搜档网
当前位置:搜档网 › 太阳能光伏发电系统的组成及原理

太阳能光伏发电系统的组成及原理

太阳能光伏发电系统的组成及原理
太阳能光伏发电系统的组成及原理

太阳能光伏发电系统是利用太阳能电池直接将太阳能转换成电能的发电系统。它的主要部件是太阳能电池、蓄电池、控制器和逆变器。其特点是可靠性高、使用寿命长、不污染环境、能独立发电又能并网运行,受到各国企业组织的青睐,具有广阔的发展前景。

一、特点:

太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solarcells)是利用半导体材料的电子学特性实现P-V 转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。

二、系统的组成:

电源系统:太阳能电池组件和蓄电池。

控制保护系统:控制器和逆变器。

系统终端(负载):用户的用电设备。

三、太阳能发电原理:

太阳能电池板

太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。

太阳能电源系统

太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接

影响着系统工作特性。

1)电池单元:由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,于是就有“光生电流”流过,太阳能电池组件就实现了对负载的功率P输出。

(2)电能储存单元:太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。

控制器

控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接反时切断

开关。目前日立公司研制出了既能跟踪调控点Pm,又能跟踪太阳移动参数的“向日葵”式控制器,将固定电池组件的效率提高了50%左右。

DC-AC逆变器

逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流电逆变成交流电。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。

太阳跟踪控制系统

由于地球的自转,相对于某一个固定地点的太阳能光伏发电系统,一年春夏秋冬四季、每天日升日落,太阳的光照角度时时刻刻都在变化,有效的保证太阳能电池板能够时刻正对太阳,发电效率才会达到最佳状态。目前世界上通用的太阳跟踪控制系统都需要根据安放点的经纬度等信息计算一年中的每一天的不同时刻太阳所在的角度,将一年中每个时刻的太阳位置存储到PLC、单片机或电脑软件中,也就是靠计算太阳位置以实现跟踪。

太阳能发电系统的效率

在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及负载的效率等组成。但

相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围绕着加大吸能面,如双面电池,减小反射;运用吸杂技术减小半导体材料的复合;电池超薄型化;改进理论,建立新模型;聚光电池等。

2021年太阳能光伏发电系统基本组成

太阳能光伏发电系统基本组成 欧阳光明(2021.03.07) 太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。其中,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。中国国产晶体硅电池效率在10至13%左右,国际上同类产品效率约12至14%。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳

的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。 (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220V AC、110V AC 的交流电源。由于太阳能的直接输出一般都是12V DC、24V DC、48V DC。为能向220V AC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC 逆变器,如将24V DC的电能转换成5V DC的电能(注意,不是简单的降压)。

光伏发电的基本原理及应用前景

光伏发电的基本原理及应用前景 发表时间:2018-06-06T11:45:28.773Z 来源:《知识-力量》2018年4月下作者:孙伟鹏覃雪清黄坚坚 [导读] 随着太阳能发电技术的逐渐成熟,光伏发电也逐渐成为国家电力供应的重要部分,未来光伏行业受益于国家战略发展,前景广阔、潜力巨大。 (广西大学电气工程学院,广西南宁 530004) 摘要:随着太阳能发电技术的逐渐成熟,光伏发电也逐渐成为国家电力供应的重要部分,未来光伏行业受益于国家战略发展,前景广阔、潜力巨大。本文阐述了光伏发电的基本原理,并对光伏电站的跟踪监控和运行数据进行了分析与评估,展望了光伏发电技术的应用前景。关键词:光伏发电;基本原理;跟踪监控;运行数据;应用前景 光能发电是当今世界的尖端科技,将为全人类彻底解决“能源危机”“环境污染”和“可持续发展”等三大世界难题,将做出历史性、跨世代的伟大贡献,将为人类利用新能源、新技术方面进入一个崭新的时代。 一、光伏发电的基本原理 1、太阳能光伏发电系统的组成 太阳能光伏发电系统主要由太阳能光伏电池组,光伏系统电池控制器,蓄电池和交直流逆变器是其主要部件。其中的核心元件是光伏电池组和控制器。各部件在系统中的作用是: 光伏电池:光电转换。 控制器:作用于整个系统的过程控制。光伏发电系统中使用的控制器类型很多,如2点式控制器,多路顺序控制器、智能控制器、大功率跟踪充电控制器等,我国目前使用的大都是简单设计的控制器,智能型控制器仅用于通信系统和较大型的光伏电站。 蓄电池:蓄电池是光伏发电系统中的关键部件,用于存储从光伏电池转换来的电力。目前我国还没有用于光伏系统的专用蓄电池,而是使用常规的铅酸蓄电池。 交直流逆变器:由于它的功能是交直流转换,因此这个部件最重要的指标是可靠性和转换效率。并网逆变器采用最大功率跟踪技术,最大限度地把光伏电池转换的电能送入电网。 2、太阳能光伏电池板 太阳能电池主要使用单晶硅为材料。用单晶硅做成类似二极管中的p-n结。工作原理和二极管类似。只不过在二极管中,推动p-n结空穴和电子运动的是外部电场,而在太阳能电池中推动和影响p-n结空穴和电子运动的是太阳光子和光辐射热(*)。也就是通常所说的光生伏特效应原理。目前光电转换的效率,也就是光伏电池效率大约是单晶硅13%-15%,多晶硅11%-13%.目前最新的技术还包括光伏薄膜电池。 3、太阳能光伏发电系统的分类 目前太阳能光伏发电系统大致可分为三类,离网光伏蓄电系统,光伏并网发电系统及前两者混合系统。a)离网光伏蓄电系统。这是一种常见的太阳能应用方式。在国内外应用已有若干年。系统比较简单,而且适应性广。只因其一系列种类蓄电池的体积偏大和维护困难而限制了使用范围。b)光伏并网发电系统,当用电负荷较大时,太阳能电力不足就向市电购电。而负荷较小时,或用不完电力时,就可将多余的电力卖给市电。在背靠电网的前提下,该系统省掉了蓄电池,从而扩张了使用的范围和灵活性,并降低了造价。c)a,b两者混合系统,这是介于上述两个方之间的系统。该方案有较强的适应性,例如可以根据电网的峰谷电价来调整自身的发电策略。但是其造价和运行成本较上述两种方案高。 二、光伏电站的跟踪监控和运行数据分析与评估 光伏发电系统还属于新生事物,还没有达到推广应用的规模化。目前存在距离遥远、当地技术水平低、独立电网容量有限等不利条件,增加了管理好光伏电站的难度。因此,实施对电站的运行监控,通过对系统运行的数据进行科学分析,找出内在规律,为系统优化设计提供可靠依据,为更大规模的推广独立光伏发电系统作出贡献。 1、电站监控内容 (1)当地的光照和风力资源:每天各时段阳光辐射强度和光照时间,每天各时段风速和风向。(2)天气情况(温度、雷击、沙尘、冰雹、雨雪、云雾等)。(3)系统各发电子系统在各时段的发电功率和发电量。(4)充电控制器在各时段的工作状态。(5)蓄电池组在各时段的工作状态。(6)系统负载在各时段的工作状态。(7)系统故障统计。 2、监控手段和方法 (1)对于没有安装自动数据采集装置的电站,采用人工读数的方法记录数据。为了保证数据的真实(可靠、准确,电站工作人员在参加培训时必须学会、浓懂如何正确读表、测量和填写工作日记的表格。业主公司的专业技术人员定期校对、核实各电站的工作日记。电站的工作日记必须存档备案,不得遗失和损坏。人工记录工作日记是自始至终每天必做的工作。 (2)对于安装了自动数据采集装置的电站,由专业技术人员定期读取记录,或由当她电站工作人员经专门培训定期更换数据记录磁盘,邮寄给专业数据收集人。 (3)在具各通信条件的电站,可以建立远程监控系统,由专业技术人员进行实时监控,远程自动采集数据。 3、电站运行数据分析与评价 在获取完整数据的基础上,应分析并完成下述评估内容。(1)每月、每年光伏电站提供的电量。(2)每月、每日全村的用电需求量和各负载的耗电量。(3)每月24小时能量流图。(4)系统各主要设各的工作性能和潜力。(5)供电余量分析。(6)负载发展预测。(7)故障分析及预防措施建议。做好光伏电站的跟踪监控和评估工作,有助于改进管理制度,进一步完善光伏电站,充分发挥系统的潜能,使系统在最佳状态下运行,获得最好的经济效益和社会效益。 三、光伏发电技术的应用前景展望 我国光伏产业正以每年30%的速度增长,最近三年全球太阳能电池总产量平均年增长率高达49.8%以上。按照日本新能源计划、欧盟可再生能源白皮书、美国光伏计划等推算,至2030年全球光伏发电装机容量将达到300gw(届时整个产业的产值有可能突破3000亿美元),至

光伏系统的组成和原理

光伏系统的组成和原理 光伏系统由以下三部分组成:太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。 光伏系统具有以下的特点: -没有转动部件,不产生噪音; -没有空气污染、不排放废水; -没有燃烧过程,不需要燃料; -维修保养简单,维护费用低; -运行可靠性、稳定性好; -作为关键部件的太阳电池使用寿命长,晶体硅太阳电 池寿命可达到25年以上; -根据需要很容易扩大发电规模。 光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类:独立发电系统和并网发电系统。应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济

可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~2W的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。图1-1是一个典型的供应直流负载的光伏系统示意图。其中包含了光伏系统中的几个主要部件: ●光伏组件方阵:由太阳电池组件(也称光伏电池组件)按 照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。 ●蓄电池:将太阳电池组件产生的电能储存起来,当光照不 足或晚上、或者负载需求大于太阳电池组件所发的电量

光伏发电原理及发电系统简介

光伏发电原理及发电系统简介 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 一、光伏效应 如果光线照射在太阳能电池上并且光在界面层被吸收,具有足够能量的光子能够在P型硅和N型硅中将电子从共价键中激发,以致产生电子-空穴对。界面层附近的电子和空穴在复合之前,将通过空间电荷的电场作用被相互分离。电子向带正电的N区和空穴向带负电的P区运动。

通过界面层的电荷分离,将在P区和N区之间产生一个向外的可测试的电压。此时可在硅片的两边加上电极并接入电压表。对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。通过光照在界面层产生的电子-空穴对越多,电流越大。界面层吸收的光能越多,界面层即电池面积越大,在太阳能电池中形成的电流也越大。 二、原理 太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。

太阳能发电有两种方式,一种是光-热-电转换方式,另一种是光-电直接转换方式。 (1)光-热-电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光-热转换过程;后一个过程是热-电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。

(2)光-电直接转换方式该方式是利用光伏效应,将太阳辐射能直接转换成电能,光-电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 三、系统组成 光伏发电系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器,交流配电柜,太阳跟踪控制系统等设备组成。 1、电池方阵

光伏电源系统的组成和原理

光伏电源系统的原理及组成 首先太阳能电池发电系统是利用以光生伏打效应原理制成的太阳能电池将太阳辐射能直接转换成电能的发电系统。它由太阳能电池方阵、控制器、蓄电池组、直流/交流逆变器等部分组成,其系统组成如图所示。 1.太阳能电池方阵: 太阳能电池单体是光电转换的最小单元,尺寸一般为4cm 2 到100cm 2 不等。太阳 能电池单体的工作电压约为0.5V, 工作电流约为20-25mA/cm 2 , 一般不能单独作为 电源使用。将太阳能电池单体进行串并联封装后,就成为太阳能电池组件,其功率一般为几瓦至几十瓦,是可以单独作为电源使用的最小单元。太阳能电池组件再经过串并联组合安装在支架上,就构成了太阳能电池方阵,可以满足负载所要求的输出功率(见图1-2)。 (1)硅太阳能电池单体 常用的太阳能电池主要是硅太阳能电池。晶体硅太阳能电池由一个晶体硅片组成,在晶体硅片的上表面紧密排列着金属栅线,下表面是金属层。硅片本身是P型硅,表面扩散层是N区,在这两个区的连接处就是所谓的PN结。PN结形成一个电场。太阳能电池的顶部被一层抗反射膜所覆盖,以便减少太阳能的反射损失。 太阳能电池的工作原理如下: 光是由光子组成,而光子是包含有一定能量的微粒,能量的大小由光的波长决定,光被晶体硅吸收后,在PN结中产生一对对正负电荷,由于在PN结 区域的正负电荷被分离,因而可以产生一个外电流场,电流从晶体硅片电池的底端经过负载流至电池的顶端。这就是“光生伏打效应”。

将一个负载连接在太阳能电池的上下两表面间时,将有电流流过该负载,于是太阳能电池就产生了电流;太阳能电池吸收的光子越多,产生的电流也就越大。光子的能量由波长决定,低于基能能量的光子不能产生自由电子,一个高于基能能量的光子将仅产生一个自由电子,多余的能量将使电池发热,伴随电能损失的影响将使太阳能电池的效率下降。 (2)硅太阳能电池种类 目前世界上有3种已经商品化的硅太阳能电池:单晶硅太阳能电池、多晶硅太阳能电池和非晶硅太阳能电池。对于单晶硅太阳能电池,由于所使用的单晶硅材料与半导体工业所使用的材料具有相同的品质,使单晶硅的使用成本比较昂贵。多晶硅太阳能电池的晶体方向的无规则性,意味着正负电荷对并不能全部被PN结电场所分离,因为电荷对在晶体与晶体之间的边界上可能由于晶体的不规则而损失,所以多晶硅太阳能电池的效率一般要比单晶硅太阳能电池低。多晶硅太阳能电池用铸造的方法生产,所以它的成本比单晶硅太阳能电池低。非晶硅太阳能电池属于薄膜电池,造价低廉,但光电转换效率比较低,稳定性也不如晶体硅太阳能电池,目前多数用于弱光性电源,如手表、计算器等。 一般产品化单晶硅太阳电池的光电转换效率为13――15 % 产品化多晶硅太阳电池的光电转换效率为11――13 % 产品化非晶硅太阳电池的光电转换效率为5――8 % (3)太阳能电池组件 一个太阳能电池只能产生大约0.5V电压,远低于实际应用所需要的电压。为了满足实际应用的需要,需把太阳能电池连接成组件。太阳能电池组件包含一定数量的太阳能电池,这些太阳能电池通过导线连接。一个组件上,太阳能电池的标准数量是36片(10cm×10cm),这意味着一个太阳能电池组件大约能产生17V的电压,正好能为一个额定电压为12V的蓄电池进行有效充电。 通过导线连接的太阳能电池被密封成的物理单元被称为太阳能电池组件,具有一定的防腐、防风、防雹、防雨等的能力,广泛应用于各个领域和系统。当应用领域需要较高的电压和电流而单个组件不能满足要求时,可把多个组件组成太阳能电池方阵,以获得所需要的电压和电流。 太阳能电池的可靠性在很大程度上取决于其防腐、防风、防雹、防雨等的能力。其潜在的质量问题是边沿的密封以及组件背面的接线盒。 这种组件的前面是玻璃板,背面是一层合金薄片。合金薄片的主要功能是防

光伏太阳能发电设计方案

骞能源(深圳)有限公司是一家杰出的光伏设计方案提供方,已为上个客户 提供了满意的服务成果。并为是一家以清洁能源、新能源及相关产业为主的国际化综合能源公司,我们是全球知名的新能源投资、开发与运营商,致力于为客户、合作伙伴和投资者提供优质的产品和立体化全方位的整体解决方案。 自公司创立始,秉承“让世界充满阳光”的理念,持续为全人类提供优质的 能源与服务,持续创新,追求卓越,力争成为全球最受欢迎的国际化清洁能源企业。 光伏系统的设计包括两个方面:容量设计和硬件设计 光伏系统容量设计的主要目的就是要计算出系统在全年内能够可靠工作所 需的太阳电池组件和蓄电池的数量。同时要注意协调系统工作的最大可靠性和系统成本两者之间的关系,在满足系统工作的最大可靠性基础上尽量地减少系统成本。光伏系统硬件设计的主要目的是根据实际情况选择合适的硬件设备包括太阳电池组件的选型,支架设计,逆变器的选择,电缆的选择,控制测量系统的设计,

防雷设计和配电系统设计等。在进行系统设计的时候需要综合考虑系统的软件和硬件两个方面。 针对不同类型的光伏系统,软件设计的内容也不一样。独立系统,并网系统和混合系统的设计方法和考虑重点都会有所不同。 在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。 独立光伏系统软件设计 光伏系统软件设计的内容包括负载用电量的估算,太阳电池组件数量和蓄 电池容量的计算以及太阳电池组件安装最佳倾角的计算。因为太阳电池组件数量

什么是光伏发电

光伏发电是利用太阳能电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar Module)是利用半导体材料的电子学特性实现P-V转换的一种材料,在广大的无电地区,该装置可以方便地实现为用户照明及生活供电,也可以与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且具产业化的是“光伏建筑一体化”技术(BIPV),而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统,大型光伏并网技术正在启动。 光伏发电系统形式 主要有两种:1.独立光伏发电系统(离网系统) 2.并网光伏发电系统 在近几年的光伏发电体系中,并网光伏发电系统是主要的发展方向,它可以节省了蓄电池的费用;通过研究理想的最大功率追踪控制技术,也将降低太阳电池发电的成本。 独立系统主要组成部分 1. 光伏阵列 2. 光伏 3. 蓄电池组 4. 逆变器 5. 监控系统 6. 负载 并网系统主要组成部分 1. 光伏阵列 2. 并网逆变器 3. 公共电网 4. 监控系统 光伏阵列 单一组件的发电量是十分有限的,实际运用中,是单一组件通过电缆和汇线盒实现组件的串、并联,组成整个的组件系统,称为光伏阵列。 光伏控制器 光伏控制器是独立光伏发电系统中非常重要的部件控制光伏阵列对蓄电池组进行充电,并控制蓄电池组对后负载的放电,实现蓄电池组的过充和过放保护,对蓄电池进行温度补偿,并监控蓄电池组的电压和启动相关辅助控制。 逆变器 逆变器就是把直流电(例如12VDC)逆变成交流电(例如220VAC)的设备。一般分为独立逆变器和并网逆变器。 监控系统 监控系统是监控整个系统的运行状态,设备的各个参数,记录系统的发电量,环境等的数据,并对故障进行报警。

太阳能光伏发电基本原理.

太阳能光伏发电基本原理 1. 太阳能光伏发电系统的组成 太阳能光伏发电系统主要由太阳能光伏电池组,光伏系统电池控制器,蓄电池和交直流逆变器是其主要部件。其中的核心元件是光伏电池组和控制器。各部件在系统中的作用是: 光伏电池:光电转换。 控制器:作用于整个系统的过程控制。光伏发电系统中使用的控制器类型很多,如2点式控制器,多路顺序控制器、智能控制器、大功率跟踪充电控制器等,我国目前使用的大都是简单设计的控制器,智能型控制器仅用于通信系统和较大型的光伏电站。 蓄电池:蓄电池是光伏发电系统中的关键部件,用于存储从光伏电池转换来的电力。目前我国还没有用于光伏系统的专用蓄电池,而是使用常规的铅酸蓄电池。 交直流逆变器:由于它的功能是交直流转换,因此这个部件最重要的指标是可靠性和转换效率。并网逆变器采用最大功率跟踪技术,最大限度地把光伏电池转换的电能送入电网。 2.太阳能光伏电池板: 太阳能电池主要使用单晶硅为材料。用单晶硅做成类似二极管中的P-N结。工作原理和二极管类似。只不过在二极管中,推动P-N结空穴和电子运动的是外部电场,而在太阳能电池中推动和影响P-N结空穴和电子运动的是太阳光子和光辐射热(*。也就是通常所说的光生伏特效应原理。目前光电转换的效率,也就是光伏电池效率大约是单晶硅1 3%-15%,多晶硅11%-13%。目前最新的技术还包括光伏薄膜电池。 1839年,法国物理学家A.E.Becquerel在实验室中发现液体的光生伏特效应(由光照射在液体蓄电池的金属电极板上使得蓄电池电路中的伏特表产生微弱变化至

今,在所有能找到的材料中,由单晶硅做成的P-N结光伏电池是光电转换效率最高的材料。 3.太阳能光伏发电系统的分类: 目前太阳能光伏发电系统大致可分为三类,离网光伏蓄电系统,光伏并网发电系统及前两者混合系统。 A离网光伏蓄电系统。这是一种常见的太阳能应用方式。在国内外应用已有若干年。系统比较简单,而且适应性广。只因其一系列种类蓄电池的体积偏大和维护困难而限制了使用范围。 B光伏并网发电系统,当用电负荷较大时,太阳能电力不足就向市电购电。而负荷较小时,或用不完电力时,就可将多余的电力卖给市电。在背靠电网的前提下,该系统省掉了蓄电池,从而扩张了使用的范围和灵活性,并降低了造价。 CA, B两者混合系统,这是介于上述两个方之间的系统。该方案有较强的适应性,例如可以根据电网的峰谷电价来调整自身的发电策略。但是其造价和运行成本较上述两种方案高。 光伏产业投资焦点应集中在薄膜光伏电池领域 新能源板块短期面临估值偏高的窘境全球光伏产业维持热络,薄膜光伏电池地位崛起 根据Solarbuzz最新数据,07年全球光伏系统装置容量达2826MW,较06年大增62%,其中德国07年光伏系统 装置容量达1328MW(占比高达47%占居第一位,增速为38%,其次是西班牙的640MW(占比达23%,增速为480%,美国为220MW(占比为8%,增速为57%,日本市场占比持续下降,07年装置容量仅230MW(占比8%,衰退了22%。 07年全球太阳能电池产量达到3436MW,较06年增长了56%,中国厂商07年市占率由06年的20%

屋顶光伏电站简介及案例

用户侧并网屋顶光伏电站介绍用户侧并网光伏发电系统 ①太阳电池②开关/保护/防雷③电缆④并网逆变器⑤电度表(光伏电量) 经济和社会效益分析 经济效益 一个10MWp的光伏电站,按系统效率80%,年利用小时数1100小时(江苏地区平均值)计算,一年可发电10000000*1100/1000=1100万度电,按1度电可比原购电价格便宜0.15元,可节省购电用户运营成本近165万元。 10MWp电站总投资约1.2亿左右,根据新能源产业政策,项目建成后税收是三免三减半(每个地区的政策要了解清楚),第四年后建成后每年可缴税约300~400万。

社会效益 每年可节省标准煤约2800t,减排烟尘约700t,减排灰渣约1000t,减排二氧化碳约5960t,减排二氧化硫约56.84t。 屋顶光伏电站案例 盐城阜宁3MWp屋顶光伏发电项目 (中国2009年度最大已并网屋顶光伏电站) 1)项目地址:盐城阜宁3MWp屋顶光伏电站位于阜宁经济开发区荣威塑胶厂。 2)项目规模:3MW(规划9.18MWp)。 3)占地面积:5万平米。 4)组件类型:晶硅电池。 5)组件品牌:常州天合,江苏林洋。 6)逆变器规格:500KW。 7)逆变器品牌:Satcon(美国赛康)。 8)支架类型:固定倾角(30度)支架。 9)支架品牌:中环光伏。 10)接入系统:电站所发电量升压至10kV 直接并入地区电力网。 11)进场施工时间:2009年10月10日。 12)并网时间:2009年12月31日正式并网发电。 13)系统组成:盐城阜宁3MWp屋顶并网光伏电站采用分块发

电,集中并网方案,采用晶硅电池组件。该工程由光伏发电系统、电气系统、接入系统组成,分9个厂房,6个子系统,。每个子系统分别由太阳电池组件、支架、直流防雷汇流箱、并网逆变器、升压变压器等组成。 本项目建设规模为3MW,全部采用固定倾角安装,共安装220W 晶硅太阳能电池13664块。 盐城阜宁3MWp屋顶光伏发电项目运行寿命25年,总体效率为80%,预计电站在25 年运营期内年平均上网电量为337万kW·h,总上网电量为8425 万kW·h,与火电厂相比每年可为电网节约标煤约1028吨,在25年使用期内共节省标煤2.57万吨。项目同时发挥重要的环境效益,每年减轻排放温室效应气体CO2约2743吨;每年减少排放大气污染气体SOx约21吨,NOx约7吨。 项目建设过程图片

太阳能光伏发电必须掌握的基础知识

太阳能光伏发电必须掌握的基础知识 1、太阳能光伏系统的组成和原理 太阳能光伏系统由以下三部分组成: 太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。 太阳能光伏系统具有以下的特点: -没有转动部件,不产生噪音; -没有空气污染、不排放废水; -没有燃烧过程,不需要燃料; -xx简单,维护费用低; -运行可靠性、稳定性好; -作为关键部件的太阳电池使用寿命长,晶体硅太阳电池寿命可达到25年以上;根据需要很容易扩大发电规模。 光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类: 独立发电系统和并网发电系统。应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~2W的太阳能庭院灯,大到MW级的太阳能光伏电站,如3.75kWp家用型屋顶发电设备、敦煌10MW项目。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结

构和工作原理基本相同。图4-1是一个典型的供应直流负载的光伏系统示意图。其中包含了光伏系统中的几个主要部件: 光伏组件方阵: 由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。 蓄电池: 将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求,它是太阳能光伏系统的储能部件。目前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。 控制器: 它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个系统的核心控制部分。随着太阳能光伏产业的发展,控制器的功能越来越强大,有将传统的控制部分、逆变器以及监测系统集成的趋势,如AES公司的SPP和SMD系列的控制器就集成了上述三种功能。 逆变器: 在太阳能光伏供电系统中,如果含有交流负载,那么就要使用逆变器设备,将太阳电池组件产生的直流电或者蓄电池释放的直流电转化为负载需要的交流电。 太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。对

太阳能光伏发电系统的组成

太阳能光伏发电系统的组成

太阳能光伏发电系统的组成 太阳能光伏发电系统是利用太阳能电池的光伏效应,将太阳光辐射能直接转换成电能的一种新型发电系统。一套基本的光伏发电系统一般是由太阳能电池板、太阳能控制器、逆变器和蓄电池(组)构成。 太阳能电池板:太阳能电池板是太阳能光伏发电系统中的核心部分,其作用是将太阳能直接转换成电能,供负载使用或存贮于蓄电池内备用。 太阳能控制器:太阳能控制器的基本作用是为蓄电池提供最佳的充电电流和电压,快速、平稳、高效的为蓄电池充电,并在充电过程中减少损耗,尽量延长蓄电池的使用寿命;同时保护蓄电池,避免过充电和过放电现象的发生。如果用户使用的是直流负载,通过太阳能控制器可以为负载提供稳定的直流电(由于天气的原因,太阳电池方阵发出的直流电的电压和电流不是很稳定)。 逆变器:逆变器的作用就是将太阳能电池阵列和蓄电池提供的低压直流电逆变成220伏交流电,供给交流负载使用。蓄电池(组):蓄电池(组)的作用是将太阳能阵列发出的直流电直接储存起来,供负载使用。在光伏发电系统中,蓄电池处于浮充放电状态,当日照量大时,除了供给负裁用电外,还对蓄电池充电;当日照量小时,这部分储存的能量将逐步放出。

太阳能光伏发电系统的分类 根据不同场合的需要,太阳能光伏发电系统一般分为独立供电的光伏发电系统、并网光伏发电系统、混合型光伏发电系统三种。 (1)独立供电的光伏发电系统 独立供电的太阳能光伏发电系统如图2-6所示。整个独立供电的光伏发电系统由太阳能电池板、蓄电池、控制器、逆变器组成。太阳能电池板作为系统中的核心部分,其作用是将太阳能直接转换为直流形式的电能,一般只在白天有太阳光照的情况下输出能量。根据负载的需要,系统一般选用铅酸蓄电池作为储能环节,当发电量大于负载时,太阳能电池通过充电器对蓄电池充电;当发电量不足时,太阳能电池和蓄电池同时对负载供电。控制器一般由充电电路、放电电路和最大功率点跟踪控制组成。逆变器的作用是将直流电转换为.与交流负载同相的交流电。 图2-6 独立运行的太阳能光伏发电系统结构框图(2)并网光伏发电系统

光伏发电原理教学文案

光伏发电原理

光伏发电原理 1.光伏发电系统组成及运行方式 1.1离网型光伏发电系统的组成 一般来说,离网型太阳能光伏发电系统由太阳能电池方阵、控制器、蓄电池组、逆变器等部分组成。 1.1.1太阳能电池方阵 太阳能电池单体是光电转换的最小单元,尺寸一般为2cm×2cm到15cm×15cm不等,单体工作电压为0.45-0.5V,工作电流为20-25mA/cm2。太阳能组件是将太阳能电池单体进行串并联封装后形成的,其功率一般为几瓦、几十瓦、可以单独使用。当应用领域需要较高的电压电流而单个组件不能满足要求时,可把多个组件连成太阳能电池方阵,以获得需要的电压电流。 单体组件阵列 1.1.2防反充二极管

又称阻塞二极管,其作用是避免由于太阳能电池方阵在阴雨天和夜晚不发电时或出现短路故障时,蓄电池组通过太阳能电池方阵放电。它串联在太阳能电池方阵电路中,其单向导通作用,一般选用合适的整流二极管即可。 1.1.3蓄电池组 蓄电池的作用是储存太阳能电池方阵受光照时发出的电能并随时向负载放电。对其的基本要求有:(1)自放电率低(2)使用寿命长(3)深放电能力强(4)充电效率高(5)少维护或免维护(6)工作温度范围宽(7)价格低廉。目前我国与太阳能系统配套使用的蓄电池主要是铅酸蓄电池。 1.1.4控制器 光伏发电系统的核心部件之一,其一般具备如下功能:(1)信号检测检测光伏发电系统各装置和各单元的状况与参数,检测的物理量有输入电压、充电电流、输出电压、输出电流以及蓄电池温升。(2)最优充电控制根据当前太阳能资源情况和电池状态确定最佳充电方式,实现高效快速的充电。(3)蓄电池放电管理对蓄电池放电过程进行管理,如负载控制自动开关机,实现软启动、防止负载接入时蓄电池端电压压降而导致的错误保护。(4)设备保护控制系统中因逆变器故障而出现的过电压和负载短路引起的过电流。(5)运行状态指示通过指示灯、显示器等方式指示光伏系统的运行状态和故障信息。 1.1.5逆变器 逆变器是将直流电转换为交流电的设备,由于太阳能电池方阵和蓄电池组发出的是直流电,而当负载是交流负载时,逆变器是不可缺少的。逆变器按运行方式可分为独立运行逆变器和并网逆变器。独立运行逆变器用于独立运行的太阳能电池发电系统,为独立负载供电。并网逆变器用于并网运行的太阳能发电

太阳能光伏发电系统原理

太阳能光伏发电系统原理 光伏发电系统是利用半导体界面的光生伏特效应而将光能直接 转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电系统装置。 3.1光电效应概述 光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。这类光致电变的现象被人们统称为光电效应(Photoelectric effect)。 3.2光生伏打效应概述及应用 3.2.1光生伏打效应 是指物体由于吸收光子而产生电动势的现象,是当物体受光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。3.2.2光生伏打效应应用 光生伏打效应主要是应用在半导体的PN结上,把辐射能转换成电能。大量研究集中在太阳能的转换效率上。理论预期的效率为24%。由于半导体PN结器件在阳光下的光电转换效率最高,所以通常把这类光伏器件称为太阳能电池,也称光电池或太阳电池。 3.3太阳能电池及其太阳能组件 3.3.1太阳能电池的工作原理,太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能

电池的工作原理。 3.3.2太阳能电池的生产流程 通常的晶体硅太阳能电池是在厚度 350~450μm的高质量硅片上制成的, 这种硅片从提拉或浇铸的硅锭上锯割而成。如图1 3.3.3 太阳能电池的制造技术 晶体硅太阳能电池的制造工艺流程如图2。提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 具体的制造工艺技术说明如下: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。

光伏发电系统的工作原理和系统类型

光伏发电系统的工作原理和系统类型 1离网型光伏发电系统 离网型光伏发电系统亦称为独立光伏发电系统,图4为其典型结构示意图。 图 4 中的蓄电池是离网型光伏发电系统中必不可少的储能器件,光伏阵列受太阳光照发出的电能通过控制器、DC/DC 变换器对蓄电池进行高效、快速充电;而蓄电池储存的电能可通过放电器向直流负载馈电或经DC/AC变换向交流负载供电。控制器根据当前工况通过对DC/DC 变换器控制调整光伏阵列等效负载的大小,实现MPPT; 另一方面,控制器采用正弦波调制(SPWM)或空间矢量脉宽调制(SVPWM)技术对电压源型DC/AC 逆变器进行控制以输出总谐波畸变率低、稳定可靠的交流电。防反充二极管可防止蓄电池对光伏阵列放电,以避免反向电流损坏光伏阵列。离网型光伏发电系统主要应用于远离公共电网的无 电地区或容量较小(一般不超过几百瓦)的户用光伏系统。 2并网型光伏发电系统 并网型光伏发电系统与公共电网相联接,其典型结构示意图如图5 所示。图5 中,实现MPPT 的前级DC/DC 变换控制与实现逆变、并网控制的后级DC/AC PWM 控制独立,降低了后级逆变器并网工作与光伏阵列输出功率的相互影响,在提 高太阳能利用率的同时,提高并网电流品质。并网型光伏发电系统具有太阳能利用率高、可省略蓄电池储能环节、发电成本较独立型光伏发电显著降低等优点,其是光伏发电技术发展的趋势,主要有大型联网光伏电站和住宅联网型光伏系统两大类,其中,光伏系统与建筑相结合(BAPV)的住宅屋顶联网型光伏系统已成为光伏产业的一个热点。并网型光伏发电系统的关键技术包括光伏阵列MPPT、逆变、并网控制、并网保护及孤岛效应检测等。

光伏电站系统原理及组成

光伏电站系统原理及组成一、光伏系统的工作原理(图1) 1

工作原理:白天,在光照条件下,太阳电池组件产生一定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输入电压的要求。再通过充放电控制器对蓄电池进行充电,将由光能转换而来的电能贮存起来。晚上,蓄电池组为逆变器提供输入电,通过逆变器的作用,将直流电转换成交流电,输送到配电柜,由配电柜的切换作用进行供电。蓄电池组的放电情况由控制器进行控制,保证蓄电池的正常使用。光伏电站系统还应有限荷保护和防雷装置,以保护系统设备的过负载运行及免遭雷击,维护系统设备的安全使用。 二、光伏系统的组成 光伏系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器,交流配电柜等设备组成。其各部分设备的作用是: ⑴太阳能电池方阵:在有光照(无论是太阳光,还是其它发光体产生的光照)情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。在光生伏打效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,是能量转换的器件。太阳能电池一般为硅电池,分为单晶硅太阳能电池,多晶硅太阳能电池和非晶硅太阳能电池三种。 ⑵蓄电池组:其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。太阳能电池发电对所用蓄电池组的基本要求是:a.自放电率低;b.使用寿命长;c.深放电能力强;d.充电效率高;e.少维护或免维护;f.工作温度范围宽;g.价格低廉。目前我国与太阳能发电系统配套使用的蓄电池主要是铅酸蓄电池和镉镍蓄电池。配套200Ah以上的铅酸蓄电池,一般选用固定式或工业密封式免维护铅酸蓄电池,每只蓄电池的额定电压为2V DC;配套200Ah以下的铅酸蓄电池,一般选用小型密封免维护铅酸蓄电池,每只蓄电池的额定电压为12V DC。

光伏发电的基本原理和应用

光伏发电的基本原理: 太阳能是一种辐射能,它必须借助于能量转换器件才能变换为电能.这种把辐射能变换成电能的能量转换器件,就是太阳能电池.太阳能电池是利用光电转换原理使太阳的辐射光通过半导体物质转变为电能的器件,这种光电转换过程通常叫做“光生伏打效应”,太阳能电池又称为“光伏电池”.当太阳光照射到由P、N 型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定条件下,太阳能辐射被半导体材料吸收.形成内建静电场.如果从内建静电场的两侧引出电极并接上适当负载,就会形成电流,这就是太阳能电池的基本原理.单片太阳能电池就是一薄片半导体P-N结.标准光照条件下,额定输出电压为0.48V.为了获得较高的输出电压和较大容量,往往把多片太阳能电池连接在一起,目前,太阳能电池的光电转换率一般在15%左右,个别发达国家的实验室太阳能电池光电转换率已经可以达到30%左右. 太阳能设计问答 问:根据输出功率,如何设计一套太阳能发电系统? 答:太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。下面以100W输出功率,每天使用6个小时为例,介绍一下计算方法: 1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用5小时,则耗电量为111W*5小时=555Wh。 2.计算太阳能电池板: 按每日有效日照时间为6小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为555Wh/6h/70%=130W。其中70%是充

光伏电站系统原理及组成

光伏电站系统原理及组 成 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]

光伏电站系统原理及组成一、光伏系统的工作原理(图1)

工作原理:白天,在光照条件下,太阳电池组件产生一定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输入电压的要求。再通过充放电控制器对蓄电池进行充电,将由光能转换而来的电能贮存起来。晚上,蓄电池组为逆变器提供输入电,通过逆变器的作用,将直流电转换成交流电,输送到配电柜,由配电柜的切换作用进行供电。蓄电池组的放电情况由控制器进行控制,保证蓄电池的正常使用。光伏电站系统还应有限荷保护和防雷装置,以保护系统设备的过负载运行及免遭雷击,维护系统设备的安全使用。 二、光伏系统的组成 光伏系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器,交流配电柜等设备组成。其各部分设备的作用是: ⑴太阳能电池方阵:在有光照(无论是太阳光,还是其它发光体产生的 光照)情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。在光生伏打效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,是能量转换的器件。太阳能电池一般为硅电池,分为单晶硅太阳能电池,多晶硅太阳能电池和非晶硅太阳能电池三种。 ⑵蓄电池组:其作用是贮存太阳能电池方阵受光照时发出的电能并可随 时向负载供电。太阳能电池发电对所用蓄电池组的基本要求是:a.自放电率低;b.使用寿命长;c.深放电能力强;d.充电效率高;e.少维护或免维护;f.工作温度范围宽;g.价格低廉。目前我国与太阳能发电系统配套使用的蓄电池主要是铅酸蓄电池和镉镍蓄电池。配套200Ah 以上的铅酸蓄电池,一般选用固定式或工业密封式免维护铅酸蓄电 ;配套200Ah以下的铅酸蓄电池,一池,每只蓄电池的额定电压为2V DC 般选用小型密封免维护铅酸蓄电池,每只蓄电池的额定电压为12V 。 DC ⑶充放电控制器:是能自动防止蓄电池过充电和过放电的设备。由于蓄 电池的循环充放电次数及放电深度是决定蓄电池使用寿命的重要因

太阳能光伏发电系统的组成部分

太阳能光伏发电系统的组成部分 光伏发电系统,按其使用场所不同,可分为空间应用和地面应用两大类。在地面可以作为独立的电源使用,也可以与风力发电机或柴油机等组成混合发电系统,还可以与电网联接,向电网输送电力。目前应用比较广泛的光伏发电系统主要是作为地面独立电源使用。通常的独立光伏发电系统主要由太阳电池方阵、蓄电池、控制器以及阻塞二极管组成,其作用分别如下: 1.光伏电池方阵:方阵的作用是将太阳辐射能直接转换成电能,供给负载使用。一般由若干太阳电池组件按一定方式连接,再配上适当的支架及接线盒组成。 2.蓄电池组:蓄电池组是太阳电池方阵的贮能装置,其作用是将方阵在有日照时发出的多余电能贮存起来,在晚间或阴雨天供负载使用。在光伏发电系统中,蓄电池处于浮充放电状态,夏天日照量大,除了供给负载用电外,还对蓄电池充电;在冬天日照量少,这部分贮存的电能逐步放出,在这种季节性循环的基础上还要加上小得多的日循环,白天方阵给蓄电池充电,(同时方阵还要给负载用电),晚上则负载用电全部由蓄电池供给。因此,要求蓄电池的自放电要小,而且充电效率要高,同时还要考虑价格和使用是否方便等因素。常用的蓄电池有铅酸蓄电池和硅胶蓄电池,要求较高场合的也有价格比较昂贵的镍镉蓄电池。 3.控制器:在不同类型的光伏发电系统中控制器各不相同,其功能多少及复杂程度差别很大,需根据发电系统的要求及重要程度来确定。控制器主要由电子元器件、仪表、继电器、开关等组成。在简单的太阳电池,蓄电池系统中,控制器的作用是保护蓄电池,避免过充,过放。若光伏电站并网供电,控制器则需要有自动监测、控制、调节、转换等多种功能。如果负载用的是交流电,则在负载和蓄电池间还应配备逆变器,逆变器的作用就是将方阵和蓄电池提供的低压直流电逆变成220伏交流电,供给负载使用。 4.阻塞二极管:也称作反充二极管或隔离二极管,其作用是利用二极管的单向导电性阻止无日照时蓄电池通过太阳电池方阵放电。对阻塞二极管的要求是工作电流必须大于方阵的最大输出电流,反向耐压要高于蓄电池组的电压。在方阵工作时,阻塞二极管两端有一定的电压降,对硅二极管通常为0.6V~0.8V;肖特基或锗管0.3V左右。

相关主题