线面平行与垂直的证明方法

线面平行与垂直位置关系的确定,也是高考考查的热点,在小题中考查关系的确定,在解答题考查证明细节. 线面平行的证明方法:(1)线面平行的定义;(2)线面平行的判断定理;(3)面面平行的性质定理;(4)向量法:证明这条直线的方向向量和这个平面内的一个向量互相平行;证明这个直线的方向向量和这个平面的法向量相互垂直.

线面平行的证明思考途径:线线平行?线面平行?面面平行.

线面垂直的证明方法:(1)线面垂直的定义;(2)线面垂直的判断定理;(3)面面垂直的性质定理;(4)向量法:证明这个直线的方向向量和这个平面的法向量相互平行.

线面垂直的证明思考途径:线线垂直?线面垂直?面面垂直.

3.面面平行与垂直的证明

(1)面面平行的证明方法:①反证法:假设两个平面不平行,则它们必相交,在导出矛盾;②面面平行的判断定理;③利用性质:垂直于同一直线的两个平面平行;平行于同一平面的两个平面平行;④向量法:证明两个平面的法向量平行.

(2)面面垂直的证明方法:①定义法;②面面垂直的判断定理;③向量法:证明两个平面的法向量垂直.

解题时要由已知相性质,由求证想判定,即分析法和综合法相结合寻找证明思路,关键在于对题目中的条件的思考和分析,掌握做此类题的一般技巧和方法,以及如何巧妙进行垂

直之间的转化. 4.探索性问题

探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算. 5. 如何求线面角

(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径。 (2)利用三棱锥的等体积,省去垂足

在构成线面角的直角三角形中,其中垂线段尤为关键。确定垂足,是常规方法。可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法。从而不用确定垂足的位置,照样可以求出线面角。因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用

斜线段长

h

=

θsin 进行求解。 (4)秒用公式,直接得到线面角 课本习题出现过这个公式:

2

1cos cos cos θθθ=,如图所示:

21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角。这个公式在

求解一些选择填空题时,可直接应用。但是一定要注意三个角的位置,不能张冠李戴。 (5)万能方法,空间向量求解不用找角

设AB 是平面α的斜线,BO 是平面α的垂线,AB 与平面α所成的角BAO θ∠=,向量AB 与n 的夹角ABO ψ∠=,则

sin cos AB n AB n

θψ?==

?。

6.如何求二面角

(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;

(2)射影面积法.利用射影面积公式cos θ= S S

';此方法常用于无棱二面角大小的计算;

对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等。

法二:设

1n ,

2

n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内

侧,另一个指向外侧(同等异补), 则二面角l αβ--的平面角α

12

12arccos

||||

n n n n =

7.如何建立适当的坐标系

根据几何体本身的几何性质,恰当建立空间直角坐标系最为关键,如果坐标系引入的恰当,合理,即能够容易确定点的坐标,需要总结一些建系方法.常见建系方法:

(1)借助三条两两相交且垂直的棱为坐标轴,如正方体,长方体等规则几何体,一般选择三条线为三个坐标轴,如图1、2;

(2)借助面面垂直的性质定理建系,若题目中出现侧面和底面垂线的条件,一般利用此条件添加辅助线,确定z 轴,如图3;

(3)借助棱锥的高线建系等.对于正棱锥,利用定点在底面的射影为底面的中心,可确定z 轴,然后在底面确定互相垂直的直线分别为x ,y 轴.如图4.

8.如何确定平面的法向量

(1)首先观察是否与存在于面垂直的法向量,若有可直接确定,若不存在,转化为待定系数法;

(2)待定系数法:由于法向量没有规定长度,仅规定了方向,所以有一个自由度,于是可把法向量的某个坐标设为1,再求另两个坐标。由于平面法向量是垂直于平面的向量,所以取平面的两条相交向量,设(,,),

n x y z =由0

n a n b ??=???=??解方程组求得.

9. 向量为谋求解立体几何的探索性问题

空间向量最合适于解决立体几何中探索性问题,它无需进行复杂繁难的作图、论证、推理,只需通过坐标运算进行判断,在解题过程中,往往把“是否存在”问题,转化为“点的

1n n

坐标是否有解,是否有规定范围的解”等,所以使问题的解集更加简单、有效,应善于运用这一方法解题.

【考场经验分享】

1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.

2.可以考虑向量的工具性作用,能用向量解决的尽可能应用向量解决,可使问题简化. 3.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.

4.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.

5.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证直线a ∥b ,只需证明它们的方向向量满足a =λb (λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.

6.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.

【新题预测演练】 第一部分 理科

1.(广州市2013届高三3月毕业班综合测试试题(一))如图4,在三棱柱111ABC A B C

-中,△ABC 是边长为2的等边三角形,

1AA ⊥平面ABC ,D ,E 分别是1CC ,AB 的中点.

(1)求证:CE ∥平面1

A BD ;

(2)若H 为1A B 上的动点,当CH 与平面1

A A

B 所成最大角的正

求平面1

A BD 与平面ABC 所成二面角(锐角)的余弦值.

2.【北京市海淀区2013年四月高三一模】

在四棱锥P ABCD

-中,PA⊥平面ABCD,ABC

?是正三角形,AC与BD的交点M恰好是AC中点,又

4

PA AB

==,120

CDA

∠=,点N在线段PB

上,且

PN=.

(Ⅰ)求证:BD PC

⊥;

(Ⅱ)求证://

MN平面PDC; (Ⅲ)求二面角A PC B

--的余弦值.

3. 【江西师大附中、鹰潭一中2013届高三数学(理)四月联考】

如图,在正三棱柱111C B A ABC -中,AB AA 21=,N 是1CC 的中点,M 是线段1

AB 上的

动点(与端点不重合),且1

AB AM λ=.

(1)若

2

1=

λ,求证:1AA MN ⊥;

(2)若直线MN 与平面ABN 所成角的大小为θ,求θsin 的最大值.

4.【东北三省三校2013届高三3月第一次联合模拟考试】(本小题满分12分)

如图,三棱柱ABC—A1B1C1的侧棱AA2⊥底面ABC,∠ACB = 90°,E是棱CC1上动点,F

是AB中点,AC = 1,BC = 2,AA1 = 4。

(1)当E是棱CC1中点时,求证:CF∥平面AEB1;

(2)在棱CC1上是否存在点E,使得二面角A—EB1—B

,若存在,求CE的长,若不存在,

请说明理由。

5.【2013年天津市滨海新区五所重点学校高三毕业班联考】(本题满分13分)

如图在四棱锥P ABCD

-中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,

PA PD AD

==,设E 、F 分别为PC 、BD 的中点. (Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:面PAB ⊥平面PDC ; (Ⅲ) 求二面角B PD C --的正切值.

B

A

全国高考文科数学立体几何综合题型汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

立体几何经典大题(各个类型的典型题目)

1.如图,已知△ABC 是正三角形,EA ,CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点. (1)FD ∥平面ABC ;(2)AF ⊥平面EDB . 2.已知线段PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点。 (1)求证:MN //平面PAD ;(2)当∠PDA =45°时,求证:MN ⊥平面PCD ; F C B A E D

A B C D E F 3.如图,在四面体ABCD 中,CB=CD,BD AD ⊥,点E ,F 分别是AB,BD 的中点.求证: (1)直线EF// 面ACD ;(2)平面⊥EFC 面BCD . 4.在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC (1)若D 是BC 的中点,求证AD ⊥CC 1; (2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1, 求证截面MBC 1⊥侧面BB 1C 1C ; (3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由 ] 立体几何大题训练(3) C 1

5. 如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C ,AD 的中点. 求证:(1)MN//平面ABCD ;(2)MN ⊥平面B 1BG . 6.如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1; (2)求证:平面CAA 1C 1⊥平面CB 1D 1. 立体几何大题训练(4) 7、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,BC=CD=2,AA 1=2,_ G _ M _ D _1 _ C _1 _ B _1 _ A _1 _ N _ D _ C _ B _ A B A 1 F

高中文科数学立体几何知识点(大题)

高考立体几何中直线、平面之间的位置关系知识点总结(文科) 一.平行问题 (一) 线线平行: 方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行?线线平行 m l m l l ////??? ???=??βαβα 方法三:2面面平行?线线平行 m l m l ////??????=?=?βγαγβα 方法四:3线面垂直 ?线线平行 若αα⊥⊥m l ,,则m l //。 (二) 线面平行: 方法一:4线线平行?线面平行 ααα////l l m m l ??? ????? 方法二:5面面平行?线面平行 αββα////l l ????? (三) 面面平行:6方法一:线线平 行?面面平行 βααβ//',','//' //??? ???????且相交且相交m l m l m m l l 方法二:7线面平行?面面平行 βαβαα//,////??? ???=?A m l m l m l I , 方法三:8线面垂直?面面平行 βαβα面面面面//?? ??⊥⊥l l l

二.垂直问题:(一)线线垂直 方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。) 方法二:9线面垂直?线线垂直 m l m l ⊥?????⊥αα (二)线面垂直:10方法一:线线垂直?线面垂直 α α⊥??? ? ???? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:11面面垂直?线面垂直 αββαβα⊥???????⊥=?⊥l l m l m , (面) 面面垂直: 方法一:12线面垂直?面面垂直 βαβα⊥???? ?⊥l l 三、夹角问题:异面直线所成的角: (一) 范围:]90,0(?? (二)求法:方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(计算结果可能是其补角) 线面角:直线PA 与平面α所成角为θ,如下图 求法:就是放到三角形中解三角形 四、距离问题:点到面的距离求法 1、直接求, 2、等体积法(换顶点)

必修2立体几何复习(知识点+经典习题)

必修二立体几何知识点与复习题 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平 行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 4、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 5、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成? 90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为? 90 2、在一个平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 1、异面直线所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 2、直线与平面所成的角的取值范围是:? ≤ ≤ ?90 0θ[]? ?90 , 3、斜线与平面所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 4、二面角的大小用它的平面角来度量;取值范围是:? ≤ < ?180 0θ(]? ?180 , 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2)有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是() A.空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行; (3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

高考文科数学 立体几何大题-知识点、考点及解题方法

立体几何大题题型及解题方法 立体几何大题一般考以下五个方面: 一、平行位置关系的证明 1、证明线面平行(重点) 解题方法:(1)线面平行判定定理;(2)面面平行的性质定理。 2、证明面面平行 解题方法:(1)面面平行的判定定理;(2)面面平行判定定理的推论;(3)垂直于同一直线的两平面平行;(4)平行平面的传递性。 3、平行位置关系的探索 (1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。 二、垂直位置关系的证明 1、证明线线垂直 解题方法: 2、证明线面垂直(重点) 解题方法: 3、证明面面垂直 4、垂直位置关系的探索 (1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。 三、求空间距离

1、点到平面的距离 解题方法: 2、空间线段长 解题方法:(1)解三角形法;(2)列方程法。 四、求几何体体积 五、求空间角 1、异面直线所成的角 2、直线与平面所成的角 考点一:如何判断空间中点、线、面的位置关系(排除法)

考点二:平行位置关系的证明 证明题一般的解题步骤: 一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法, 如果无法确定,则要通过逆向思维来分析题目; 二、看题目是否需要作辅助线(创造条件),证明平行位置问题一般作的辅助线是连等 分点,特别是中点; 三、根据确定的证明方法,看该方法需要多少个条件,然后看题目给的条件通过什 么方式给,如果是间接条件则需要推理证明得出,如果是直接条件或隐含条件则直接罗列; 四、准备好条件后,再次检查条件是否都满足,是否都罗列了,最后得出结论; 五、规范书写答案过程:一般过程为1、作辅助线;2、准备间接条件;3、罗列直接

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

高考立体几何大题20题汇总

(2012XX省)(本小题满分12分) 如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=42,DE=4.现将△ADE ,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG. (1)求证:平面DEG⊥平面CFG; (2)求多面体CDEFG的体积。 2012,(19)(本小题满分12分) 如图,几何体EABCD是四棱锥,△ABD为正三角形, CBCD,ECBD. (Ⅰ)求证:BEDE; (Ⅱ)若∠BCD120,M为线段AE的中点,求证:DM∥平面 BEC. BC 2012XX20.(本题满分15 分)如图,在侧棱锥垂直 A D 底面的四棱锥ABCDA1B1C1D1中,AD//BC,AD FE AB,AB2,AD2,BC4,AA2,E是DD的中点,F 11 是平面B C E 与直线AA1 的交点。 1 1 A1 B1 D1 ( 第20题图) C1 (Ⅰ)证明:(i )E F//A1D1;(ii)BA1平面B1C1EF; (Ⅱ)求BC与平面B1C1EF所成的角的正弦值。 1 (2010)18、(本小题满分12分)已知正方体ABCDA'B'C'D'中,点M是棱AA' 的中点,点O是对角线BD'的中点, (Ⅰ)求证:OM为异面直线AA'与BD'的公垂线;

(Ⅱ)求二面角MBC'B'的大小; 2010XX文(19)(本小题满分12分) 如图,棱柱 ABCA1B1C1的侧面BCC1B1是菱形,B1CA1B (Ⅰ)证明:平面A B C平面A1BC1; 11 (Ⅱ)设D 是A C上的点,且 11 AB1//平面BCD,求 1 A1D :DC1的值。 2012(18)(本小题满分12分) 如图,直三棱柱/// ABCABC,BAC90, ABAC2,AA′=1,点M,N分别为/ AB和// BC的中点。 (Ⅰ)证明:MN∥平面// AACC;

最新高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2.2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. O D 1 B 1 C 1 D A C A 1

3.(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o .(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点. (1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.

5.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4G E F A B C D 图 5D G B F C A E 6.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

(完整版)高一必修二经典立体几何专项练习题

高一必修二经典立体几何专项练习题 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内——有无数个公共点 (2)直线与平面相交——有且只有一个公共点 (3)直线在平面平行——没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 a α a∩α=A a∥α 2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号表示: a α b β => a∥α a∥b 2.2.2 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。 符号表示: aβ bβ a∩b =pβ∥α a∥α b∥α 2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理; (3)垂直于同一条直线的两个平面平行。

2.2.3 —2.2.4直线与平面、平面与平面平行的性质 1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。 符号表示: a ∥α a β a∥b α∩β= b 作用:利用该定理可解决直线间的平行问题。 2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。 符号表示: α∥β α∩γ=a a∥b β∩γ=b 作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质 2.3.1直线与平面垂直的判定 1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。 P a L 2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 注意点: a)定理中的“两条相交直线”这一条件不可忽视; b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。 2.3.2平面与平面垂直的判定 1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 A

高中数学立体几何大题练习(文科)

立体几何大题练习(文科): 1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD. (1)求证:平面SBD⊥平面SAD; (2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积. 【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证; (2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=, 设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°, 可得BD=a,∠CBD=45°,∠ABD=45°, 由余弦定理可得AD==a, 则BD⊥AD, 由面SAD⊥底面ABCD.可得BD⊥平面SAD, 又BD?平面SBD,可得平面SBD⊥平面SAD; (2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为, 由AD=SD=a, 在△SAD中,可得SA=2SDsin60°=a, △SAD的边AD上的高SH=SDsin60°=a, 由SH⊥平面BCD,可得 ×a××a2=,

解得a=1, 由BD⊥平面SAD,可得BD⊥SD, SB===2a, 又AB=2a, 在等腰三角形SBA中, 边SA上的高为=a, 则△SAB的面积为×SA×a=a=. 【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题. 2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC. 【分析】(1)利用AB∥EF及线面平行判定定理可得结论; (2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论. 【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

高考文科立体几何大题

1. (2013年高考辽宁卷(文))如 图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点. (I) 求证:BC _平面PAC ; (II) 设Q为PA的中点,G为AOC的重心,求证:QG//平面PBC. 2.2013年高考陕西卷(文))如图,四棱柱ABCDAιBιCD的底面ABCt是正方形,O为底面中 心,AC⊥平面ABCD AB=AA=√2. (I )证明:A i BD // 平面CDB1; ( ∏ )求三棱柱ABDABD的体积.

3. (2013年高考福建卷(文))如图,在四棱锥P- ABCD 中,PD _ 面ABCD , AB∕∕DC , AB _ AD , BC =5, DC =3, AD = 4, .PAD =60 .(1)当正视图方向与向量AD的方向相同时,画出四棱锥P- ABCD的正视图.(要求标出尺寸,并画出演算过程); ⑵若M为PA的中点,求证:DM / /面PBC ; (3) 4. 如图,四棱锥 P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角形,∠ APD=90°,面 PAD⊥面 ABCD,且 AB=1,AD=2, E、F分别为 PC和BD的中点. (1)证明:EF// 面 PAD (2)证明:面PDC⊥面PAD; (3)求四棱锥 P— ABCD的体积. A B 求三棱锥D- PBC的体积.

5. (2013年高考广东卷(文))如图4,在边长为1的等边三角形 ABC 中,D ) E 分别是AB )AC 边上的点,AD =AE , F 是BC 的中点,AF 与DE 交于点G , 将 :ABF 沿AF 折起, (1)证明:DE //平面BCF ; (2) 证明:CF _平面ABF ; 2 ⑶ 当AD 时,求三棱锥F - DEG 的体积V F DEG 3 _ 6. (2013年高考北京卷(文))如图,在四棱锥P-ABCD 中,AB∕∕CD , AB _ AD , CD =2AB ,平面 PAD _ 底面 ABCD , PA _ AD , E 和 F 分别是CD 和PC 的中点,求证: (1) PA _ 底面 ABCD ;(2) BE//平面 PAD ;(3)平面 BEF _ 平面 PCD 得到如图5所示的三棱锥 A - BCF ,其中BC 洱

历年高考立体几何大题试题(卷)

2015年高考立体几何大题试卷 1. 【2015高考新课标2,理19】 如图,长方体ABCD -A1B1C1D1中,AB=16, BC=10, AA = 8,点E , F 分别在AB , C1D1上,A1E =4 .过点E , F的平面:-与此长方体的面相交,交线围成一个正方形. (1题图) (I )在图中画出这个正方形(不必说出画法和理由) (n )求直线AF与平面〉所成角的正弦值. 2. 【2015江苏高考,16】如图,在直三棱柱ABC—中,已知AC丄BC ,

BC =CC 1,设 AB 1 的中点为 D , BQ BC^ E .求证:(1) DE // 平面 AA 1C 1C ; (2) BC 1 _ AB 1 . (2题图) (3题图) C C 第的题图

3. 【2015高考安徽,理19】如图所示,在多面体 AEDQCBA ,四边形AABB , ADD 1A 1 ,ABCD 均为正方形,E 为Bp 的中点,过 A,D,E 的平面交CD ,于F. (I)证明:EF //BQ ; (□)求二面角E - A ,D - B i 余弦值. 4. 【2015江苏高考,22】如图,在四棱锥P-ABCD 中,已知PA _平面ABCD ,且 四边形 ABCD 为直角梯 形,.ABC =/BAD = —,PA 二 AD =2,AB 二 BC =1 2 (1)求平面PAB 与平面PCD 所成二面角的余弦值; (2)点Q 是线段BP 上的动点,当直线 CQ 与DP 所成角最小时,求线段 BQ 的长 (4题图) 5 .【2015高考福建,理17】如图,在几何体 ABCDE 中,四边形ABCD 是矩形,AB A 平面BEC , BE A EC , AB=BE=EC=2 , G , F 分别是线段 BE , DC 的中点. (I 求证:GF //平面ADE ; (^)求平面AEF 与平面BEC 所成锐二面角的余弦值. 6. 【2015高考浙江,理17】如图,在三棱柱 AB^A 1B 1C 1-中,.BAC =90;, AB = AC=2 , AA = 4 , A 在底面ABC 的射影为BC 的中点,D 为B 1C 1的中点. (5题图) D

(完整)2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

高中数学立体几何经典大题训练.

高中数学立体几何大题训练 1. 如图所示,在长方体 1111ABCD A B C D -中, AB=AD=1, AA 1=2, M 是棱 CC 1的中点 (Ⅰ求异面直线 A 1M 和 C 1D 1所成的角的正切值; (Ⅱ证明:平面 ABM ⊥平面 A 1B 1M 1 2. 如图, 在矩形 ABCD 中,点 , E F 分别在线段 , AB AD 上, 243 AE EB AF FD ===

=. 沿直线 EF 将 AEF V 翻折成 ' A EF V , 使平面 ' A EF BEF ⊥平面 . (Ⅰ求二面角 ' A FD C --的余弦值; (Ⅱ点 , M N 分别在线段 , FD BC 上,若沿直线 MN 将四边形 MNCD 向上翻折,使 C 与 ' A 重合,求线段 FM 的长。 3. 如图, 直三棱柱 111ABC A B C -中, AC BC =, 1AA AB =, D 为 1BB 的中点, E 为 1AB 上的一点, 13AE EB =. (Ⅰ证明:DE 为异面直线 1AB 与 CD 的公垂线; (Ⅱ设异面直线 1AB 与 CD 的夹角为 45°,求二面角 111A AC B --的大小. 4. 如图,在四棱锥 P — ABCD 中,底面 ABCD 是矩形 PA ⊥平面 ABCD , AP =AB , BP =BC =2, E , F 分别是 PB , PC 的中点 . (Ⅰ证明:EF ∥平面 PAD ;

(Ⅱ求三棱锥 E — ABC 的体积 V. 5. 如图,棱柱 111ABC A B C -的侧面 11BCC B 是菱形, 11B C A B ⊥ (Ⅰ证明:平面 1 ABC ⊥平面 11A BC ; (Ⅱ设 D 是 11AC 上的点, 且 1//A B 平面 1B CD , 求 11 :A D DC 的值 . 6. 已知三棱锥 P -ABC 中, PA ⊥ ABC , AB ⊥ AC , PA=AC=?AB ,

高中立体几何经典题型练习题(含答案)

高中数学立体几何练习题精选试卷 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题2分,共40分) 1.设直线l,m和平面α,β,下列条件能得到α∥β的有() ①l?α,m?α,且l∥β,m∥β; ②l?α,m?α且l∥m; ③l∥α,m∥β且l∥m. A.1个B.2个C.3个D.0个 2.一个四面体中如果有三条棱两两垂直,且垂足不是同一点,这三条棱就象中国武术中的兵器--三节棍,所以,我们常把这类四面体称为“三节棍体”,三节棍体ABCD四个顶点在空间直角坐标系中的坐标分别为A(0,0,0)、B(0,4,0)、C(4,4,0)、D(0,0,2),则此三节棍体外接球的表面积是() A.36πB.24πC.18πD.12π

3.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D. 4、如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为4,且侧棱AA1⊥底面ABC,其主视图是边长为4的正方形,则此三棱柱的侧视图的面积为() A.16B.2C.4D. 5.三棱锥P-ABC的侧棱PA,PB,PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球的体积是() A.2πB.4πC.πD.8π 6.在正方体ABCD-A′B′C′D′中,过对角线BD‘的一个平面交AA′于点E,交CC′于点F.则下列结论正确的是() ①四边形BFD′E一定是平行四边形 ②四边形BFD′E有可能是正方形 ③四边形BFD′E在底面ABCD的投影一定是正方形 ④四边形BFD′E有可能垂于于平面BB′D. A.①②③④B.①③④C.①②④D.②③④ 7.如图,在四面体A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=1,则AD=()

相关主题