搜档网
当前位置:搜档网 › 空间向量的数量积运算练习题

空间向量的数量积运算练习题

空间向量的数量积运算练习题
空间向量的数量积运算练习题

课时作业(十五)

[学业水平层次]

一、选择题

1.设a 、b 、c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( )

A .①②

B .②③

C .③④

D .②④ 【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中|a |2·b =|b |2·a 不一定成立,④运算正确.

【答案】 D

2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( )

A .30°

B .45°

C .60°

D .以上都不对

【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2+2a ·b =|c |2

,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=14.

【答案】 D

3.已知四边形ABCD 为矩形,P A ⊥平面ABCD ,连结AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( )

A.PC →与BD →

B.DA →与PB →

C.PD →与AB →

D.P A →与CD →

【解析】 用排除法,因为P A ⊥平面ABCD ,所以P A ⊥CD ,故P A →·CD →=0,排除D ;因为AD ⊥AB ,P A ⊥AD ,又P A ∩AB =A ,所以AD ⊥平面P AB ,所以AD ⊥PB ,故DA →·PB →=0,排除B ,同理PD →·AB →=0,排除C.

【答案】 A

4. 如图3-1-21,已知空间四边形每条边和对角线都等于a ,点E ,F ,G 分别是AB ,AD ,DC 的中点,则下列向量的数量积等于a 2的是( )

图3-1-21

A .2BA →·AC →

B .2AD →·DB →

C .2FG →·AC →

D .2EF →·CB →

【解析】 2BA →·AC →=-a 2,故A 错;2AD →·DB →=-a 2,故B 错;2EF →·CB →=-12a 2

,故D 错;2FG →·AC →=AC →2=a 2,故只有C 正确.

【答案】 C

二、填空题

5.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |=________. 【解析】 |2a -3b |2=(2a -3b )2=4a 2-12a ·b +9b 2 =4×|a |2+9×|b |2-12×|a |·|b |·cos 60°=61, ∴|2a -3b |=61. 【答案】

61

6.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.

【解析】 由题意知?????

(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1.

即?????

(a +λb )·

(λa -2b )<0,(a +λb )·

(λa -2b )≠-|a +λb ||λa -2b |?λ2+2λ-2<0. ∴-1-3<λ<-1+ 3. 【答案】 (-1-3,-1+3)

7. 如图3-1-22,已知正三棱柱ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.

图3-1-22

【解析】 不妨设棱长为2,则|AB →1|=BB 1→-BA →,BM →=BC →+12BB 1→, cos 〈AB 1→,BM →

〉=(BB 1→-BA →)·(BC →+12BB 1→

)

22×5

=0-2+2-0

22×5

=0,故

填90°.

【答案】 90° 三、解答题

8.如图3-1-23在正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点.求证:A 1O ⊥平面GBD .

图3-1-23

【证明】 设A 1B 1→=a ,A 1D 1→=b ,A 1A →

=c . 则a ·b =0,a ·c =0,b ·c =0.

而A 1O →=A 1A →+AO →=A 1A →+12(AB →+AD →)=c +1

2(a +b ), BD →=AD →-AB →

=b -a ,

OG →=OC →+CG →=12(AB →+AD →)+12CC 1→=12(a +b )-12c . ∴A 1O →·BD →=?

??

??

c +12a +12b ·(b -a )

=c ·(b -a )+1

2(a +b )·(b -a ) =c ·b -c ·a +12(b 2-a 2) =1

2(|b |2-|a |2)=0. ∴A 1O →⊥BD →. ∴A 1O ⊥BD .

同理可证A 1O →⊥OG →

. ∴A 1O ⊥OG .

又OG ∩BD =O 且A 1O ?面BDG , ∴A 1O ⊥面GBD .

9.已知长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AB 1的中心,F 为A 1D 1的中点,试计算:(1)BC →·ED 1→;(2)BF →·AB 1→

;(3)EF →·FC 1→.

【解】 如图所示,设AB →=a ,AD →=b ,AA 1→

=c , 则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.

(1)BC →·ED 1→=AD →·(EA 1→+A 1D 1→)

=AD →·??????12(AA 1→-AB →)+AD →=b ·??????

12(c -a )+b =|b |2=42=16.

(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+BB 1→

)

=?

????AA 1→-AB →+12AD →·(AB →+AA 1→)

=? ?

???c -a +12b ·(a +c ) =|c |2-|a |2=22-22=0.

(3)EF →·FC 1→=(EA 1→+A 1F →)·(FD 1→+D 1C 1→)

=??????12(AA 1→-AB →)+12AD →·? ??

??

12AD →+AB → =??????12(c -a )+12b ·

? ??

??12b +a =1

2(-a +b +c )·? ??

??12b +a =-12|a |2+14|b |2

=2.

[能力提升层次]

1.(2014·中山高二检测)已知边长为1的正方体ABCD -A 1B 1C 1D 1

的上底面A 1B 1C 1D 1的中心为O 1,则AO 1→·AC →的值为( )

A .-1

B .0

C .1

D .2

【解析】 AO 1→=AA 1→+A 1O 1→=AA 1→+12(A 1B 1→+A 1D 1→)=AA 1→+12(AB →

+AD →),而AC →=AB →+AD →,则AO 1→·AC →=12(AB →2+AD →2)=1,故选C.

【答案】 C

2.已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )

A .30°

B .60°

C .90°

D .45°

【解析】 由于AB →=AC →+CD →+DB →,则AB →·CD →=(AC →+CD →

+DB →)·CD →=CD →2

=1.

cos 〈AB →,CD →〉=AB →·CD →

|AB →|·|CD →|=12?〈AB →,CD →〉=60°.

【答案】 B

3.(2014·长沙高二月考)已知正三棱柱ABC -DEF 的侧棱长为2,底面边长为1,M 是BC 的中点,若直线CF 上有一点N ,使MN ⊥AE ,则CN

CF =________.

【解析】 设CN

CF =m ,由于AE →=AB →+BE →, MN →=12BC →+mAD →, 又AE →·MN →=0,

得12×1×1×? ??

??-12+4m =0,解得m =1

16. 【答案】 1

16

4.如图3-1-24,平行六面体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,求AC 1的长.

图3-1-24

【解】 ∵AC 1→=AB →+AD →+AA 1→

, ∴|AC 1→|=(AB →+AD →+AA 1→)2

AB →2+AD →2+AA 1→2+2(AB →·AD →+AB →·AA 1→+AD →·AA 1→).

∵AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,

∴〈AB →,AD →〉=90°,〈AB →,AA 1→〉=〈AD →,AA 1→〉=60°, ∴|AC 1→

|=1+4+9+2(1×3×cos 60°+2×3×cos 60°) =23.

平面向量数量积练习题

平 面 向 量 数 量 积 练 习 题 一.选择题 1.下列各式中正确的是 ( ) (1)(λ·a ) ·b =λ·(a b )=a · (λb ), (2)|a ·b |= | a |·| b |, (3)(a ·b )· c = a · (b ·c ), (4)(a +b ) · c = a ·c +b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2.在ΔABC 中,若(CA CB)(CA CB)0+?-= ,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3. 已知|a |=6,|b |=3,a·b =-12,则向量a 在向量b 方向上的投影是( ) A .-4 B .4 C .-2 D .2 4.已知||=1,||=2,且(-)与垂直,则与的夹角为 ( ) A .60° B .30° C .135° D .45° 5.设||= 4,||= 3,夹角为60°,则|+|等于 ( ) A .37 B .13 C .37 D .13 6.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( ) A. 5 B.10 C .2 5 D .10 7. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.????79,73 B.????-73,-79 C.????73,79 D.????-79,-73 二.填空题 8.已知e 是单位向量,∥e 且18-=?e a ,则向量a =__________. 9.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 10. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________. 三.解答题 11. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°. (1)求b ; (2)若c 与b 同向,且a 与c -a 垂直,求c .

向量数量积的运算律

向量数量积的运算律 新知检索 8.向量数量积满足交换律:·=__________________________. 9.向量数量积满足分配律:(+)·=______________________. 10.数乘向量的数量积,可以与任一向量交换结合,即对任意实数λ,有(?λ=_________. 学法指导 本节课的学习目标是掌握向量数量积的运算规律,并准确运用;重点是注意结合律的正确使用.学习本节课应注意的问题: 1.对于分配律,用向量数量积的几何意义给出了证明.在学习与使用时,可以类比数量乘法的交换律.但要明确它们的不同. (1)已知实数)0≠b c b a (、、,则c a bc ab =?=;但对于向量、、,该推理是不正确的,即a ·b =b ·不一定能推出a =.只有当向量a 、b 、共线且同向时,才成立,否则就不成立. 比如:|a |=3,|b |=1,|c |=3,< a ,b >=30°,=60°, 经过计算可知:·=·,但≠. (2)对于实数c b a 、、有(ab )c =a (bc ),但对于向量、、c ,(·)·c ≠·(·c ),这是因为(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 一般并不共线,所以(a ·b )·c ≠a (b ·c ) . 2.教材中的例题1是直接对数量积性质、运算律的应用.其中推得结论: (1)2(+=22||2||b b a a +?+; (2)(a +b )·(a -b )=22||||-.在以后的运算中,可以直接运用. 3.用向量知识证明几何问题.用向量解题可分为三步:

平面向量的数量积练习题[

§5.3 平面向量的数量积 一、选择题 1.若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( ) A .4 B .3 C .2 D .0 解析:由a ∥b 及a ⊥c ,得b ⊥c , 则c ·(a +2b )=c ·a +2c ·b =0. 答案:D 2.若向量a 与b 不共线,a ·b ≠0,且c =a -? ?? ?? a ·a a · b b ,则向量a 与 c 的夹角为( ) A .0 B.π6 C.π3 D.π 2 解析 ∵a·c =a·???? ??a -? ????a·a a·b b =a·a -? ?? ?? a 2a· b a·b =a 2-a 2=0, 又a ≠0, c ≠0,∴a⊥c ,∴〈a ,c 〉=π 2 ,故选D. 答案 D 3. 设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos2θ等于 ( ) A 2 B 1 2 C .0 D.-1 解析 22,0,12cos 0,cos 22cos 10.a b a b θθθ⊥∴?=∴-+=∴=-=正确的是C. 答案C 4.已知|a |=6,|b |=3,a ·b =-12,则向量a 在向量b 方向上的投影是( ). A .-4 B .4 C .-2 D .2 解析 设a 与b 的夹角为θ,∵a ·b 为向量b 的模与向量a 在向量b 方向上的投影的乘积,而cos θ= a · b |a ||b |=-2 3 , ∴|a |cos θ=6×? ???? -23=-4. 答案 A

5.若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( ). A.2-1 B .1 C. 2 D .2 解析 由已知条件,向量a ,b ,c 都是单位向量可以求出,a 2=1,b 2=1,c 2=1,由a ·b =0,及(a -c )(b -c )≤0,可以知道,(a +b )·c ≥c 2=1,因为|a +b - c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c ,所以有|a +b -c |2=3-2(a ·c +b ·c )≤1, 故|a +b -c |≤1. 答案 B 6.已知非零向量a 、b 满足|a |=3|b |,若函数f (x )=1 3x 3+|a |x 2+2a·b x +1 在x ∈R 上有极值,则〈a ,b 〉的取值范围是( ) A.? ? ????0,π6 B.? ? ???0,π3 C.? ?? ?? π6,π2 D.? ?? ?? π6,π 解析 ∵f (x )=13x 3+|a |x 2 +2a·b x +1在x ∈R 上有极值,∴f ′(x )=0有两不 相等的实根,∵f ′(x )=x 2+2|a |x +2a·b ,∴x 2+2|a |x +2a·b =0有两个不相等的实根,∴Δ=4|a |2-8a·b >0,即a·b <12|a |2,∵cos 〈a ,b 〉=a·b |a ||b |, |a |=3|b |,∴cos 〈a ,b 〉<1 2|a |2|a ||b |=3 2,∵0≤〈a ,b 〉≤π, ∴π 6<〈a ,b 〉≤π. 答案 D 7.如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量的数量积中最大的是 ( ).

(完整版)平面向量的数量积练习题.doc

平面向量的数量积 一.选择题 1. 已知 a ( 2,3), b ( 1, 1),则 a ?b 等于 ( ) A.1 B.-1 C.5 D.-5 r r r r r r r r 2.向量 a , b 满足 a 1, b 4, 且 a b 2 ,则 a 与 b 的夹角为( ) A . B . 4 C . D . 2 6 3 r r 60 0 r r ) 3.已知 a, b 均为单位向量,它们的夹角为 ,那么 a 3b ( A . 7 B . 10 C . 13 D . 4 4 .若平面向量 与向量 的夹角是 ,且 ,则 ( ) A . B . C . D . 5. 下面 4 个有关向量的数量积的关系式① 0 ?0 =0 ②( a ?b ) ?c = a ?( b ? c ) ③ a ?b = b ?a ④ | a ?b | ≦ a ?b ⑤ | a ?b | | a | ?| b | 其中正确的是( ) A . ① ② B 。 ① ③ C 。③ ④ D 。③ ⑤ 6. 已知 | a |=8 , e 为单位向量,当它们的夹角为 时, a 在 e 方向上的投影为( ) 3 A . 4 3B.4 C.4 2 3 D.8+ 2 7. 设 a 、 b 是夹角为 的单位向量,则 2a b 和 3a 2b 的夹角为( ) A . B . C . D . 8. 已知 a =(2,3) , b =( 4 ,7) , 则 a 在 b 上的投影值为( ) A 、 13 B 、 13 C 、 65 D 、 65 5 5 9. 已知 a (1,2), b ( 3,2), ka b 与 a 3b 垂直时 k 值为 ( ) A 、 17 B 、 18 C 、 19 D 、 20

8.1.2 向量数量积的运算律

8.1.2 向量数量积的运算律 (教师独具内容) 课程标准:理解掌握数量积的性质和运算律,并能运用性质和运算律进行简单的应用. 教学重点:向量数量积的性质与运算律及其应用. 教学难点:平面向量数量积的运算律的证明. 【知识导学】 知识点 平面向量数量积的运算律 已知向量a ,b ,c 与实数λ,则 交换律 a ·b =□ 01b ·a 结合律 (λa )·b =□ 02λ(a ·b )=□03a ·(λb ) 分配律 (a +b )·c =□ 04a ·c +b ·c 【新知拓展】 对向量数量积的运算律的几点说明 (1)向量数量积不满足消去律:设a ,b ,c 均为非零向量且a ·c =b ·c ,不能得到a =b .事实上,如图所示,OA →=a ,OB →=b ,OC → =c ,AB ⊥OC 于D ,可以看出,a ,b 在向量c 上的投影分别为|a |cos ∠AOD ,|b |cos ∠BOD ,此时|b |cos ∠BOD =|a |cos ∠AOD =OD .即a ·c =b ·c .但很显然b ≠a . (2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a ·b )c ≠a (b ·c ),这是由于a ·b ,b ·c 都是实数,(a ·b )c 表示与c 方向相同或相反的向量,a (b ·c )表示与a 方向相同或相反的向量,而a 与c 不一定共线. 1.判一判(正确的打“√”,错误的打“×”) (1)对于向量a ,b ,c 等式(a·b )·c =a ·(b·c )恒成立.( ) (2)若a·b =a·c ,则b =c ,其中a ≠0.( ) (3)(a +b )·(a -b )=a 2 -b 2 .( ) 答案 (1)× (2)× (3)√ 2.做一做

平面向量数量积及运算基础练习题

精品 平面向量的数量积及运算练习题 一、选择题: 1、下列各式中正确的是 ( ) (1)(λ·a) ·b=λ·(a b)=a · (λb), (2)|a ·b|= | a |·| b |, (3)(a ·b)· c= a · (b ·c), (4)(a+b) · c = a ·c+b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2、在ΔABC 中,若(CA CB)(CA CB)0+?-=,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3、若| a |=| b |=| a -b |, 则b 与a+b 的夹角为 ( ) A .30° B .60° C .150° D .120° 4、已知| a |=1,| b |=2 ,且(a -b)和a 垂直,则a 与b 的夹角为 ( ) A .60° B .30° C .135° D .45° 5、若2AB BC AB 0?+=,则ΔABC 为 ( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰直角三角形 6、设| a |= 4, | b |= 3, 夹角为60°, 则| a+b |等于 ( ) A .37 B .13 C .37 D .13 7、己知 | a |= 1,| b |= 2, a 与的夹角为60, c =3a+b, d =λa -b ,若c ⊥d,则实数λ的值为( ) A . 74 B .75 C .47 D .5 7 8、设 a,b,c 是平面内任意的非零向量且相互不共线,则其中真命题是 ( ) ① (a ·b)·c -(c ·a)·b=0 ② | a | -| b |< | a -b | ③ (b ·c)·a -(c ·a)·b 不与c 垂直 ④ (3a+2b) ·(3a -2b)= 9| a | 2-4| b | 2 A .①② B .②③ C .③④ D .②④ 9.(陕西)已知非零向量AB 与AC 满足0AB AC BC AB AC ?? ?+?= ???且12AB AC AB AC ?=, 则ABC △为 .A 等边三角形 .B 直角三角形 .C 等腰非等边三角形 .D 三边均不相等的三角形 10(全国Ⅰ文)点O 是ABC △所在平面内的一点,满足OA OB OB OC OC OA ?=?=?,则点O 是ABC △的 .A 三个内角的角平分线的交点 .B 三条边的垂直平分线的交点 .C 三条中线的交点 .D 三条高的交点 11.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b ,若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为( ). A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3]

12022-向量数量积的运算律

向量数量积的运算律 制作人:张明娟 审核人:叶付国 使用时间:2012-5-8 编号:12022 学习目标: 1、 掌握平面向量数量积的运算律及其运算; 2、 通过向量数量积分配律的学习,体会类比、猜想、证明的探索性学习 方法; 3、通过解题实践,体会向量数量积的运算方法. 学习重点:向量数量积的运算律及其应用. 学习难点:向量数量积分配律的证明. 重点知识回顾: 1、两个向量的夹角的范围是: ; 2、向量在轴上的正射影 正射影的数量为 ; 3、向量的数量积(内积):a ·b = ; 4、两个向量的数量积的性质: (1)b a ⊥? ; (2)a a ?= 或a = ; (3)θcos = ; 向量数量积的运算律 平面向量数量积的常用公式 证明:(1) (2) c b c a c b a b a b a b a b a a b b a ?+?=?+?=?=?=??=?))(3(;)()())(2(; 1λλλλ)(222 2))(1(b b a a b a +?+=+2 2))()(2(b a b a b a -=-+

典例剖析: 例1、已知a =6,b =4,a 与b 的夹角为060, 求:(1)b 在a 方向上的投影; (2)a 在b 方向上的投影; (3) 例2、已知a 与b 的夹角为0120,a =2,b =3,求: ()() b a b a 32-?+) ())(;();()(b a b a b a b a 32321 22+?-- ?(-+5 4取何值,问夹角为与t t b a -==0 120,1

例 3、已知a =3,b =4,(且a 与b 不共线),当且仅当k 为何值时,向量b k a +与b k a - 互相垂直? 变式:已知a =1, b =2, a 与b a -垂直.求a 与b 的夹角. 练习题:求证菱形的对角线互相垂直. 例 4、已知a =2,b =4,0120,=b a ,求a 与b a -的夹角.

(完整版)平面向量的数量积练习题(含答案)

平面向量的数量积 A 组 专项基础训练 一、选择题(每小题5分,共20分) 1. (2012·辽宁)已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于 ( ) A .-1 B .-12 C.12 D .1 2. (2012·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( ) A. 5 B.10 C .2 5 D .10 3. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.? ????79,73 B.? ????-73,-79 C.? ????73,79 D.? ?? ??-79,-73 4. 在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于 ( ) A .-32 B .-23 C.23 D.32 二、填空题(每小题5分,共15分) 5.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 6.在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 7. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________. 三、解答题(共22分) 8. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°. (1)求b ; (2)若c 与b 同向,且a 与c -a 垂直,求c . 9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与 向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.

第二课时向量数量积的运算律(可编辑修改word版)

= = AC ? ?? ? 2.3.2 向量数量积的运算律 类型二、运用向量数量积的运算律求向量的模 【学习目标】: 熟练掌握平面向量数量积的运算律,并会应用。 【自主学习】: 向量数量积的运算律: (1) 交换律: 例 2、已知 a = b = 5, 向量 a 与b 的夹角为 ,求 a - b , a + b 。 3 (2) 数乘 向量的数量积 结合律: 那么分配律是否成立呢? 【合作探究】 分配律: 变式: 在三角形 ABC 中,已知 AB 3, BC 5, ∠ABC = 600 , 求 。 【课堂互动】 类型一、运用向量数量积的运算律计算例 1、求证: 类型二、运用向量数量积的运算律解决有关垂直问题例 2、求证:菱形的两条对角线互相垂直: 已知: ABCD 是菱形, AC 和 BD 是它的两条对角线。 (1) (a + b ) 2 = 2 + 2a ? b + 2 → → → → ;(2) a + b ?? a - b ? = ? ?? ? → 2 → 2 a - b ; 求证: AC ⊥ BD . 证明: → → → → 变式:已知 a = 3, b = 4, ?a , b ? = 60 , 求(a + 2b ) (a - 3b ) . 总结: a ⊥ b ? 。 a b

a b a ⊥ 变式: 已 知 a = 3, b = 4 ,且(a + kb ) ⊥ (a - kb ), 求 k 的值。 2 【合作探究】 1 、 若 a,b( b ≠ 0 ) 为 实 数 , 则 a ? b = a ? b 成 立 , 对 于 向 量 3、已知 e 1 , e 2 是夹角为 3 的两个单位向量, a = e 1 - 2e 2 , b = ke 1 + e 2 , 若 a ? b = 0 ,则 k 的值为 。 a , b , a ? b = ? 成立吗? 2、若 a,b,c( b ≠ 0 )为实数,则 ab = bc ? a = c ; 但对于向量, ab = bc ? a = c 还成立吗? 4、证明平行四边形中, AC 2 + BD 2 = 2 AB 2 + 2 AD 2. 3、 向量的数量积满足结合律吗,即(a ? b )? c = a ? (b ? c )成立吗? (a ? b ) ? c 表 示什么意义? a ? (b ? c ) 表示什么意义? 【当堂检测】 → → < >= 1200 , = = 5, (2a - b )? a = 1 、 已 知 向 量 a , b 且 a 2, b 则 (选做)5、设 a b , 且 = 2, b = 1, k,t 是两个不同时为零的实数。 。 (1) 若 x = a + (t - 3)b 与 y = -ka + tb 垂直,求 k 关于 t 的函数关系式 k=f(t); (2) 求出函数 k=f(t)的最小值。 → → → → 2 2 、 a = 6, b = 8, ?a , b ? = 120 , 求 a + b , a + b .

《空间向量数量积的运算》的教学反思

《空间向量数量积的运算》教学反思 本节课我讲了选修2-1第三章《空间向量的数量积运算》这个节,这是本章第三节的内容,主要学习的是空间向量的数量积的运算及应用。根据大纲,要求学生能熟练应用空间向量的运算解决简单的立体几何问题,这也是本节课的难点。突破难点的方法是让学生会用已知向量表示相关向量,就是利用三角形法则或多边形法则把未知向量表示出来,进而再求两个向量的数量积、夹角、距离等。 三方面实行整体设计,注重与学生已有知识的联系及相关学科知识的联系(物理学:功),因为本节知识是向量由二维向三维的推广,所以预习平面向量的运算起了一定的作用,使学生体会知识的形成过程和数学中的类比学习方法。在整个教学过程中,我还是沿用知识复习、学生探究、教师例题分析、师生合作归纳小结的主线实行教学,符合学生的认知规律,也易于学生对知识的掌握,在教学方法上,我注重多媒体演示和传统板书教学有效结合,较好地辅助了教学。同时,结合新高考的要求,我注重了数学核心素养的培养,在教学中例题分析与归纳时,我注重了数学思想方法的渗透,如本节课我就渗透了数形结合思想、类比思想等,本节课的核心理念是体现学生在学习中的主体性。但我注重调动学生的主观能动性,最大限度的发挥学生的主体作用,在教学过程中,学生的思维活跃,积极讨论问题,自主解决相关例题。精彩处在于学生积极参与互动,学生评判,教师引导,学生积极归纳知识点,整个课堂热烈有序,张而有驰,整体课多次出现教学高潮,博得了学生与听课专家的热烈掌声,从课后反馈来看,本堂课普片反应学懂了,掌握了知识和解决问题的水平,正在学有所用。 不足之处:在创设情境时,我用的是知识性引课,不够引人入胜,要是能想出更好的引课方式或动画设计,在一开始就抓住学生的眼球,调动起学生学习的积极性,应该效果会更好。其次,在课堂中没有充分发挥学生的主体性,老师由引导者又逐步变成了主导者。另外,难点突破应该在两个例题上,不过前边耽误了时间,导致重点地方没有充足的时间解决,没达到最初的意图。对问题的探究需要时间,课上让学生放开去探究,减少了课堂容量,影响到了例题的分析讲解。应

平面向量数量积练习题

平面向量数量积练习题 .选择题 1?下列各式中正确的是 ( ) (1)(入a) b=X a ()=a - b), (2) |a b |= | a | | -b |, (3) (a b) c= a (b c), (4) (a+b) c = a c+b c A ? (1) (3) B ? (2) (4) C . (1) (4) D ?以上都不对? LUU/ UUV LUU/ UUU 2. 在 A ABC 中若(CA CB)?(CA CB) 0,则 A ABC 为 ( ) A ?正三角形 B ?直角三角形 C ?等腰三角形 D ?无法确定 3. 已知|a|= 6, |b|= 3, a b =- 12,则向量a 在向量b 方向上的投影是( ) A . - 4 B . 4 C .- 2 D . 2 4. 已知|a |=1,|b |= 2, 且(a — b )与a 垂直,则a 与b 的夹角为 ( ) A . 60° B . 30° C . 135° D . 45° 5. 设 4, |b |= 3,夹角为 60°,则 |a + b | 等于( ) A . 37 B . 13 C . .37 D . .13 6 .设 x , y € R ,向量 a = (x,1), b = (1, y), c = (2, — 4),且 a 丄c , b // c ,则 |a + b|等于( ) A. .5 B. .10 C . 2 , 5 D . 10 7. 已知向量 a = (1,2), b = (2, — 3).若向量 c 满足(c + a) / b , c ± (a + b),贝U c 等于( ) 7 二.填空题 8.已知e 是单位向量,a // e 且a e 18,则向量a = _____________ 9 .已知向量 a , b 夹角为 45 °,且 |a|= 1, |2a — ,贝U |b|= _____ . 10. ____________________________________________________________________________ 已知a = (2, — 1), b =(入3),若a 与b 的夹角为钝角,贝U 入的取值范围是 ______________________ 三.解答题 11. (10 分)已知 a = (1,2), b = (— 2, n) (n>1), a 与 b 的夹角是 45 ° (1) 求 b ; 7 一 9 - D 7 一 9 7 一 3 G 7 一 9 - 7 一 3? - B

空间向量的数量积(人教A版)(含答案)

空间向量的数量积(人教A版) 一、单选题(共10道,每道10分) 1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),,若向量分别与,垂直,则向量的坐标为( ) A.(1,1,1) B.(-2,-1,1) C.(1,-3,1) D.(1,-1,1) 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 2.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设,则与夹角的余弦值为( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 3.(上接试题2)若向量与互相垂直,则实数k的值为( ) A.或2 B.或2 C.2 D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 4.向量,若,且,则的值为( ) A.-2 B.2 C.-1 D.1

答案:C 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 5.已知空间向量,若与垂直,则( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 6.若向量,且与夹角的余弦值为,则λ等于( ) A.4 B.−4 C. D. 答案:C 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 7.如图,在长方体ABCD-A1B1C1D1中,设AD=AA1=1,AB=2,则( ) A.1 B.2 C.3 D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的数量积 8.如图,棱长为a的正四面体ABCD中,( )

2017.04.27平面向量的数量积练习题(含答案)

平面向量的数量积练习题 、选择题 答案: a , b 满足 |a + b|=V i0, |a — b|=V 6,贝U a b =( ) 因为 |a + b|2= (a + b)2= a 2+b 2+ 2a b = 10, |a — b|2= (a — b)2= a 2+ b 2 — 2ab= 6,两式相减得:4a b 答案: b 满足|a|= 2, |b|= 1, a b = 1,则向量a 与a — b 的夹角为( ) |a — b|= 寸(a — b )—2 =寸a 2 + b 2— 2a b =寸3,设向量a 与a — b 的夹角为 0,则 a ? (a — b ) = 22 — 1、J 3 |a||a — b| = 2X3 = 2, n 又0€[0, n ,所以=n 答案:A D . 12 因为(a + 2b) (a — 3b)= a 2— a b = 6b 2 = |a|2— |a| |b|cos 60 — 6|「b|2 = 「|a|2— 2|a|— 96 = — 72, 所以 |a|2— 2|a|— 24= 0,所以 |a|= 6. 答案:C 1已知|b| = 3, a 在b 方向上的投影是 2 3,则a b 为( 解析: B.f C . 3 D . 2 由数量积的几何意义知所以 a ? b = IX3 = 2. 2.设向量 解析: =.4,所以 a b = 1. 3.已知向量a , n A. 6 r n B ■ 亍 f 2 n D -3 解析: cos 0= 4. (2015陕西卷)对任意向量 a , b ,下列关系式中不恒成立的是 ( ) A . |ab| 毛|b| |a — b| 4|— |b|| C . (a + b)2= |a + b|2 解 析:根据 a b = |a||b|cos D . (a + b) (a — b)= a 2 — b 2 0又cos 0<1知|a b|毛||b|, A 恒成立.当向量 a 和b 方向不相同时,|a — b|>||a|— |b||, B 不恒成立.根 据 — = — , 恒成立. |a + b|2= a 2+ 2a b + b 2= (a + b)2, C 恒成立.根据向量的运算性质得 (a + b) (a 答案: 5.若向量 a 与b 的夹角为60 ,|b|= 4,且(a + 2 b) (a — 3b) = — 72,贝U a 的模为( 解析:

平面向量的数量积的运算律

第十二教时 平面向量的数量积的运算律 要求学生掌握平面向量数量积的运算律,明确向量垂直的充要条件 复习: 1 ?平面向量数量积(内积)的定义及其几何意义、性质 2 ?判断下列各题正确与否: 1若a = 0,则对任一向量b ,有a b = 0。 2若a 0,则对任一非零向量b ,有ab 0。 3 若 a 0, ab = 0,则 b = 0。 4若ab = 0,则a 、b 至少有一个为零。 5 若 a 0, a b = a c ,贝U b = c 。 6若a b = ac ,贝U b = c 当且仅当a 0时成立。 7对任意向量a 、b 、c ,有(a b ) c a (b c )。 8对任意向量a ,有a 2 = |a|2。 平面向量的运算律 1 .交换律:a b = b a 证:设 a , b 夹角为,贝U a b = |a||b|cos , b a = |b||a|cos 二 a b = b a ??? c (a + b ) = ca + c b 即:(a + b ) c = a c + b c 4.例题:P118-119 例二、例三、例四 (从略) 三、应用例题:(《教学与测试》第27课P156例二、例三) 例一、已知a 、b 都是非零向量,且a + 3b 与7a 5b 垂直, 解:如图:」ABCD 中:AB DC , AD BC , AC = AB AD 2 ■ 2 ? |AC |2=| AB AD |2 AB AD 而 BD = AB AD ? |BD |2=| AB AD |2 AB AD ?'?I c | |a + b| cos =|c| |a| cos 1 + |c| |b| cos 2 2.( a) b = (a b) =a( b) 证 :若 > 0, ( a) b = |a||b|cos , (ab): = |a||b|cos , a (b): = |a||b|cos , 若 < 0, ( a) b =| a||b|cos() (ab): = |a||b|cos , a (b): =|a || b|cos() 3. (a + b) c =a c + b c 在平面内取一点 0,作OA = a, AB = b , |a||b|( cos ) = |a||b|cos , |a||b|( cos ) = |a||b|cos 。 __ !, __ p _____ h 2 ___ 2 ___ t k ? | AC |2 + |BDf = 2 AB 2AD = | AB |2 | BC |2 | DC |2 四、 小结:运算律 五、 作业:P119 习题5.6 7、8 《教学与测试》P152练习 |AD |2 ??? a + b (即OB )在c 方向上的投影 等于a 、b 在c 方向上的投影和, 即:|a + b| cos = |a| cos 1 + |b| cos 2 教材: 目的: 过程: (V ) (x ) (x ) (x ) (x ) (x ) (x ) (V ) a 4 b 与7a 2b 垂直, 求a 与b 的夹角。 解:由(a + 3b)(7a 5b)= 0 7a 2 + 16a b 15b 2 = 0 ① (a 4b)(7a 2b)= 0 7a 2 30a b + 8b 2 = 0 ② 两式相减:2a b = b 代入①或②得:a 2 = b 2 设a 、b 的夹角为, 则 cos : =a b b 2 1 ? =60 |a||b| 2|b|2 2 2AB AD 例二、求证:平行四边形两条对角线平方和等于四条边的平方和

平面向量的数量积及运算练习题

周周清13平面向量的数量积及运算练习题 一、选择题: 1、下列各式中正确的是 ( ) (1)(λ·a ) ·b =λ·(a b )=a · (λb ), (2)|a ·b |= | a |·| b |, (3)(a ·b )· c = a · (b ·c ), (4)(a +b ) · c = a ·c +b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2、在ΔABC 中,若(CA CB)(CA CB)0+?-=u u u v u u u v u u u v u u u v ,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3、若| a |=| b |=| a -b |, 则b 与a +b 的夹角为 ( ) A .30° B .60° C .150° D .120° 4、已知| a |=1,| b |=2 ,且(a -b )和a 垂直,则a 与b 的夹角为 ( ) A .60° B .30° C .135° D .45° 5、若 2AB BC AB 0?+=u u u v u u u v u u u v ,则ΔABC 为 ( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰直角三角形 6、设| a |= 4, | b |= 3, 夹角为60°, 则| a+b |等于 ( ) A .37 B .13 C .37 D .13 7、己知 | a |= 1,| b |= 2, a 与的夹角为60, c =3a+b , d =λa -b ,若c ⊥d ,则实数λ的值为( ) A . 7 4 B . 7 5 C . 4 7 D . 5 7 8、设 a ,b ,c 是平面内任意的非零向量且相互不共线,则 ( ) ① (a ·b )·c -(c ·a )·b =0 ② | a | -| b |< | a -b | ③ (b ·c )·a -(c ·a )·b 不与c 垂直 ④ (3a +2b ) ·(3a -2b )= 9| a | 2 -4| b | 2 其中真命题是 ( ) A .①② B .②③ C .③④ D .②④ 9.(06陕西)已知非零向量AB u u u r 与AC u u u r 满足0AB AC BC AB AC ?? ?+?= ??? u u u r u u u r u u u r u u u r u u u r 且12 AB AC AB AC ?=u u u r u u u r u u u r u u u r , 则ABC △为 .A 等边三角形 .B 直角三角形 .C 等腰非等边三角形 .D 三边均不相等的三角形 10.(05全国Ⅰ文)点O 是ABC △所在平面内的一点,满足OA OB OB OC OC OA ?=?=?u u u r u u u r u u u r u u u r u u u r u u u r ,则点O 是

《空间向量的数量积运算》示范教案

3.1.3空间向量的数量积运算 整体设计 教材分析 本节课在平面向量的夹角和向量长度的概念的基础上,引入了空间向量的夹角和向量长度的概念和表示方法,介绍了空间两个向量数量积的概念、计算方法、性质和运算律,并举例说明利用向量的数量积解决问题的基本方法. 通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.课时分配 1课时 教学目标 知识与技能 1.掌握空间向量夹角的概念及表示方法; 2.掌握两个向量数量积的概念、性质和计算方法及运算律; 3.掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题. 过程与方法 1.运用类比方法,经历向量的数量积运算由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数量积运算的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数量积运算及其运算律、几何意义; 2.空间向量的数量积运算及其变形在空间几何体中的应用. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数量积运算及其几何应用和理解. 教学过程 引入新课 提出问题:已知在正方体ABCD—A′B′C′D′中,E为AA′的中点,点F在线段 D′C′上,D′F=1 2FC′,如何确定BE → ,FD → 的夹角?

人教新课标版数学高一-人教B版必修4精练 2.3.2 向量数量积的运算律

第二章 2.3 2.3.2 一、选择题 1.若|a|=3,|b|=3,且a 与b 的夹角为π 6,则|a +b|=( ) A .3 B . 3 C .21 D .21 [答案] D [解析] ∵|a|=3,|b|=3,a 与b 的夹角为π 6, ∴|a +b|2=a 2+2a·b +b 2 =9+2×3×3×cos π6+3 =9+2×3×3×3 2 +3=21, ∴|a +b|=21. 2.(2015·山东临沂高一期末测试)若向量a 、b 满足|a |=|b |=1,且a ·(a -b )=1 2,则向量 a 与 b 的夹角为( ) A .π6 B .π3 C .2π3 D .5π6 [答案] B [解析] 设向量a 与b 的夹角为θ, ∵a ·(a -b )=a 2-a ·b =1 2, ∴1-1×1×cos θ=1 2, ∴cos θ=1 2,∵0≤θ≤π, ∴θ=π3 . 3.设a 、b 、c 满足a +b +c =0,且a ⊥b ,|a|=1,|b|=2,则|c |2等于( ) A .1 B .2 C .4 D .5

[解析] ∵a +b +c =0,∴c =-a -b , ∴c 2=|c |2=(a +b )2=|a |2+2a ·b +|b |2=1+4=5,故选D . 4.已知两个非零向量a 、b 满足|a +b |=|a -b |,则下面结论正确的是( ) A .a ∥b B .a ⊥b C .|a |=|b | D .a +b =a -b [答案] B [解析] 本题考查向量的运算. 由题意知|a +b |=|a -b |,∴|a +b |2=|a -b |2,即a 2+2a ·b +b 2=a 2-2a ·b -b 2, ∴a ·b =0,∴a ⊥b . 注意:|a +b |2=(a +b )2=a 2+2a ·b +b 2. 5.下列各式中正确命题的个数为( ) ①(λa )·b =λ(a ·b )=a ·(λb ),(λ∈R ); ②|a ·b |=|a |·|b |; ③(a +b )·c =a ·c +b ·c ; ④(a ·b )·c =a ·(b ·c ). A .1 B .2 C .3 D .4 [答案] B [解析] ①、③正确,②、④错误. 6.(2015·重庆理,6)若非零向量a 、b 满足|a|=223|b|,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A .π4 B .π 2 C .3π4 D .π [答案] A [解析] 设a 与b 的夹角为θ,根据题意可知,(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,所以3|a|2-a·b -2|b|2=0,3|a|2-|a|·|b|cos θ-2|b|2=0,再由|a|=223|b|得83|b|2-223|b|2 cos θ- 2|b|2=0,∴cos θ= 22,又∵0≤θ≤π,∴θ=π 4 .

平面向量的数量积练习题

绝密★启用前 2018年01月19日214****9063的高中数学组卷 试卷副标题 考试范围:xxx;考试时间:100分钟;命题人:xxx 题号一二三总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第Ⅰ卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一.选择题(共2小题) 1.若向量,满足,,则?=( ) A.1 B.2 C.3 D.5 2.已知向量||=3,||=2,=m+n,若与的夹角为60°,且⊥ ,则实数的值为( ) A. B. C.6 D.4 第Ⅱ卷(非选择题) 请点击修改第Ⅱ卷的文字说明 评卷人得分 二.填空题(共6小题) 3.设=(2m+1,m),=(1,m),且⊥,则m= . 4.已知平面向量的夹角为,且||=1,||=2,若()),则λ=. 5.已知向量,,且,则= . 6.已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m= .

7.已知向量,的夹角为60°,||=2,||=1,则|+2|= . 8.已知两个单位向量,的夹角为60°,则|+2|= . 评卷人得分 三.解答题(共6小题) 9.化简: (1); (2). 10.如图,平面内有三个向量,,,其中与的夹角为120°,与 的夹角为30°.且||=1,||=1,||=2,若+,求λ+μ的值. 11.如图,平行四边形ABCD中,E、F分别就是BC,DC的中点,G为DE,BF的交点,若,试用,表示、、. 12.在平面直角坐标系中,以坐标原点O与A(5,2)为顶点作等腰直角△ABO,使∠B=90°,求点B与向量的坐标. 13.已知=(1,1),=(1,﹣1),当k为何值时: (1)k+与﹣2垂直? (2)k+与﹣2平行? 14.已知向量,的夹角为60°,且||=4,||=2, (1)求?; (2)求|+|.

相关主题