搜档网
当前位置:搜档网 › 函数概念基本初等函数函数模型及其应用配套练习

函数概念基本初等函数函数模型及其应用配套练习

函数概念基本初等函数函数模型及其应用配套练习
函数概念基本初等函数函数模型及其应用配套练习

第33课 函数模型及其应用(1)

分层训练

1.某工厂生产一种产品每件成本为a 元,出厂价为b 元,厂家从每件产品获纯利%p ,则

( )

()A %b a p -= ()B %b a p b

-= ()C %b a p a -= ()D %a p b

= 2.某商场进了A B 、两套服装,A 提价20%后以960元卖出,B 降价20%后以960元卖出,则这两套服装销售后 ( )

()A 不赚不亏 ()B 赚了80元

()C 亏了80元 ()D 赚了2000元

3.某商品降价20%后,欲恢复原价,则应提价( )

A 10%

B 20%

C 25%

D 35%

4.某种茶杯,每个0.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函

数 ,其定义域为 .

5.某种商品的进货价为a 元,零售价为每件1100元,若商店按零售价的80%降价出售,

仍可获利10%(相对于进货价),则a = 元.

6.建筑一个容积为36000m ,深为6m 的长方体蓄水池,池壁的造价为a 元/2

m ,池底的

价为2a 元/2m ,把总造价y (元)表示为底的一边长()x m 的函数.

7.某人骑自行车沿直线匀速旅行,先前进了a 千米,休息了一段时间,又沿原路返回b 千

米()b a <,再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是 ( )

()C ()D

8.某物体一天中的温度T 是时间t 的函数:3

()360T t t t =-+,时间单位是小时,温度单

位是C ,0t =时表示12:00,其后t 取值为正,则上午8时的温度为 ( ) ()A 8C ()B 18C

()C 58C ()D 128C

9.物体从静止状态下落,下落的距离与开始下落所经过的时间的平方成正比.已知开始下落

的最初两秒间,物体下落了19.6米,则下落的距离S (米)与所经过的时间t (秒)间的关

系为 .

10.某商人购货,进价已按原价a 扣去25%,他希望对货物定一新价,以便按新价让利20%

销售后仍可获得进价的25%的纯利,则此商人经营这种货物的件数x 与获利总额y 之间的

函数关系式是 .

11.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定位60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购订购量不会超过500件.

(1)设一次订购量为x 件,服装的实际出厂单价为P 元,写出函数()P f x =的表达式;

(2)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂单价-成本)

拓展延伸

现准备用下列函数中的一个表示这些数据满足的规律,其中最接近的一个是( ) (A )2log v t = (B )12

log v t =

(C )212

t v -= (D )22v t =-

13.一辆汽车在某段路程中行驶速率与时间的关系如图所示.

(1)求图中阴影部分的面积,并说明所求面积的实际含义;

(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km ,试建立行驶这段路

程时汽车里程表读数skm 与时间t h 的函数解析式,并作出相应的图象.

第33课 函数模型及其应用(1)

⒈C 2.C 3. C 4.0.5y x =,*x N ∈ 5.800

6.解:12000122000y ax a a x

=++()0x > 7.C 8.A 9. 24.9S t = 10.316

a y x =

11. 解:(1)当0100x <≤时60P =;

当100500x <≤时, ()600.021006250x P x =--=-

所以,()()6001006210050050x P f x x N x x <≤??==∈?-<≤??

(2)设销售商的一次订购量为x 件时,工厂获得的利润为L 元,则

()2

200100402210050050x x L P x x x x <≤??=-=?-<≤??

()x N ∈

当450x =时,5850L =.

因此,当销售商的一次订购量为450件时,工厂获得的利润为5850元. 12.C

将表中的数据描点可知最接近函数212

t v -=的图象,也可以将表中各t 的值代入上述各函数式检验,与表中v 的值最接近的应是

212

t v -=. 13.(1)阴影部分的面积为

501801901751651360?+?+?+?+?=

阴影部分的面积表示汽车在这5小时内

行驶的路程为360km .

(2)根据图象有5020040180(1)20541290(2)21342375(3)22243465(4)229945

t t t t s t t t t t t +≤

考研---基本初等函数知识汇总-必看

一、三角公式总表 ⒈L 弧长=αR=n πR 180 S 扇=21L R=21R 2 α=3602R n ?π ⒉正弦定理: A a sin =B b sin =C c sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= ⒋S ⊿=21a a h ?=21ab C sin =21bc A sin =21ac B sin = R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) ⒌同角关系: ⑴商的关系:①θtg =x y = θ θ cos sin =θθsec sin ? ②θθθθθcsc cos sin cos ?== =y x ctg ③θθθtg r y ?==cos sin ④θθθθcsc cos 1sec ?== =tg x r ⑤θθθctg r x ?== sin cos ⑥θθθθsec sin 1csc ?== =ctg y r ⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22?θθθ++=+b a b a (其中辅助角?与点(a,b )在同一象限,且 a b tg = ?) ⒍函数y=++?)sin(?ωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T= ω π 2, 频率f=T 1, 相位?ω+?x ,初相? ⒎五点作图法:令?ω+x 依次为ππ ππ 2,2 3,,2 0 求出x 与y , 依点()y x ,作图 ⒏诱导公试

华师大版中考数学总复习《函数的综合应用》导学案

函数的综合应用 一:【课前预习】 (一):【知识梳理】 1.解决函数应用性问题的思路 面→点→线。首先要全面理解题意,迅速接受概念,此为“面”;透过长篇叙述, 抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,建立函数模型,此为“线”。如此将应用性问题转化为纯数学问题。 2.解决函数应用性问题的步骤 (1)建模:它是解答应用题的关键步骤,就是在阅读材料,理解题意的基础上,把 实际问题的本质抽象转化为数学问题。 (2)解模:即运用所学的知识和方法对函数模型进行分析、运用、,解答纯数学问 题,最后检验所得的解,写出实际问题的结论。 (注意:①在求解过程和结果都必须符合实际问题的要求;②数量单位要统一。) 3.综合运用函数知识,把生活、生产、科技等方面的问题通过建立函数模型求解,涉 及最值问题时,运用二次函数的性质,选取适当的变量,建立目标函数。求该目标函数的最值,但要注意:①变量的取值范围;②求最值时,宜用配方法。 (二):【课前练习】 1.油箱中存油20升,油从油箱中均匀流 出,流速为0.2升/分钟,则油箱中剩余 油量 Q (升)与流出时间t(分钟)的函数关系是( ) A .Q =0.2t ; B .Q =20-2t ; C .t=0.2Q ; D .t=20—0.2Q 2.幸福村办工厂,今年前五个月生产某种产品的总量C (件)关于时间t (月)的函数图象如图所示,则该工厂对这种产品来说( ) A .1月至3月每月生产总量逐月增加,4,5两月每月生产总量逐月减小 B .l 月至3月生产总量逐月增加,4、5两月生产总量与3月持平 C .l 月至3月每月生产总量逐月增加,4、5两月均停止生产 D .l 月至3月每月生产总量不变,4、5两月均停止生产 3.某商人将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销价提高( ) A.8元或10元; B.12元; C.8元; D.10元 4.已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x = 上,点N 在直线3y x =+上,设点M (a ,b ),则抛物线2()y abx a b x =-++的顶点坐标为 。 5.为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后y 与x 成反比例如图所示.现测得药物8分钟燃毕,此时室内空气中每立方米的含 药量为6毫克,请根据题中提供的信息填空: ⑴药物燃烧时,y 关于x 的函数关系式为_______,自变量x 的取值范围是 _________; (2)药物燃烧后y 关于x 的函数关系式为___________. 二:【经典考题剖析】 1.如图( l )是某公共汽车线路收支差额y(票价总收人减去运营成本)与乘客量 x 的

函数的基本概念练习

第 1 页 共 1 页 函数的基本概念 一、知识归纳: 1、映射: 2、函数的定义: 3、函数的三要素: 4、函数的表示: 二、题型归纳: 1、有关映射概念的考察; 2、求函数的定义域; 3、求函数的解析式: 4、求函数的值域。 三、练习: 1、设B A f →:是集合A 到集合B 的映射,则下列命题正确的是( ) A 、A 中的每一个元素在B 中必有象 B 、B 中的每一个元素在A 中必有原象 C 、B 中的每一个元素在A 中的原象是唯一的 D 、A 中的不同元素的象不同 3、已知A={1、2、3、 4、5},对应法则f :1)3(2 +-→x x ,设B 为A 中元素在f 作用下的象集,则B = 。 4、设函数f(x)=132 +-x x ,则f(a)-f(-a)= 。 5、设(x ,y )在映射f 下的象是(x +y ,x -y ),则象(1,2)的原象是 ( ) A .(3,1) B .)21,23 (- C .(-1,3) D .)2 3,21(- 6、已知函数 =???>+-≤+=)]25([,) 1(3)1(1)(f f x x x x x f 则 . 7、函数y =f(x)的图像与直线x =4的交点个数为 ( ) (A )至多一个(B )至少一个(C )必有一个(4)一个、两个或无穷多个 8、由函数1)(2++= mx mx x f 的定义域是一切实数,则m 的取值范围是 ( ) A .(0,4] B .[0,1] C .[0,4] D .[4,+∞) 9、下列各组中,函数f (x )和g(x )的图象相同的是 ( ) A .f (x )=x ,g(x )=(x )2 B .f (x )=1,g(x )=x 0 C .f (x )=|x |,g(x )=2 x D .f (x )=|x |,g(x )=? ??-∞∈-+∞∈)0,(,) ,0(,x x x x 10、函数y =1122---x x 的定义域为 ( ) A .{x |-1≤x ≤1} B .{x |x ≤-1或x ≥1} C .{x |0≤x ≤1} D .{-1,1} 3、已知函数f (x )的定义域为[0,1],则f (x 2)的定义域为 ( ) A .(-1,0) B .[-1,1] C .(0,1) D .[0,1] 6、已知y=f(x)的定义域为R ,f(x+2)=-f(x),f(1)=10,则f(9)的值为( ) A .10 B .-1 C .0 D .不确定 7、设f (x -1)=3x -1,则f (x )=__ _______. 8、已知函数f ( 2x + 1 )的定义域为(0,1),则f ( x ) 的定义域为 。 9、函数)1(-x f 的定义域是[0,2],则)2(+x f 的定义域是 。 11、已知f ( x ) = 2 21x x +,那么f ( 1 ) + f ( 2) + f (2 1) + f ( 3 ) + f( 31 ) + f ( 4 ) + f ( 4 1 ) = 。 13、 14、 ). ()1(x f x x x f ,求已知函数满足+=+的解析式。,求已知函数)(1 2)1(2 x f x x x f +=

基本初等函数定义及性质知识点归纳

基本函数图像及性质 一、基本函数图像及其性质: 1、一次函数:(0)y kx b k =+≠ 2、正比例函数:(0)y kx k =≠ 3、反比例函数:(0)k y x x =≠ 4、二次函数:2(0)y ax bx c a =++≠ (1)、作图五要素: 2 124(,0),(,0),(0,),(),(,)()224b b ac b x x c x a a a -=--对称轴顶点 (2)、函数与方程:20 =4=0 0b ac >???-??

(3)、根与系数关系:12b x x a +=-,12c x x a ?= 5、指数函数:(0,1)x y a a a =>≠且 (1)、图像与性质: (i )1()(0,1)x x y a y a a a ==>≠与且关于y 轴对称。 ()1a >时,a 越大,图像越陡。 (2)、应用: (i )比较大小: ()解不等式: 1、回顾:

(1)()m m m ab a b =? (2)()m m m a a b b = 2、基本公式: (1)m n m n a a a +?= (2)m m n n a a a -= (3)()m n m n a a ?= 3、特殊: (1)01(0)a a =≠ (2)11(0)a a a -=≠ (3 )1;0)n a n a R n a =∈≥为奇数,为偶数, (4 ;0;0|| a n a a a a a n ≥??==?? -

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

函数-在一点的连续概念

第2章 连续函数 §2.1 连续函数的概念 【导语】 连续是客观世界中最常见的现象,如岁月的流逝、植物的生长、物体的运动等都是连续的.函数的连续性反映了函数在一点的值与这点附近的函数值之间的关系,是函数在一点的性质.如何刻画函数的连续性,连续函数具有什么性质,这就是第2章要解决的问题.本讲主要介绍函数在一点连续的定义。 【正文】 一、函数在一点连续的概念 定义1 设函数()f x 在0x 的某邻域内有定义,如果0 0lim ()()x x f x f x →=成立,那么就称函 数()f x 在0x 处连续,0x 称为函数()f x 的连续点. 一般地,0x x x ?=-称为自变量的改变量,0000()()()()()f x f x f x f x x f x ?=-=+?-称为函数()f x 在0x 处的改变量.函数()f x 在0x 连续指的是:当0x ?→时,有0()0f x ?→,即00 lim ()0x f x ?→?=. 也就是说,函数()f x 在0x 连续指的是:对任意的正数ε,都存在正数δ,使得当x δ?<时,就有0()f x ε?<成立. 从定义可以看出,连续性是函数的一种点性质.函数()f x 在0x 处是否连续与它在其他点是否连续没有关系. 例如对于函数 ,, (),,x x f x x x ∈?=? -?? Q Q 因为0 lim ()0x f x →=,且(0)0f =,所以()f x 在0x =处连 续.由于在00x ≠时极限0 lim ()x x f x →不存在,所以()f x 也 x 0 x 0y=x y x O

只有0x =这一个连续点. 从运算的角度看,连续性保证了函数求值运算与极限运算满足交换律,即 0lim ()()(lim )x x x x f x f x f x →→==. 例1 若函数21 ,1,()1,1x x f x x a x ?-≠-? =+??=-? 在1x =-处连续,求a 的值. 解 因为()f x 在1x =-处连续,所以 1 lim ()(1)x f x f →-=-. 又因为 2111 1lim ()lim lim(1)21x x x x f x x x →-→-→--==-=-+,(1)f a -=, 所以 2a =-. 例2 利用定义证明:若函数()f x 在0x 处连续,则函数()f x 在0x 处连续. 证 对任意的正数ε,因为函数()f x 在0x 处连续,所以存在正数δ,当0||x x δ-<时,有 0()()f x f x ε-<。 又因为00()()()()f x f x f x f x --≤,所以当0||x x δ-<时,有0()()f x f x ε-<。 所以函数()f x 在0x 处连续. Remark:1,, ()1,.x f x x ∈?=?-?? Q Q 例3 利用定义证明函数()e x f x =在任意点0x 处连续. 证 对任意实数0x 和x ,000e e e (e 1)x x x x x --=-. 对任意正数ε,不妨设0e x ε<.要使 0e e x x ε-<, 即要使 00e (e 1)x x x ε--<, 即 0001e e 1e x x x x εε----<<+,

初等函数的概念及表示方法

函数及其表示 函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做 [,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ① ()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z π π≠+∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各 基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知 ()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

(整理)函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2, n x x n ≠=,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A +- →→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ? ?? ?? ? ? ? +? -?? () 2 11c o s ~2(1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

2021年高考数学一轮复习第二章函数的概念及其基本性质.9函数模型及函数的综合应用课时练理

2021年高考数学一轮复习第二章函数的概念及其基本性质2.9函数 模型及函数的综合应用课时练理 1.[xx·衡水二中猜题]汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( ) 答案 A 解析 汽车加速行驶时,速度变化越来越快,而汽车匀速行驶时,速度保持不变,体现在s 与t 的函数图象上是一条直线,减速行驶时,速度变化越来越慢,但路程仍是增加的,故选A. 2.[xx·衡水中学月考]某种电热水器的水箱的最大容积是200升,加热到一定温度可以浴用,浴用时,已知每分钟放水34升,在放水的同时注水,t 分钟注水2t 2升,当水箱内水量达到最小值时,放水自动停止.现在假定每人洗浴用水65升,则该热水器一次至多可供( ) A .3人洗澡 B .4人洗澡 C .5人洗澡 D .6人洗澡 答案 B 解析 设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =17 2时,y 有最小 值,此时共放水34×17 2 =289升,可以供4人洗澡. 3.[xx·枣强中学预测]若函数f (x )=a +|x |+log 2(x 2+2)有且只有一个零点,则实数a 的值是( ) A .-2 B .-1

C .0 D .2 答案 B 解析 将函数f (x )=a +|x |+log 2(x 2 +2)的零点问题转化为函数f 1(x )=-a -|x |的图象与f 2(x )=log 2(x 2+2)的图象的交点问题.因为f 2(x )=log 2(x 2+2)在[0,+∞)上单调递增,且为偶函数,因此其最低点为(0,1),而函数f 1(x )=-a -|x |也是偶函数,在[0,+∞)上单调递减,因此其最高点为(0,-a ),要满足题意,则-a =1,因此a =-1. 4.[xx·冀州中学模拟]某购物网站在xx 年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为( ) A .1 B .2 C .3 D .4 答案 C 解析 为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,所以最少需要下的订单张数为3张,选C. 5. [xx·武邑中学预测]已知函数f (x )=(x -a )2 +(ln x 2 -2a )2 ,其中x >0,a ∈R ,存在x 0使得f (x 0)≤4 5 成立,则实数a 的值为( ) A.15 B.25

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

基本初等函数知识点

指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1. 三、指数函数的图象和性质

基本初等函数(整理)

1.1 初等函数图象及性质 1.1.1 幂函数 1函数(μ是常数)叫做幂函数。 2幂函数的定义域,要看μ是什么数而定。 但不论μ取什么值,幂函数在(0,+ ∞ )内总有定义。 3最常见的幂函数图象如下图所示:[如图] 4 2 -551015 -2 -4 -6 4①α>0时,图像都过(0,0)、(1,1 注意α>1与0<α<1的图像与性质的区别. ②α<0时,图像都过(1,1)点,在区间(0 上无限接近y轴,向右无限接近x轴. ③当x>1时,指数大的图像在上方. 1.1.2 指数函数与对数函数

1.指数函数 1函数 (a 是常数且a>0,a ≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。 2因为对于任何实数值x ,总有,又,所以指数函数的图形,总在x 轴的上方, 且通过点(0,1)。 若a>1,指数函数是单调增加的。若0

2.对数函数 由此可知,今后常用关系式,如: 指数函数的反函数,记作(a是常数且a>0,≠ a1),叫做对数函数。它的定义域是区间(0,+∞ )。 对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。 的图形总在y轴上方,且通过点(1,0)。 若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞ )内函数值为正。 若01 0

(完整word版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

函数连续性

第四章 函数的连续性 §1 连续性概念 Ⅰ. 教学目的与要求 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. Ⅱ. 教学重点与难点: 重点: 函数连续性的概念. 难点: 函数连续性的概念. Ⅲ. 讲授内容 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说,连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我 们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数 的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一 函数在一点的连续性 定义1 设函数f 在某U ()0x 内有定义.若()x f x x 0 lim →=()0x f , 则称f 在点0x 连续. 例如,函数连续()x f 12+=x 在点2=x 连续,因为 2lim →x ()x f =2 lim →x ()()2512f x ==+ 又如,函数()x f ???=0 ,00,1sin =≠x x x x ,在点0=x 连续,因为 ()()001sin lim lim 00f x x x f x x ===→→ 为引入函数()x f y =在点0x 连续的另一种表述,记0x x x -=?,称为自变量x (在点 0x )的增量或改变量.设()00x f y =,相应的函数y (在点0x )的增量记为: ()()()()0000y y x f x x f x f x f y -=-?+=-=? 注 自变量的增量x ?或函数的增量y ?可以是正数,也可以是0或负数.引进了增 量的概念之后,易见“函数()x f y =在点0x 连续”等价于0lim 0 =?→?y x . 由于函数在一点的连续性是通过极限来定义的,因而也可直接用δε-方式来叙述, 即:若对任给的0>ε,存在0>δ,使得当δ<-0x x 时有 ()()ε<-0x f x f (2) 则称函数f 在点0x 连续.

函数的基本概念及表示法

题一:定义集合{1,2,…,n }到{1,2,…,n }上的函数f :k →i k ,k =1,2,…,n .记作:121,2,,,,,n n i i i ?? ??? . 设121,2,,,,,n n f i i i ??= ??? ,12 1,2,,,,,n n g j j j ??= ??? (这里的j 1,j 2,…,j n n j j j ,,,21 也是1,2,…,n 这n 个整数的一个排列).定义g f 12 1,2,,,,,n n i i i ??= ??? 121,2,,,,,n n j j j ?? ??? ,其中)]([)(k g f k g f = ,k =1,2,…,n ..则? ?? ? ?????? ??4,5,1,2,35,4,3,2,13,1,2,4,55,4,3,2,1= 题二:在加工爆米花的过程中,爆开且不糊的粒数占加工总数的比率称为可食用率p .它的大小主要取决于加工时间t (单位:分钟). 做了三次实验,数据记录如图所示.已知图中三个点都在函数p =-0.2t 2+bt +c 上,则由此得到的理论最佳加工时间为 分钟. 题三:3,10 ()((5)),10x x f x f f x x -≥?=?+

相关主题