搜档网
当前位置:搜档网 › 城市中高压燃气管道泄漏、火灾事故风险分析

城市中高压燃气管道泄漏、火灾事故风险分析

城市中高压燃气管道泄漏、火灾事故风险分析
城市中高压燃气管道泄漏、火灾事故风险分析

火灾风险评估

第一章火灾风险评估 本节主要介绍了火灾风险评估、可接受风险、消防安全、火灾隐患、火灾风险、火灾危险源等相关概念和火灾风险评估的主要作用,并根据系统所处状态,从定性、定量的角度对火灾风险评估进行了分类。 一、火灾风险评估的相关概念 火灾风险评估以及评估过程中涉及的相关概念主要有: 1)火灾风险评估:对目标对象可能面临的火灾危险、被保护对象的脆弱性、控制风险措施的有效性、风险后果的严重度以及上述各因素综合作用下的消防安全性能进行评估的过程。 2)可接受风险:在当前技术、经济和社会发展条件下,组织或公众所能接受的风险水平。 3)消防安全:发生火灾时,可将对人身安全、财产和环境等可能产生的损害控制在可接受风险以下的状态。 4)火灾危险:引发潜在火灾的可能性,针对的是作为客体的火灾危险源引发火灾的状况。 5)火灾隐患:由违反消防法律法规的行为引起、可能导致火灾发生或发生火灾后会造成人员伤亡、财产损失、环境损害或社会影响的不安全因素。 6)火灾风险:对潜在火灾的发生概率及火灾事件所产生后果的综合度量。常可用:火灾风险=概率X后果表达。其中“X”为数学算子,不同的方法“X”的表达会所不同。

7)火灾危险源:可能引起目标遭受火灾影响的所有来源。 8)火灾风险源:能够对目标发生火灾的几率及其后果产生影响的所有来源。 9)火灾危险性:物质发生火灾的可能性及火灾在不受外力影响下所产生后果的严重程度,强调的是物质固有的物理属性。 二、火灾风险评估的分类 (一)按建筑所处状态 根据建筑所处的不同状态,可以将火灾风险评估分为预先评估和现状评估。 1.预先评估 它是在建设工程的开发、设计阶段所进行的风险评估,用于指导建设工程的开发和设计,以在建设工程的基础阶段最大限度地降低建设工程的火灾风险。 2.现状评估 它是在建筑(区域)建设工程已经竣工,即将投入运行前或已经投入运行时所处的阶段进行的风险评估,用于了解建筑(区域)的现实风险,以采取降低风险的措施。由于在建筑(区域)的运行阶段,对建筑(区域)的风险已有一定了解,因而与预先评估相比,现状评估更接近于现实情况。当前的火灾风险评估大多数属于现状评估。 (二)按指标处理方式 在建筑(区域)风险评估的指标中,有些指标本身就是定量的,可以用一定的数值来表示;有些指标则具有不确定性,无法用一个数值来准确地度量。因此,根据建筑(区域)风险评估指标的处理方式,可以将风险评估分为定性评估和定量评估。

粉尘爆炸风险评估

粉尘爆炸风险评估内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

粉尘爆炸风险评估 风险评估共分5步: 第1步:识别危险 将工厂里所有能产生粉尘云的物料列出清单,无论是工艺流程的一部分还是其他粉尘。通过物料安全数据表、粉尘测试或出版的可爆炸性数据,识别出哪些物料可发生爆炸。并考虑可能的点燃源。这些点燃源包括: 热能,例如:开放式的明火和火焰、热表面、吸烟、电焊等; 电能,例如:照明设备、电磁辐射、短路、接地故障、静电放电等; 机械能,例如:摩擦(搅拌、混合、过热)、机械摩擦和碰撞等; 化学能,例如:自热、碰撞和热敏感材料等; 第2步:确定谁会受伤害,以及受到何种伤害 考虑爆炸的结果。是否能传播到工厂的其他地方(例如:通过扩散发展为“二次爆炸”)或初始爆燃设备是否受限?爆炸是否可能引起火灾? 第3步:评估风险和确定预防措施 通常而言,粉尘爆炸的结果是很严峻的、致命性的,会造成严重的伤亡,大面积的建筑物和工厂损坏,长期的产品损失。在许多方面,这种简单的风险评估,必须阻止爆炸的发生或减轻爆炸的影响。 爆炸预防: 用不可燃性物料代替可燃性物料; 阻止形成爆炸性条件。可以通过减少氧含量或使粉尘云浓度减少到低于最小爆炸极限浓度。 降低风险:

尽量减少粉尘云的数量; 尽量消除潜在的点燃源; 提供合适的人员保护设备; 对工厂人员提供适当的培训,包括如何发现风险; 保持高效率的工作流程状态,有效的工作制度和良好的维护工作; 爆炸保护: 安装适当的泄爆板,泄爆到安全区域;或者使用无焰泄放装置进行泄压; 安装爆炸抑制系统; 安装爆炸隔离设备; 安装爆炸遏制设备; 第4步:记录这些风险评估发现,并且实施 记录这些风险评估发现,并且分享给工厂管理人员。按照如下程序:风险经过确切的核实; 分析谁可能受到影响; 分析处理所有的重大危险,考虑需要哪些人员参与; 这些预防措施是合理的,并且剩余的风险是最低的; 邀请管理人员或他们的代表参与其中,进行实施。 第5步:复查这些风险评估,必要时更新 定期复查这些风险评估,是否已经更改。很少有工厂一直保持不变,如果工厂工艺系统有任何变动,则需要进行相应的风险评估。

南京某大型购物中心火灾风险评估报告

火灾风险评估报告 课题名称:南京金鹰国际购物中心火灾风险评估专业名称:消防工程 姓名: 指导老师: 2014年1月5日 目录

第一章绪论

1.1 火灾风险评估的背景 随着我国经济的迅速发展,人民群众的物质文化、生活水平的不断提高,许多城市都新建或改建了一批装饰豪华、功能齐全的大型商场。这些商场大多设置在闹市中心和繁华地段,经营范围广、商品种类多,吸引了成千上万的顾客,满足了人们全方位的消费需要。但是这些商场的建设在改善城市形象,推动市场繁荣,方便顾客购物的同时,往往也存在着重大的火灾隐患。近年来,由于一些商场在火灾风险管理方面的不足,导致商场火灾不断发生。商场火灾不仅造成巨大经济损失,大量人员伤亡,还会造成不良的社会影响。火灾对大型商场造成的巨大威胁。这些大型商场火灾的发生是触目惊心的,究其原因,主要在于对火灾事故隐患的管理不系统、不深入,没有认识到火灾事故后果的严重程度,对本身的消防安全状态没有清醒的认识,没有获取到不安全的火灾因素动态活动规律。因此,进行对大型商场火灾风险评价方法的研究,对加强商场的消防安全工作具有重要的意义。 1.2 评估建筑简介 南京金鹰国际商城位于新街口商业区,为法国何斐德建筑师务所担纲设计,共58层,高度210米,是南京市著名的地标建筑,于1997年 建成。金鹰国际商城全栋建筑面积达148000平方米,其中主楼10层~25层为国际标准甲级写字楼,27层~36层特设商务用房,37层~54 层为五星级侨鸿皇冠假日酒店,拥有320间各种规格的客房及套房。金鹰国际商城主楼7层及9层设有中西餐厅、夜总会、酒吧、俱乐部、

商务会议厅、健身室及各类配套设施。整栋功能具备了办公、商住、酒店、餐饮、休闲、娱乐之功能于一体。 1.3 南京金鹰国际商城的建筑特性 南京金鹰国际商城属于大型综合型高层建筑,具有以下特点: (1)地理位置特殊,位于新街口繁华的商业区,与其他的商业建筑相隔不远。 (2)营业面积大,防火分隔困难。全建筑面积为148000平方米,由于自动扶梯的原因,上下连通,如果没有采取有效的防火分隔,会造成火烧连营,损失惨重。 (3)可燃物多。商品种类繁多,而大部分是可燃物品,并且一些商品的包装盒是可燃的。还有一些商品属于易燃物品,比如服装、鞋帽等纺织品。商品过于集中,一旦着火,会迅速燃烧蔓延。另外就是建筑的装饰材料大部分是可燃的,大大增加了火灾的危险性。 (4)人员密集,流动量大。每天接待的顾客量巨大,尤其是每逢节假日高峰期,人员更多,一旦失火,容易引起混乱,造成人员疏散困难甚至发生伤亡事故。 (5)电器设备多。各种安装在墙、柱上得照明灯具,可能会温度过高,引燃可燃物。各种临时使用的电源插座也会导致火灾隐患。各种用电设备多,线路复杂,用电负荷大,使用时间长会留下火灾隐患。(6)功能复杂。除了购物中心之外,还有中西餐厅、夜总会、酒吧、俱乐部、商务会议厅、健身室及各类配套设施。整栋功能具备了办公、商住、酒店、餐饮、休闲、娱乐之功能于一体。

铝镁粉尘爆炸环境及危险区的划分

铝镁粉尘爆炸环境及危险区的划分 一、铝镁制品机械加工存在铝镁粉尘的粉尘层、沉淀和堆积的场所应被视为可能形成铝镁粉尘爆炸危险环境,在铝镁粉尘爆炸危险环境中,产生爆炸必须同时存在下列条件: 1.存在铝镁粉尘混合物其浓度在爆炸极限以内。 2.存在足以点燃铝镁粉尘混合物的火花、电弧、高温、静电放电或能量辐射,或者存在使到铝镁粉尘混合物遇水受潮产生自燃。 二、铝镁粉尘爆炸环境 1.铝镁粉尘爆炸环境由粉尘释放源而形成。 粉尘释放源应按铝镁粉尘释放频繁程度和持续时间长短分级,并应符合下列规定: (1)连续级释放源:铝镁粉尘云持续存在或预计长期或短期经常出现的部位。 (2)一级释放源:在正常运行时预计可能周期性地或偶尔释放的释放源。 (3)二级释放源:在正常运行时,预计不可能释放,如果释放也仅是不经常地并且是短期地释放。 2.存在铝镁粉尘的粉尘云、粉尘层、沉淀和堆积的场所应被视为形成铝镁粉尘爆炸危险环境。 三、铝镁粉尘爆炸危险区 1.铝镁粉尘爆炸危险区域应根据铝镁粉尘爆炸环境出现的频繁程度和持续时间,按下列规定进行划分:

(1)20 区:空气中的铝镁粉尘云持续地或长期地或频繁地出现于爆炸性环境中的区域; (2)21 区:在正常运行时,空气中的铝镁粉尘云很可能偶尔出现于爆炸性环境中的区域; (3)22 区:在正常运行时,空气中的铝镁粉尘云一般不可能出现于铝镁粉尘环境中的区域,即使出现,持续时间也是短暂的。 2.爆炸危险区域的划分应按铝镁粉尘的粉尘量、粉尘云爆炸极限和通风条件确定。 3.符合下列条件之一时,可划为非爆炸危险区域: (1)安装有良好铝镁粉尘除尘效果的除尘装置,当该除尘装置停车时,工艺机组能联锁停车。 (2)设有为铝镁粉尘环境服务,并用墙隔绝的送风机室,其通向铝镁粉尘环境的风道设有能防止铝镁粉尘混合物侵入的安全装置,如单向流通风道及能阻火的安全装置。 (3)区域内产生铝镁粉尘的量不大,且在排风柜内或风罩下进行操作,除尘排风系统完全吸除机械加工产生的粉尘。 4.为铝镁粉尘环境服务的排风机室,应与被排风区域的爆炸危险区域等级相同。 四、铝镁粉尘环境爆炸危险区域范围 1.应评估铝镁制品机械加工产生铝镁粉尘释放源形成级别所引起的铝镁粉尘爆炸环境,确定铝镁粉尘环境爆炸危险区域范围。

火灾风险管理

第一章火灾风险管理 学习要求 通过本章学习,应了解风险及风险管理的概念,掌握火灾风险评估相关概念及分类,了解火灾风险评估的作用。 消防安全评估是指对建筑物、构筑物、活动场地等消防工作对象的消防安全状况进行分析和评价,即对这些对象存在的潜在不安全因素及其可能导致的后果进行综合度量的一个过程。本章主要介绍消防安全评估中涉及的基本概念和知识。 第一小节 第一节风险管理 本节介绍了风险和风险管理的概念、风险管理原则以及风险管理过程等相关内容。 风险是普遍存在的,它在不同程度上影响着人们的日常生活和经济社会活动。市场经济越发达,不确定性因素就越多,风险也就越突出。对风险实施科学有效的管理,已经成为社会各界的共识和普遍的需求。加强风险管理,减少风险事故的发生,可以有效地提升风险管理单位资源的配置能力,同时提升人们安全感。消防安全评估属于风险管理的范畴,是风险管理的有机组成部分。 一、风险的概念 风险是指不确定性对目标的影响。这个定义是一个涵盖各个领域的通用术语,就某一行业和领域,相对而言比较抽象,表述也可能有所不同。对风险管理中的安全而言,风险

是对伤害的一种综合衡量,包括伤害的发生概率和伤害的严重程度。这里的伤害是指对物质或环境的破坏,或对人体健康的损害对财产造成的损失。风险具有客观性、普遍性、损害性、突发性等特征。 二、风险管理的概念 风险管理是指导和控制某一组织与风险相关问题的协调活动。风险管理通过分析不确定性及其对目标的影响,采取相应的措施,为组织的运行和决策及有效应对各类突发事件提供支持。风险管理适用于组织的生命周期及其任何阶段,包括整个组织的所有领域和层次,以及括组织的具体部门和活动。风险管理旨在保证组织恰当地应对风险,提高风险应对的效率和效果,增强行动的合理性,有效地配置资源。风险管理的内容比较广泛,一般包括风险管理框架、风险管理方针、风险管理计划、风险管理组织实施等。 三、风险管理原则 为有效管理风险,组织在实施风险管理时,可遵循下列原则: 1.控制损失,创造价值 以控制损失、创造价值为目标的风险管理,有助于组织实现目标、取得具体可见的成绩和改善各方面的业绩,包括人员健康和安全、合规经营、信用程度、社会认可、环境保护、财务绩效、产品质量、运营效率和公司治理等方面。 2.融入组织管理过程 风险管理不是独立于组织主要活动和各项管理过程的单独的活动,而是组织管理过

粉尘爆炸危险区域的划分方法

1 粉尘爆炸危险区域划分的意义 可燃性粉尘在具备一定浓度(超过爆炸下限)和足够引燃能量的条件下会发生爆炸。可燃性粉尘的存在形成了一个潜在的爆炸环境,这些区域的危险性有高低之分,因此有必要对这些危险区域进行分类,以便按照危险区域的类型采取相应的防爆措施,将可燃性粉尘出现爆炸浓度的可能性,或任意点燃源出现的可能性,以及使二者同时出现的可能性尽可能减小,将粉尘爆炸的可能性降到最低程度。国家安全生产监督管理局在《安全验收评价守则》中明确规定,对于粉尘爆炸的危险环境,有无科学准确的区域划分是验收检验项目中的一项重要内容。同时,科学地划分危险区域对于节约项目投资也有着重要意义。粉尘防爆设备的价格是普通产品的2—3倍,只有科学地划分危险区域,才能合理地选用防爆电气设备,避免浪费。 2 粉尘爆炸危险区域划分的原则 我国很早就制定了粉尘爆炸危险区域的划分原则,如《爆炸危险场所电气安全规程》(GBJ58—83)、《爆 炸性粉尘环境电气设备:粉尘防爆电气设备》—2000) .( 爆炸和火灾危险环境电力装置设计规范)(GB50085—92),(粮食加工、储运系统粉尘爆炸安全规程)(GB 17440—1998)等都有详细说明。国际电工委员会(IEC )、美国电气规程(NEC)以及德、日等国对区域划分原则均有规定。但随时间的推移和国情不同,划分原则不尽一致。目前国内流行的是“二区”(爆炸危险区域和非爆炸危险区域)、“二级”(10区和11区),GB50085—92和GB17441)—1998均按此划分。此划分方法正在被IEC1241—3和—2000“二区”(分级区域和非分级区域)、"3级”(20区、21区、22区)所代替,但两者均按爆炸性粉尘混合物出现的频繁程度和持续时间进行分区,见表1。 表1 几种流行的爆炸区域划分标准

低压燃气管道水力计算公式

低压燃气管道水力计算 公式 -CAL-FENGHAI.-(YICAI)-Company One1

燃气管道输送水力计算 一、适用公式 燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。 但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。 二、低压燃气管道水力计算公式: 1、层流状态 R e≤2100 λ=64/R e R e=dv/γ ΔP/L=×1010(Q0/d4)γρ0(T/T0) 2、临界状态 R e=2100~3500 λ=+(R e-2100)/(65 R e-1×105) ΔP/L=×106[1+( Q0-7×104dγ)/(-1×105dγ)] (Q02/d5)ρ0(T/T0) 3、紊流状态 R e≥3500 1)钢管λ=[(Δ/d)+(68/ R e)] ΔP/L=×106[(Δ/d)+(dγ/ Q0)](Q02/d5)ρ0(T/T0) 2)铸铁管λ=[(1/d)+4960(dγ/ Q0)] ΔP/L=×106[(1/d)+4960(dγ/ Q0)](Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa) L——管道计算长度(m)λ——燃气管道的摩阻系数 Q0——燃气流量(Nm3/h) d——管道内径(mm)ρ0——燃气密度(kg/Nm3)γ——0℃和时的燃气运动粘度(m2/s) Δ——管壁内表面的绝对当量粗糙度(mm) R e——雷诺数 T——燃气绝对温度(K) T0——273K v——管内燃气流动的平均速度(m/s) (摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)

城市燃气管道的完整性管理

城市燃气管道的完整性管理 摘要:管道完整性管理是对影响管道完整性的各种潜在因素进行综合的、一体化的管理,是一个与时俱进的连续的过程,因为管道的失效模式是一种时间依赖的模式。腐蚀、老化、疲劳、自然灾害、机械损伤等能够引起管道失效,随着岁月的流逝在不断地侵害着管道。因此,必须持续不断地对管道进行风险分析、检测、完整性评价、维修、人员培训等完整性管理工作。 城市燃气管道完整性管理是一种全新的安全管理模式,是以保证城市燃气管道的安全运行为核心目标的,通过不断变化的管道因素,对管道运行中面临的风险和隐患进行辨识和技术评价,并制定相应的策略,不断改善影响管道运行的不利因素,从而将管道的运行风险控制在合理的范围之内。换言之,管道完整性管理是对影响管道完整性的各种潜在因素进行综合的、一体化的管理,是一个与时俱进的连续的过程,因为管道的失效模式是一种时间依赖的模式。腐蚀、老化、疲劳、自然灾害、机械损伤等能够引起管道失效,随着岁月的流逝在不断地侵害着管道。因此,必须持续不断地对管道进行风险分析、检测、完整性评价、维修、人员培训等完整性管理工作。 随着城市燃气管道的大量敷设和运行时间的延长,管道事故也时有发生,加之燃气管道大多位于城区的主干道以及居民区内,人口稠密,一旦事故发生,将造成燃气供应中断、人员伤亡、环境污染等严重危害,社会影响较大。 对管道实施完整性管理,就是把以前的管道安全管理中被动的事后响应变为事前的检测和预防,使管道始终处于受控状态,可以有计划、有针对性地采取维护措施,防止管道失效或事故发生。从而最大限度地降低管理成本,保证管道始终安全运行。这个管理过程应该是周期循环和不断改进的,以确保管道运行处于正常状态。 每个燃气企业都希望连续不断、安全可靠地向用户供气,而不对周围环境、人员等造成影响,这就要求燃气企业要在较低的管理成本下,运行安全可靠的管道系统。完整性管理就是为满足安全管理的客观需要,以管道安全为目标的系统管理体系,主要涉及管道设计、施工、运行、监控、维护、更换等全过程。简单地说,就是在前期对整个燃气管网系统进行可

施工现场火灾风险评估技术导则

建设工程施工现场火灾风险评估技术导则 (试用版) 第一章概述 一、评估目的 查找建设工程施工现场消防安全管理的薄弱环节以及存在的消防安全隐患问题,分析建设工程施工现场现有应对措施的有效性,确定风险等级,提出处置建议,为各级领导决策和属地消防支队针对性开展工作提供科学依据。 二、评估依据 (一)中国人民武装警察部队学院承担的国家“十五”科技攻关计划课题《城市区域火灾风险评估技术的研究》专题研究报告; (二)《北京市建设工程施工现场消防安全管理规定》; (三)《关于进一步明确民用建筑外保温材料消防监督管理有关要求的通知》(公消【2011】65号)。 三、评估对象 全市建设工程施工现场。

第二章风险识别 一、施工现场火灾特性分析 可燃物、助燃剂(主要是氧气)和火源是物质燃烧三个要素。火灾是时间和空间上失去控制的燃烧而造成的灾害。因此,可燃物、助燃剂、火源、时间和空间是火灾的五个要素,它们之间的关系可以用下图简要地进行表示。 在这五个要素之中,只要中断其中一个环节,就能达到防火或灭火的目的。因此,建设工程施工现场消防工作的主要对象就是围绕这五个要素进行控制。控制可分为两类:对于存在生产生活用燃烧的场所,将燃烧控制在一定的范围内,控制的对象是时间和空间;对于除此之外的任何场所,控制的对象是燃烧三要素。 建设工程施工现场火灾主要包括如下几种: (一)违章使用电气焊引燃可燃物; (二)违章进行防水作业喷灯引燃可燃物; (三)切割作业引燃可燃物; (四)吸烟引燃可燃物;

(五)劣质电线插座短路; (六)违章使用电热器具; (七)电气设备故障。 由此可以看出,建设工程施工现场点火源较多,可燃物较多,火灾发生的三要素集聚于施工现场,容易引发火灾事故。 二、引发建设工程施工现场火灾的因素分析 (一)可燃物 建设工程施工现场可燃物较多,主要分布于三大区域。 1、建设工程主体内部。 建设工程主要包括基础施工、结构施工、机电设备安装、装修等阶段,其中结构施工、机电设备安装、装修阶段可燃物增长明显,分析如下: (1)结构施工:聚苯乙烯泡沫板等可燃、易燃外保温材料; (2)机电设备安装:设备的外包装材料、加工设备润滑油、管道保温材料、管道用稀料等; (3)装修阶段:装修材料。 2、宿舍区域。 建设工程施工需要大量劳动力,同时需要临时办公场所,多数在主体工程附近设置民工生活区和现场办公区,可燃物主要包括被褥等生活用品、临时建筑结构内填充材料、液化气、办公用品等。 3、堆料及加工场所:木材、稀料、保温材料等。

电气火灾危险性分析及防范

电气火灾危险性分析及防范 要】文章从对电气火灾统计数据的分析入手,剖析了家庭电气火灾的原因和紧迫性,探讨了居民住宅的电气设计,并提出了自己的看法。 关键词】插座系统照明设计接地防雷 1 家庭电气火灾形势严峻? 据统计,近年来居民家庭火灾起数、人员伤亡所占的比例呈整体上升趋势,其中由于电线和用电器具短路、超负荷、接触不良等原因造成的家庭火灾高居榜首。以成都市为例,电气火灾在该市家庭火灾总起数中占的比例在1998~2003年一直高达40%。 2 导致居民住宅电气火灾的原因 (1)电气线路引发火灾:1)建筑在布线时设计的用电量少,选择的电线截面较小,且经过长时间使用,电线绝缘层部分可能已老化破损,电气线路常常因漏电、短路、超负荷引起火灾;2)敷设线路时留下太多接头,又没有经过技术处理,由于铝线表面极易氧化,当大电流通过时,所产生的热量引燃周围可燃物;或经过长时间使用,接头、接线端处松动、接触不良,接触处也容易产生高温进而导致火灾;3)住宅设计的固定插座偏少,为了解决插座不够用的问题,过多长期使用插座板,而且乱接插座板易导致电气短路或异常高温进而产生火灾;4)未分路设计,住宅内负荷未分流,在同一线路使用多个大功率电器导致过负荷引发火灾。 (2)电器设备引发火灾:1)开、关电器频繁,导致电动机电流骤

增,温度急剧上升而引起电动机等元件过热而烧毁起火;2)电线受潮,产生漏电打火,从而引起火灾;3)电器质量低劣、发热过高且绝缘隔热、散热效果差而引起火灾。 3 居民住宅电气设计 3.1 照明设计 (1)电光源的选择。照明应满足起居室、厨房、卫生间等设施功能的要求,保证光源的显色性适度、亮度分布合理、眩光少、视觉舒适,并尽可能节能。 (2)灯具的选择。灯具应根据使用环境、房间用途、光强分布、限制眩光等因素进行选择。在满足上述技术条件下,应选用效率高、维护检修方便的灯具。 3.2 配电系统型式的选择 我国低压配电有单相二线式、单相三线式、三相三线式、三相四线式4种配电型式。其中三相四线式损耗最小,是最佳的设计方案。尤其是多层住宅用户的单相负荷越来越多,当采用单相电源配线入户已不能满足时,可采用三相五线制TN-S系统入户,这样可以消除三相负荷不平衡的弊端,使电网运行更加合理,节能效果更显著。 3.3 电源插座系统 (1)插座的回路划分:国标《住宅设计规范》(GB50096~1999)(2003年版)中6.5.2条规定,每套住宅的空调电源插座、电源插座与照明应分路设计;厨房电源插座和卫生间电源插座宜设置独立回路。 (2)插座的选择与安装:1)插座的额定电压和额定电流。插座的

铝镁粉尘爆炸环境及危险区的划分要求综述

铝镁粉尘爆炸环境及危险区的划分要求 1、铝镁制品机械加工存在铝镁粉尘的粉尘层、沉淀和堆积的场所应被视为可能形成铝镁粉尘爆炸危险环境,在铝镁粉尘爆炸危险环境中,产生爆炸必须同时存在下列条件: (1)存在铝镁粉尘混合物其浓度在爆炸极限以内。 (2)存在足以点燃铝镁粉尘混合物的火花、电弧、高温、静电放电或能量辐射,或者存在使到铝镁粉尘混合物遇水受潮产生自燃。2、铝镁粉尘爆炸环境铝镁粉尘爆炸环境由粉尘释放源而形成。 粉尘释放源应按铝镁粉尘释放频繁程度和持续时间长短分级,并应符合下列规定: (1)连续级释放源:铝镁粉尘云持续存在或预计长期或短期经常出现的部位。 (2)一级释放源:在正常运行时预计可能周期性地或偶尔释放的释放源。 (3)二级释放源:在正常运行时,预计不可能释放,如果释放也仅是不经常地并且是短期地释放。存在铝镁粉尘的粉尘云、粉尘层、沉淀和堆积的场所应被视为形成铝镁粉尘爆炸危险环境。 3、铝镁粉尘爆炸危险区铝镁粉尘爆炸危险区域应根据铝镁粉尘爆炸环境出现的频繁程度和持续时间,按下列规定进行划分: a)20 区:空气中的铝镁粉尘云持续地或长期地或频繁地出现于爆炸性环境中的区域; b)21 区:在正常运行时,空气中的铝镁粉尘云很可能偶尔出现于爆炸性环境中的区域; c)22 区:在正常运行时,空气中的铝镁粉尘云一般不可能出现于铝镁粉尘环境中的区域,即使出现,持续时间也是短暂的。爆炸危险区域的划分应按铝镁粉尘的粉尘量、粉尘云爆炸极限和通风条件确定。符合下列条件之一时,可划为非爆炸危险区域:(1)安装有良好铝镁粉尘除尘效果的除尘装置,当该除尘装置停车时,工艺机组能联锁停车。 (2)设有为铝镁粉尘环境服务,并用墙隔绝的送风机室,其通向铝镁粉尘环境的风道设有能防止铝镁粉尘混合物侵入的安全装置,如单向流通风道及能阻火的安全装置。 (3)区域内产生铝镁粉尘的量不大,且在排风柜内或风罩下进行操作,除尘排风系统完全吸除机械加工产生的粉尘。为铝镁粉尘环境服务的排风机室,应与被排风区域的爆炸危险区域等级相同。 4、铝镁粉尘环境爆炸危险区域范围应评估铝镁制品机械加工产生铝镁粉尘释放源形成级别所引起的铝镁粉尘爆炸环境,确定铝镁粉尘环境爆炸危险区域范围。 爆炸危险区20 区的范围应包括: (1)铝镁粉尘云连续生成的除尘排风系统的管道、除尘器的内部。

各场所火灾风险分析报告

1.1人员密集场所 (1)风险分析 按照《中华人民共和国消防法》,人员密集场所是指公众聚集场所,医院的门诊楼、病房楼,学校的教学楼、图书馆、食堂和集体宿舍,养老院,福利院,托儿所,幼儿园,公共图书馆的阅览室,公共展览馆、博物馆的展示厅,劳动密集型企业的生产加工车间和员工集体宿舍,旅游、宗教活动场所等。其中,公众聚集场所包含宾馆、饭店、商场、集贸市场、客运车站候车室、客运码头候船厅、民用机场航站楼、体育场馆、会堂以及公共娱乐场所等。 人员密集场所常见的火灾风险分析如下: 1)部分人员密集场所从业人员消防安全意识淡薄。场所业主片面追求经济效益,漠视消防安全,防火意识淡薄。这些人员密集场所除了平时消防经费投入不足,在经营过程中还常出现消防安全疏散通道被占用、堵塞,安全出口上锁,灭火器材被遮挡或挪用等等。 2)部分人员密集场所消防安全管理水平欠缺。经营业主自身的安全素质不高,单位员工也欠缺基本的消防安全知识,单位消防安全工作制度不健全,消防工作管理措施不到位。如有的单位配备了火灾自动报警系统、自动喷水灭火系统以及防排烟系统等固定消防设施后,由于欠缺必要的消防专业知识、未落实专人管理,固定消防设施长期得不到正确的维护保养,损坏老化现象严重,一旦发生火灾事故,难以正常发挥应有的作用。 3)部分人员密集场所电气线路敷设不规范,违章用火用电现象普遍。人员密集场所由于顾客流动量大、可燃物品集中、电气设备繁多,管理难度较大,许多电气设备安装和电气线路敷设不符合消防技术规范规定的现象屡见不鲜。 4)部分人员密集场所擅自进行改、扩建,造成新的火灾隐患。这些人员密集场所未经公安消防机构审核同意,擅自进行经营场所的改、扩建,并且在此过程中擅自采用大量可燃材料进行美观装修,降低了建筑的整体耐火等级;违规取消防火隔断,或进行防火分隔不合理,阻碍了正常的消防安全疏散;改变了原先电气线路设置,破坏了保护措施,一旦发生火灾,极易造成火灾迅速蔓延,致使过火面积增大,火灾损失扩大。

粉尘爆炸危险区域的划分方法总结.doc

v1.0可编辑可修改 1粉尘爆炸危险区域划分的意义 可燃性粉尘在具备一定浓度( 超过爆炸下限 ) 和足够引燃能量的条件下会发生爆炸。可燃性粉尘的存在形成了一个潜在的爆炸环境,这些区域的危险性有高低之分,因此有必要对这些危险区域进行分类,以便按照危险区域的类型采取相应的防爆措施,将可燃性粉尘出现爆炸浓 度的可能性,或任意点燃源出现的可能性,以及使二者同时出现的可能性尽可能减小,将粉尘爆炸的可能性降到最低程度。国家安全生产监督管理局在《安全验收评价守则》中明确规定,对于粉尘爆炸的危险环境,有无科学准确的区域划分是验收检验项目中的一项重要内容。 同时,科学地划分危险区域对于节约项目投资也有着重要意义。粉尘防爆设备的价格是普通 产品的 2—3 倍,只有科学地划分危险区域,才能合理地选用防爆电气设备,避免浪费。 2粉尘爆炸危险区域划分的原则 我国很早就制定了粉尘爆炸危险区域的划分原则,如《爆炸危险场所电气安全规程》(GBJ58 —83) 、《爆 炸性粉尘环境电气设备: 粉尘防爆电气设备》—2000) .(爆炸和火灾危险环境电力装置设 计规范 )(GB50085 — 92),( 粮食加工、储运系统粉尘爆炸安全规程)(GB 17440 — 1998) 等都有详细说明。国际电工委员会(IEC )、美国电气规程(NEC)以及德、日等国对区域划分原则均 有规定。但随时间的推移和国情不同,划分原则不尽一致。目前国内流行的是“二区”( 爆炸危险区域和非爆炸危险区域) 、“二级” (10 区和 11 区) ,GB50085— 92 和 GB17441)— 1998 均按此划分。此划分方法正在被IEC1241— 3 和— 2000“二区” ( 分级区域和非分级区域) 、"3 级” (20 区、21 区、 22 区 ) 所代替,但两者均按爆炸性粉尘混合物出现的频繁程度和持续 时间进行分区,见表1。 表 1 几种流行的爆炸区域划分标准 GB50085— 92 定义IEC1241 定义 GB17440— 98 爆炸连续出现或长期出现爆炸性正常操作时大量、经常 危险10 区粉尘的环境分级区域20 区或频繁出现可燃性粉尘 区域

燃气管道水力计算

1.高压、中压燃气管道水力计算公式: Z T T d Q L P P 0 5 210 2 2 2 110 27.1ρ λ ?=- 式中:P 1 — 燃气管道起点的压力(绝对压力,kPa ); P 2 — 燃气管道终点的压力(绝对压力,kPa ); Q — 燃气管道的计算流量(m 3/h ); L — 燃气管道的计算长度(km ); d — 管道内径(mm ); ρ — 燃气的密度(kg/m 3);标准状态下天然气的密度一般取0.716 kg/m 3。 Z — 压缩因子,燃气压力小于1.2MPa (表压)时取1; T — 设计中所采用的燃气温度(K ); T0 — 273.15(K )。 λ— 燃气管道的摩擦阻力系数; 其中燃气管道的摩擦阻力系数λ的计算公式: 25 .06811.0??? ? ??+ =e R d K λ K — 管道内表面的当量绝对粗糙度(mm );对于钢管,输送天然 气和液化石油气时取0.1mm ,输送人工煤气时取0.15mm 。 R e — 雷诺数(无量纲)。流体流动时的惯性力Fg 和粘性力(内摩擦 力)Fm 之比称为雷诺数。用符号Re 表示。层流状态,R e ≤ 2100;临界状态,R e =2100~3500;紊流状态,R e >3500。 在该公式中,燃气管道起点的压力1P ,燃气管道的计算长度L ,燃气密度ρ,燃气温度T ,压缩因子Z 为已知量,燃气管道终点的压力2P ,燃气管道的计算流量Q ,燃气管道内径d 为参量,知道其中任意两个,都可计算其中一个未知量。 如燃气管道终点的压力2P 的计算公式为: ZL T T d Q P P 0 5 210 2 1210 27.1ρ ?-= 某DN100中压输气管道长0.19km ,起点压力0.3MPa ,最大流量1060 m 3/h ,输气温度为20℃,应用此公式计算,管道末端压力2P =0.29MPa 。

第四章建筑火灾风险评估方法及应用案例

第四章建筑火灾风险评估方法及应用案例 第一节概述 一、评估的目的和内容 (一)目的 建筑火灾风险评估的目的一般包括以下两个方面: (1)查找、分析和预测建筑及其周围环境存在的各种火灾风险源,以及可能发生火灾事故的严重程度,并确定各风险因素的火灾风险等级; (2)根据不同风险因素的风险等级,提出有针对性的消防安全对策与措施,为建筑的所有者、使用者和消防主管部门制定相关消防决策提供参考依据,最大限度地消除和降低各项火灾风险。 (二)内容 建筑火灾风险评估的内容,根据分析角度不同而有所不同。从建筑功能来看,包括人员疏散安全的评估、建筑结构安全的评估、消防灭火救援力量的评估等;从空间范围来看,包括建筑局部区域的评估、建筑周边环境的评估和整个建筑的评估;从时间角度来看,包括建筑设计方案的评估、建筑使用前的验收评估以及建筑使用现状的评估。但是,从评估的具体工作内容来看,一般包括以下几个方面: (1)评估范围的确定; (2)相关信息的采集; (3)评估方法的选择; (4)火灾风险的计算; (5)安全措施和建议; (6)评估报告的编制。 二、评估的流程 根据评估目的和评估内容的不同,建筑火灾风险评估的流程也不尽相同,但是通常都包含以下几个步骤: (一)信息采集 在明确火灾风险评估的目的和内容的基础上,收集所需的各种资料,重点收集与建筑防火安全相关的信息,包括: (1)建筑概况:包括建筑位置、功能布局、可燃物性质与分布、人员特点与分布、运营管理流程等。 (2)周围环境情况:包括建筑周边消防车道的布置、消防水源的位置、灭火救援的进攻路线、与邻近建筑物的间距以及室外疏散场地的设置等。 (3)消防设计图纸资料:与建筑消防安全相关的总平面图、消防各项专业设计图纸与消防设计说明等。

高层建筑火灾风险分析

《高层建筑火灾风险分析》文献综述 1.概述 近年来,随着我国城市建设的步伐加快,建筑用地日益紧张,使建筑物向高空发展,城市的高层、超高层建筑数量日益增多。截止2011年底,我国高层建筑数量超过162000栋,其中超高层建筑高达1500余栋[1]。与此同时,我国高层建筑火灾也呈不断上升的趋势,而且火灾规模越来越大,危害也越来越严重。据《中国消防年鉴》[2]统计,2002~2006年7年间全国共发生高层建筑火灾1054起,而2007~2009年仅3年全国就发生了2040起,增长了3.5倍。同时由于高层建筑人群高度密集、财产高度集中,其火灾发生给人民群众的生命财产造成了巨大损失。据公安部统计的数据表明,我国城市社区火灾逐年呈明显上升趋势,尤其是高层建筑火灾占相当比例[3],因此针对高层建筑现有的火灾隐患状况、分析评价其风险,并提出有效对策具有重要的现实意义。 2.高层建筑火灾特点及其风险综述 2.1高层建筑火灾特点 通过阅读大量的文献以及国内外的一些典型高层建筑火灾案例[4-12]得出,高层建筑火灾的主要特点是蔓延迅速,易形成烟囱效应,极易向上迅速蔓延,导致数个楼层同时燃烧,形成立体火灾,而且热烟毒气危害严重,直接威胁着人们的生命安全。其火灾特点可以概括为以下四个方面。 1)火势蔓延途径多,速度快,危害严重 2)安全疏散困难,容易造成群死群伤事故 3)空间和功能复杂,起火因素多 4)消防灭火设施不够完备,扑救困难 2.2高层建筑火灾风险分析 通过查阅相关文献[7-15]及我国的数起重特大高层建筑火灾事故案例分析可知,当前我国高层建筑面临的火灾风险主要表现在以下几个方面:火灾从外墙面突破防火分区、火灾从建筑内部突破防火分区、疏散通道安全可靠性不够。此外,防火分区内部的房屋或功能区域大量使用可燃或易燃的装修材料、家具组件及电器,以及存放大量可燃物品也给高层建筑带来了潜在的火灾隐患。 3.2.1火灾从外墙面突破防火分区 1)外墙保温材料及系统阻止火焰蔓延的能力不足 2)幕墙系统的防火设计存在缺陷 3)广告装饰牌的设置缺乏必要的防火规定 4)阳台雨棚的防火要求不明确 3.2.2火灾从内部突破防火分区 火灾从建筑内部突破防火分区是建筑火灾水平、垂直蔓延的主要途径。在高层建筑火灾事故案例中发现,建筑往往存在防火分区开口处的防火门、防火卷帘的安装使用不正确问题和建筑中各种竖向管井和孔洞未按规范要求严格封堵或者封堵不合理的问题。 3.2.3疏散通道被燃烧烟气封锁 尽管我国建筑设计防火规范针对疏散楼梯、避难层(间)和防火门(窗)进行了相关规定,但是从近年来国内高层建筑发生的一系列恶性火灾事故来看,我国高层建筑疏散楼梯、避难层(间)的安全性和防火门(窗)在实际使用过程中的可靠性还存在一些问题。主要表现为:封闭楼梯间、防烟楼梯间及前室所用的防火门不能保持关闭状态;防火门不具备防烟功能。 3.2.4灭火救援能力无法达到相应的高度

环境风险评估方案报告

****生物科技环境风险评估报告 二O一五年五月七日

一、编制依据 中华人民全生产法 中华人民国消防法 危险化学品重大危险源辨识 中华人民国环境保护法 环境空气质量标准 国家突发环境事件应急预案 职业性接触毒物危害程度分类 二、企业基本情况 ****生物科技是在收购****化工基础上于2000年11月份成立的,公司位于****工业区,占地总面积****亩,注册资金****万元,现有员工220人,拥有年产300吨阿维菌素生产装置一套、热电联产项目(两台75t/h 循环流化床锅炉)一个。阿维菌素生产原料主要有淀粉、酵母粉、酵母膏、甲苯、甲醇。热电厂生产原料主要是煤。公司东侧800米处是315省道,厂区南侧和东侧****化工,北面为耕地,西侧****。 经分析,公司区域属于非环境敏感地区。 三、生产过程的环境风险因素 1、物料风险因素识别 公司生产用甲苯、甲醇作为溶剂,二者均为危险化学品。 (1)甲苯 理化性质及危险特性: 外观与性状:无色透明液体,有类似苯的芳香气味; 熔点:—94.9℃;沸点:110.6℃;闪点:4℃ 密度:相对密度(水=1)0.87,相对密度(空气=1)3.14,蒸气比空

气重,可沿地面顺风移动扩散; 饱和蒸气压:4.89kPa(30℃); 溶解性:不溶于水,可混溶于苯、醇、醚等多数有机溶剂; 禁配物:强氧化剂; 危险特性:易燃,有毒。其蒸气与空气可形成爆炸性混合物,爆炸极限:1.2%~7.0%,遇明火、高热极易燃烧爆炸。与氧化剂能发生强烈反应。输送流速过快时,易产生和积聚静电,导致火花放电引起燃烧爆炸。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 健康环境危害及毒理学资料: 侵入途径;吸入、食入、经皮肤吸收。 健康危害:对皮肤、粘膜有刺激性,对中枢神经系统有麻醉作用。 急性危害:对皮肤、粘膜有刺激性,对中枢神经系统有麻醉作用。 急性中毒:短时间吸入较高浓度本品可出现眼及上呼吸道明显的刺激症状、眼结膜及咽部充血、头晕、头痛、恶心、呕吐、胸闷、四肢无力、步态蹒跚、意识模糊。重症者可有躁动、抽搐、昏迷。 慢性中毒:长期接触可发生神经衰弱综合症,肝肿大,女工月经异常等。皮肤干燥、皲裂、皮炎。 急性毒性:LD50:5000mg/kg(小鼠经口);LC50:12124mg/kg(兔经皮);人吸入71.4g/m3,短时致死;人吸入3g/m3,1~8小时,急性中毒;人吸入0.2~0.3g/m3,8小时,中毒症状出现。 刺激性:人经眼:300ppm,引起刺激。家兔经皮:500mg,中度刺激。 环境危害:对环境有严重危害,对空气、水环境及水源可造成污染,对鱼类和哺乳动物应给予特别注意。 燃烧(分解)产物:一氧化碳、二氧化碳。

水力计算教材

燃气工程庭院户内水力计算 重庆市川东燃气工程设计研究院 齐海鸥 2010.01

= 6.26 ?10λ 5ρ dv 0.25 Q 2 ) Q d 1 一、水力计算基础知识 水力计算的目的:树立“成本意识”,合理的确定管网的管径、流量、压力 (压力降)。 由于项目公司所做设计多为小区内的燃气管道,因此这里主要介绍小区庭 院燃气管道水力计算、户内燃气管道水力计算、商业用户燃气管道水力计算。 1、水力计算步骤 (1)选择一条最不利管路(离已知压力点最远的一条管路),标好节点及 管道长度; (2)确定节点流量; (3)初选管径,再进行校核并修改; (4)完善水力计算图(标管径,压力降,节点压力)。 2 、水力计算的基本公式 (1)总压力降=局部压力降+沿程压力降 (简化计算:总压力降=1.05~1.1 倍沿程压力降) (2)压力降计算公式: A 、低压管道计算公式 ?P l 7 Q 2 d T T 0 B 、中压管道计算公式 P 2 - P 22 L = 1.4 ?109 ( K d + 192.2 5 ρ T T 0 C 、速度控制 低压管道流速控制在 5m-8m (经济流速为 6m ),中压管道流速控制在 10- 16m 。 3、燃气小时计算流量的确定 燃气管道及设备的通过能力都应按燃气计算月的小时最大流量进行计算。 小时计算流量的确定,关系着燃气输配系统的经济性和可靠性。确定燃气小时 计算流量的方法有两种:不均匀系数法和同时工作系数法。

(1)不均匀系数法 适用于城镇燃气分配管道计算流量,对于整个城市管网的水力计算一般用此方法。计算公式如下: Q h=(1/n)·Q a 式中:Q h—燃气小时计算流量(m3/h); Q a—年燃气用量(m3/a); n—燃气最大负荷利用小时数(h);其值n=(365×24)/K m K d K h K m—月高峰系数。计算月的日平均用气量和年的日平均用气量之比; K d—日高峰系数。计算月中的日最大用气量和该月日平均用气量之比; K h—小时高峰系数。计算月中最大用气量日的小时最大用气量和该日小时平均用气量之比; 居民生活和商业用户用气的高峰系数,应根据该城镇各类用户燃气用量(或燃料用量)的变化情况,编制成月、日、小时用气负荷资料,经分析研究确定。当缺乏用气量的实际统计资料时,结合当地具体情况,可按下列范围选用。月高峰系数取1.1~1.3;日高峰系数取1.05~1.2;小时高峰系数取 2.2~ 3.2。 工业企业和燃气汽车用户燃气小时计算流量,宜按每个独立用户生产的特点和燃气用量(或燃料用量)的变化情况,编制成月、日、小时用气负荷资料确定。 采暖通风和空调所需燃气小时计算流量。可按国家现行的标准《城市热力网设计规范》CJJ34有关热负荷规定并考虑燃气采暖通风和空调的热效率折算 确定。 (2)同时工作系数法 在设计庭院燃气支管和室内燃气管道时,燃气的小时计算流量,应根据所有燃具的额定流量及其同时工作系数确定。计算公式如下: Q h=K t(∑KNQ n)(公式1)式中Q h—燃气管道的计算流量(m3/h);

消防安全系统评估方法与技术要求

第一章区域消防安全评估方法与技术要求 根据评估对象的不同,分为四类:火灾风险评估根据评估对象的不同分为哪几类? 一、以某个区域为研究对象: 评估城市或某个区域 二、以单体建筑物为研究对象: 建筑物内部的生命和财产风险 三、以企业为研究对象:定性分析和定量计算,预测火灾、爆炸等事故发生的可能性 四、以大型公共活动为对象:建筑本身、临时活动场所、活动项目等可能存在的火灾 风险进行分析 第一节评估方法 一、评估目的2、区域火灾风险评估的目的是什么? ◆对区域进行火灾风险评估,是分析区域消防安全状况、查找当前消防工作薄弱环 节的有效手段。根据不同的火灾风险级别,部署相应的消防救援力量,建设 消防基础设施,使公众和消防员生命、财产的预期风险水平与消防安全设施、 火灾及其他应急救援力量的种类和部署之间达到最佳平衡 二、评估原则 (一)系统性区域火灾风险评估指标体系应力求系统化、理论化、科学化,涉及区域 火灾的各个因素(外部因素、内部因素、管理因素) (二)实用性: (三)可操作性:要有科学的依据和方法 A三、评估内容 (1)分析区域范围内可能存在的火灾危险源,合理划分评估单元,建立全面的评估指标 体系。 (2)对评估单元进行定性、定量分级,并结合专家意见建立权重体系。

(3)对区域的火灾风险做出客观、公正评估结论。 (4)提出合理可行的消防安全对策及规划建议。 四、评估范围 包括整个区域范围内的社会因素、建筑群和交通路网等 A五、评估流程(6个步骤) 记(建筑评估流程一样) 一)、信息采集:重点收集与区域安全相关的信息 二)、风险识别:火灾风险源分为客观因素和人为因素。 1.客观因素(1)气象火灾:大风、降水、高温(35℃)、雷击。 (2)电气火灾。(3)易燃易爆物品火灾。 2.人为因素 (1)用火不慎 (2)不安全吸烟288-732 24min (3)人为纵火 三)、评估指标体系建立 1、一级指标:火灾危险源、区域基础信息(五密度)、消防能力、社会面防控能 力。 2、二级指标:客观因素、人为因素、城市公共消防基础设施、灭火救援能力、 消防管理、消防宣传教育、灾害抵御能力。 3、三级指标 四)、风险分析与计算 1、风险因素量化及处理:降低不确定性和认识差异 2、模糊集值统计:评分值用一个分值范围,用模糊集值统计方法计算得出统一 的结果 3、指标权重确定:主要有专家打分法、集值统计代法、层次分析法、模糊集值 统计法等,一般采用专家打分法(10-15名专家)确定权重系数 4、风险等级判断:线性加权方法计算火灾风险度,R的大小可以确定评估所处 的风险等级 5、风险分级:313151 表4-1-2 风险分级量化和特征描述:313 151

相关主题