搜档网
当前位置:搜档网 › 数值分析习题

数值分析习题

数值分析习题
数值分析习题

第一章 绪论

习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5

105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算) 2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)

3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算)

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)

5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*

=,已知

cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v

2π=的绝对误差限与相对误差

限。(误差限的计算)

6 设x 的相对误差为%a ,求n

x y =的相对误差。(函数误差的计算)

7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大?(函数误差的计算)

8 设?-=1

1

dx e x

e

I x n

n ,求证:

(1))2,1,0(11 =-=-n nI I n n

(2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。(计算方法的比较选择)

第二章 插值法

习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。

1 已知1)2(,1)1(,2)1(===-f f f ,求)(x f 的拉氏插值多项式。(拉格朗日插值)

2 已知9,4,10===

x x x y ,用线性插值求7的近似值。(拉格朗日线性插值)

3 若),...1,0(n j x j =为互异节点,且有

)

())(())(()())(())(()(11101110n j j j j j j j n j j j x x x x x x x x x x x x x x x x x x x x x l ----------=

+-+-

试证明

),...1,0()(0

n k x x l x

n

j k j

k j =≡∑=。

(拉格朗日插值基函数的性质) 4 已知352274.036.0sin ,333487.034.0sin ,314567.032.0sin ===,用抛物线插值计算3367.0sin 的值并估计截断误差。(拉格朗日二次插值) 5 用余弦函数x cos 在00=x ,4

=x ,2

=

x 三个节点处的值,写出二次拉格朗日插值

多项式, 并近似计算6

cos π

及其绝对误差与相对误差,且与误差余项估计值比较。(拉格朗

日二次插值)

6 已知函数值212)6(,82)4(,46)3(,10)1(,6)0(=====f f f f f ,求函数的四阶均差

]6,4,3,1,0[f 和二阶均差]3,1,4[f 。(均差的计算)

7 设)())(()(10n x x x x x x x f ---= 求][1,0p x x x f 之值,其中1+≤n p ,而节点

)1,1,0(+=n i x i 互异。(均差的计算)

8 如下函数值表

建立不超过三次的牛顿插值多项式。(牛顿插值多项式的构造)

9求一个次数小于等于三次多项式)(x p ,满足如下插值条件:2)1(=p ,4)2(=p ,

3)2(='p ,12)3(=p 。(插值多项式的构造)

10 构造一个三次多项式)(x H ,使它满足条件1)1(,1)2(,0)1(,1)0(='===H H H H (埃尔米特插值)。

11 设4/9,1,4/1,)(2102

3====x x x x x f 。(1)试求)(x f 在[]4/9,4/1上的三次埃尔米特插值多项式)(x H ,使得)()(,2,1,0),()(11x f x H j x f x H j j '='==,)(x H 以升幂形式给出。(2)写出余项)()()(x H x f x R -=的表达式。(埃尔米特插值及其余项的计算)。 12 若0)()(],,[)(2

==∈b f a f b a c x f ,试证明:

()|)( |max 8

1

|)( |max 2x f a b x f b x a b

x a ''-≤

≤≤≤≤(插值余项的应用)

13 设,2)2(,1)0(,1)2(==-=-f f f 求)(x p 使)2,1,0()()(==i x f x p i i ; 又设 M x f ≤'''|)(| ,则估计余项)()()(x p x f x r -=的大小。(插值误差的估计)

习题主要考察点:最小二乘法,最佳平方逼近,正交多项式的构造。

1 设x x f πsin )(=,求)(x f 于]1,0[上的线性最佳平方逼近多项式。(最佳平方逼近)

2 令11,)(≤≤-=x e x f x

,且设x a a x p 10)(+=,求10,a a 使得)(x p 为)(x f 于]1,1[- 上的最佳平方逼近多项式。(最佳平方逼近) 3证明:切比雪夫多项式序列

)arccos cos()(x k x T k =

在区间[]1,1-上带权2

11)(x

x -=

ρ正交。(正交多项式的证明)

4求矛盾方程组:???

??=-=+=+2

42321

2121x x x x x x 的最小二乘解。(最小二乘法)

5 已知一组试验数据

试用直线拟合这组数据. (计算过程保留3位小数)。(最小二乘线性逼近) 6

用最小二乘原理求一个形如2

bx a y +=的经验公式,使与下列数据相拟合。

(最小二乘二次逼近)

习题主要考察点:代数精度的计算,构造插值型求积公式(梯形,辛甫生公式),复化求积的计算,高斯公式的构造。 1给定求积公式

)()0()()(h cf bf h af dx x f h

h

++-≈?

-试确定c b a ,,使它的代数精度尽可能

高。(代数精度的应用和计算) 2 求积公式

)0()1()0()(0101

f B f A f A dx x f '++≈?

,试确定系数0A ,1A 及0B ,使该求积

公式具有尽可能高的代数精确度,并给出代数精确度的次数。(代数精度的应用和计算) 3数值积分公式

)]2()1([2

3

)(3

f f dx x f +≈?

,是否为插值型求积公式,为什么?又该公式

的代数精确度为多少?(插值型求积公式特征)

4如果0)(>''x f ,证明用梯形公式计算积分?b

a

dx x f )(所得到的结果比准确值大,并说明其

几何意义。(梯形求积) 5用4=n 的复化梯形公式计算积分

?

2

1

1

dx x

,并估计误差。(复化梯形求积) 6设2)1(,9)5.0(,6)0(,4)5.0(,1)1(====-=-f f f f f ,则用复化辛甫生公式计算

?

-1

1

)(dx x f ,若有常数M 使 M f ≤||)4(,则估计复化辛甫生公式的整体截断误差限。(复

化辛甫生公式)

7已知高斯求积公式

)57735.0()57735.0()(1

1

-+≈?-f f dx x f 将区间[0,1]二等分,用复

化高斯求积法求定积分

?

1

dx x 的近似值。(高斯公式)

8 试确定常数A ,B ,C 和a ,使得数值积分公式

)()0()()(2

2

a Cf Bf a Af dx x f ++-≈?

-有尽

可能高的代数精度。试问所得的数值积分公式代数精度是多少?它是否为高斯型的?(代数精度的应用和计算,高斯点的特征)

9设{})(x P n 是[0,1]区间上带权x x =)(ρ的最高次幂项系数为1的正交多项式系 (1)求)(2x P 。

(2)构造如下的高斯型求积公式

)()()(11001

x f A x f A dx x xf +≈?

。(高斯求积)

习题主要考察点:高斯消去法,LU 分解法,平方根法和追赶法解线性方程组。

1用高斯消去法解方程组??????????=?????????????????????-12062191143

2321x x x 。

(高斯消去法的应用)

2用LU 分解法求解线性方程组???

??=++=++=++1

230

2321321321x x x x x x x x x 。(LU 分解法的应用)

3设????

?

?????---=322214112A ,求A 的LU 分解。(LU 分解法的应用) 4试用“追赶法”解方程组b Ax =,其中:??????????=520142013A ,?????

?????-=971b (追赶法的应用) 5设????

?

?????-=112111A ,求2)(cond A (条件数的计算) 6求证:1≥I ,A

A

1

1

-(范数的性质) 7求证:∞?≤A A A

122

(范数的性质) 8对矩阵?????

???????----=2100121001210012

A ,求∞A ,1A ,2A 和2)(cond A 。(范数,条件数的计算)

9方程组b Ax =,其中n

n R

A ?∈,A 是对称的且非奇异。设A 有误差A δ,则原方程组变

化为b x x A A =++))((δδ,其中x δ为解的误差向量,试证明:

2

2

12

2A A x

x x

n δλλδδ≤

+,其中1λ和n λ分别为A 的按模最大和最小的特征值。(范数的性质,误差的分析)

10证明:若n n ij a A ?=)(为严格对角占优矩阵,则A 非奇异。(严格对角占优矩阵的性质)

习题主要考察点:雅可比、高斯-塞德尔迭代法解线性方程组,及其收敛性讨论。 1证明:迭代格式f Bx x k k +=+)()

1(收敛,其中?

?

?

???=??????=21,8.03.009.0f B 。(迭代法收敛性判断)

2若用雅可比迭代法求解方程组)0(221122221

211

212111≠???=+=+a a b x a x a b x a x a 迭代收敛的充要条件是

122

1121

12

3 用雅可比、高斯-塞德尔迭代法,求解方程组

??

?=+=+4233

221

21x x x x 是否收敛?为什么?若将方程组改变成为

??

?=+=+324

2321

21x x x x 再用上述两种迭代法求解是否收敛?为什么?(雅可比、高斯-塞德尔迭代法的收敛性)

4证明解线性方程组b Ax =的雅可比迭代收敛,其中????

?

?????=110121014A 。(雅可比迭代收敛性判断)

5已知方程组b Ax =,其中??????=13.021A ,??

?

???=21b

(1) 试讨论用雅可比迭代法和高斯-塞德尔迭代法求解此方程组的收敛性。 (2) 若有迭代公式)()()()

1(b Ax x x

k k k ++=+α,试确定α的取值范围,使该迭代公式收敛。

(雅可比迭代法、高斯-塞德尔迭代法和一般迭代法的收敛性讨论) 6给出矩阵?

??

?

??=121a a A ,(为实数),试分别求出的取值范围: (1) 使得用雅可比迭代法解方程组b Ax =时收敛;

(2) 使得用高斯-塞德尔迭代法解方程组b Ax =时收敛。(雅可比、高斯-塞德尔迭代法及收敛性讨论)

7设????

??=2112A ,??

?

???=21b (1) 设)(k x 是由雅可比迭代求解方程组b Ax =所产生的迭代向量,且T x )1,1()

0(=,试写

出计算)(k x 的精确表达式。

(2) 设*x 是b Ax =的精确解,写出误差∞

-*

)

(x x k 的精确表达式。

(3) 如构造如下的迭代公式)()()()

1(b Ax x x

k k k -+=+ω解方程组b Ax =,试确定ω的范

围,使迭代收敛。(雅可比迭代及其收敛判断)

8对于给定的线性方程组???

??=++=++=-+3

2221

22321

321321x x x x x x x x x

(1)讨论雅可比迭代法与高斯-塞德尔迭代法的收敛性。 (2)对收敛的方法,取初值T x

)0,0,1()

0(=,迭代两次,求出)3()2()1(,,x x x 。(雅可比,

高斯-塞德尔迭代法的计算和比较) 9 证明对称矩阵

??

??

?

?????=111ααααααA

当121<<-

α为正定矩阵,且只有当2

1

21<<-α时,用雅可比迭代法求解方程组b Ax =才收敛。(雅可比迭代法的收敛性)

第七章 非线性方程求根

习题主要考察点:二分法、迭代法、牛顿法和弦截法求根,迭代法求根的收敛性和收敛速度的讨论。

1用二分法求方程012

=--x x 的正根,要求误差小于0.05。(二分法)

2说明方程04ln 2

=-+x x 在区间[1,2]内有惟一根*x ,并选用适当的迭代法求*

x (精

确至3位有效数),并说明所用的迭代格式是收敛的。(迭代法) 3设有解方程0cos 2312=+-x x 的迭代法n n x x cos 3

2

41+

=+ (1)证明R x ∈?0均有*

lim x x n n =∞

>-(*

x 为方程的根)。(2)此迭代法的收敛阶是多少,证明你的结论。 (3) 取40=x 用此迭代法求方程根的近似值,误差不超过3

10-,列出各次迭代值。(和收敛性讨论)

4设)(*

*=x x ?,1)(max <='λ?x ,试证明:由 ,1,0)(1==+n x x n n ? ,得到的序

列{}n x 收敛于*

x 。(收敛性证明)

5 设方程0sin 233=--x x 在[0,1]内的根为*

x ,若采用迭代公式n n x x sin 3

2

11-

=+,试证明:R x ∈?0均有*

*

(lim x x x n n =∞

→为方程的根);此迭代的收敛阶是多少,证明你的结论。(迭代法和收敛性讨论)

6 方程0123=--x x 在5.10=x 附近有根,把方程写成3种不同的等价形式:

(1) 2

1

1x x +

=,对应迭代格式:2

111n n x x +=+ (2) 2

3

1x x +=,对应迭代格式:32

11n n x x +=+ (3) 1

1

2

-=

x x ,对应迭代格式:1

1

1-=+n n x x 讨论这些迭代格式在5.10=x 时的收敛性。若迭代收敛,试估计其收敛速度,选一种收敛格式计算出5.10=x 附近的根到4位有效数字。(收敛速度的计算和比较) 7设 23)()(a x x f -=

(1) 写出解 0)(=x f 的牛顿迭代格式;

(2) 证明此迭代格式是线性收敛的。(牛顿迭代的构造与收敛速度) 8 设计一个计算

a

1的牛顿迭代法,且不用除法(其中0>a )。(牛顿迭代法)

9 用牛顿法求115的近似值,取100=x 或11为初始值,计算过程保留4位小数。(牛顿迭代的构造)

10设*

x 是非线性方程0)(=x f 的m 重根,试证明:迭代法

)

(')

(1n n n n x f x f m

x x -=+

具有至少2阶的收敛速度。(收敛速度证明)

11设*x 是非线性方程0)(=x f 的m 重根,证明:用牛顿迭代法求*

x 只是线性收敛。(收敛速度证明)

12设a a =)(?,)(x ?在a 附近有直到p 阶的连续导数,且0)()()

1('

==???=-a a p ?

?,

0)()(≠a p ?,试证:迭代法)(1n n x x ?=+在a 附近是p 阶收敛的。 (收敛速度证明)

第九章 常微分方程数值解

习题主要考察点:欧拉方法的构造,单步法的收敛性和稳定性的讨论,线性多步法中亚当姆斯方法的构造和讨论。

1 用改进的欧拉公式,求以下微分方程

]1,0[1)0(2∈??

?

?

?=-='

x y y x y y

的数值解(取步长2.0=h ),并与精确解作比较。(改进的尤拉公式的应用) 2用四阶龙格-库塔法求解初值问题??

?==+'0

)0(1

y y y ,取2.0=h , 求4.0,2.0=x 时的数值解.

要求写出由n n y x h ,,直接计算1+n y 的迭代公式,计算过程保留3位小数。(龙格-库塔方法的应用)

3 用梯形方法解初值问题?

??==+'1)0(0y y y ,证明其近似解为n

n h h y ???

??+-=22,并证明当0

→h 时,它收敛于原初值问题的准确解x

e y -=。

4对于初值问题?

??=-='1)0(10y y

y ,证明当2.0

式的稳定性讨论) 5证明梯形公式)],(),([2

111+++++

=n n n n n n y x f y x f h

y y 无条件稳定。(稳定性讨论) 6设有常微分方程的初值问题?

??=='00)()

,(y x y y x f y ,试用泰勒展开法,构造线性两步法数值计算

公式)()(11011--++++=n n n n n f f h y y y ββα,使其具有二阶精度,并推导其局部截断误差主项。(局部截断误差和主项的计算) 7已知初值问题

??

?

??==='01.0)1.0(0

)0(2y y x

y 取步长1.0=h ,利用阿当姆斯公式)3(2

11-+-+

=n n n n f f h

y y ,求此微分方程在[0,10]上的数值解,求此公式的局部截断误差的首项。(阿当姆斯公式的应用)

欢迎您的下载,

资料仅供参考!

致力为企业和个人提供合同协议,策划案计划书,学习资料等等

打造全网一站式需求

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析1-4习题及答案

1、 0.1%,要取几位有效数字? ( c ) (a) 2 (b) 3 (c) 4 (d) 5 2、若* 12.30x =是经过四舍五入得到的近似数,则它有几位有效数字? ( c ) (a) 2 (b) 3 (c) 4 (d) 5 3、已知n +1个互异节点(x 0,y 0), (x 1,y 1),…, (x n ,y n )和过这些点的拉格朗日插值基函数l k (x )(k =0,1,2,…,n ),且ω(x )=(x -x 0) (x -x 1)… (x -x n ).则n 阶差商f (x 0,x 1,…, x n )= ( ) (a) ∑=n k k k y x l 0 )( (b) ∑='n k k k k x l y 0)( (c) ∑=n k k k x y 0)(ω (d) ∑='n k k k x y 0)(ω 4、已知由数据(0,0),(0.5,y ),(1,3),(2,2)构造出的三次插值多项式 33()6 P x x y 的 的系数是,则 等于 ( ) (a) -1.5 (b) 1 (c) 5.5 (d) 4.25 5、设(0,1,2,3,4)i x i =为互异结点,()i l x 为拉格朗日插值基函数,则 4 2 () ()i i i x x l x =-∑等于 ( a ) (a) 0 (b) 1 (c) 2 (d) 4 4()[,],()()(),()(),( )(), ' () ' (),22 ()()_________________________f x C a b H x a b a b H a f a H b f b H f H a f a f x H x ∈++====-=设是满足下列插值条件的三次多项式:则插值余项 1、 是以0,1,2为节点的三次样条函数,则b=-2,c=3 2、 已知(1)0,(1)3,(2)4,f f f =-=-=写出()f x 的牛顿插值多项式 2()P x =___2537 623x x +-__,其余项表达式 R(x)=__() (1)(1)(4) [1,4]6 f x x x ξξ'''-+-∈-_______________________ 3、 确定求积公式1 0121 ()(1)(0)'(1)f x dx A f A f A f -≈-++? 中的待定参数,使其代数精度 尽量高,则A 0=_ 29__________, A 1=__169________, A 2=_29 _______,代数精度=__2_________。

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

【重磅】数值分析习题与答案

第一章绪论 习题一 1.设R>0,RR的相对误差为δ,求f(R)=lnR的误差限。解:求lnR的误差极限就是求f(R)=lnR的误差限,由公式(1. 2.4)有 已知RR的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2) 解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数RR=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1.给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因 ,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2.在-4≤R≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?

解:用误差估计式(5.8), 令 因 得 3.若,求和. 解:由均差与导数关系 于是 4.若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5.求证. 解:解:只要按差分定义直接展开得

6.已知的函数表 求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差. 解:根据给定函数表构造均差表 由式(5.14)当n=3时得Newton均差插值多项式 N3(R)=1.0067R+0.08367R(R-0.2)+0.17400R(R-0.2)(R-0.3 ) 由此可得 f(0.23)N3(0.23)=0.23203 由余项表达式(5.15)可得 由于 7.给定f(R)=cosR的函数表 用Newton等距插值公式计算cos0.048及cos0.566的近似值并估计误差 解:先构造差分表

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析复习题及答案65177

数值分析复习题 一、选择题 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式()()2 11211()(2)636f x dx f Af f ≈++?,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A .() 00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x = 4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=??++=??--=? 作第一次消元后得到的第3个方程( ). A .232x x -+= B .232 1.5 3.5x x -+= C .2323x x -+= D .230.5 1.5x x -=- 二、填空 1. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x= . 2.设一阶差商 ()()()21122114,321f x f x f x x x x --= ==---, ()()()322332615,422f x f x f x x x x --===--

则二阶差商 ()123,,______f x x x = 3. 设(2,3,1)T X =--, 则2||||X = ,=∞||||X 。 4.求方程 2 1.250x x --= 的近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。 5.解初始值问题 00'(,)()y f x y y x y =??=?近似解的梯形公式是 1______k y +≈。 6、 1151A ??= ?-??,则A 的谱半径 = 。 7、设 2()35, , 0,1,2,... , k f x x x kh k =+== ,则[]12,,n n n f x x x ++= 和[]123,,,n n n n f x x x x +++= 。 8、若线性代数方程组AX=b 的系数矩阵A 为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都 。 9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为 。 10、为了使计算 23123101(1)(1)y x x x =+ +----的乘除法运算次数尽量的少,应将表达式改写 成 。 11. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 12. 一阶均差()01,f x x = 13. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么 ()33C = 14. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。 15. 取步长0.1h =,用欧拉法解初值问题()211y y y x y ?'=+???=?的计算公式 . 16.设 * 2.40315x =是真值 2.40194x =的近似值,则*x 有 位有效数字。

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

数值分析习题与答案

第一章绪论 习题一?1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。 解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得?有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1)?(2) 解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)?(2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用 :式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newto n插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值??误差限 ,因,

故? 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 ?误差限,故? 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式(5.8), ?令 因?得 3. 若,求和.

解:由均差与导数关系 ?于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有?而当P=n +1时 ?于是得 5. 求证. 解:解:只要按差分定义直接展开得 ? 6. 已知的函数表

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(

数值分析课后习题答案

习 题 一 解 答 1.取3.14,3.15, 227,355113 作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。 分析:求绝对误差的方法是按定义直接计算。求相对误差的一般方法是先求出绝对误差再按定义式计算。注意,不应先求相对误差再求绝对误差。有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。有了定理2后,可以根据定理2更规范地解答。根据定理2,首先要将数值转化为科学记数形式,然后解答。 解:(1)绝对误差: e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。 相对误差: 3()0.0016 ()0.51103.14r e x e x x -==≈? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。 而π-3.14=3.14159265…-3.14=0.00159… 所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311 101022 --?=? 所以,3.14作为π的近似值有3个有效数字。 (2)绝对误差: e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。 相对误差: 2()0.0085 ()0.27103.15r e x e x x --==≈-? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。 而π-3.15=3.14159265…-3.15=-0.008407… 所以│π-3.15│=0.008407……≤0.05=0.5×10-1 =11211101022 --?=? 所以,3.15作为π的近似值有2个有效数字。 (3)绝对误差: 22 () 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈- 相对误差:

数值分析第四版习题及答案

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****1 2 3 4 5 1.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234 ,,,x x x x 均为第3题所给 的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设0 28,Y =按递推公式 11 783100 n n Y Y -=( n=1,2,…) 计算到100Y .若取78327.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字78327.982). 8. 当N 充分大时,怎样求2 11N dx x +∞ +?? 9. 正方形的边长大约为100㎝,应怎样测量才能

使其面积误差不超过1㎝2 ? 10. 设212 S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1 101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 21)f =,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 63 22)70 2. (21)(322)--++ 13. 2 ()ln(1)f x x x =-,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 2 2 ln(1)ln(1)x x x x -=-+ 计算,求对数时误差有多大? 14. 试用消元法解方程组 {101012121010;2. x x x x +=+=假定只用 三位数计算,问结果是否可靠? 15. 已知三角形面积 1 sin ,2 s ab c = 其中c 为弧 度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证明面积的误差s ?满足 .s a b c s a b c ????≤++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

数值分析教案

数值分析教案 土建学院 工程力学系 2014年2月 一、课程基本信息 1、课程英文名称:Numerical Analysis

2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表 x -1 1 2 ()f x -3 0 4 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1)k x -1 1 2 k y -3 0 4 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- k x ()k f x 一阶 二阶 -1 -3 1 0 3/ 2 2 4 4 5/6 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有