搜档网
当前位置:搜档网 › 16TiO2对固相反应制备莫来石陶瓷性能影响

16TiO2对固相反应制备莫来石陶瓷性能影响

16TiO2对固相反应制备莫来石陶瓷性能影响
16TiO2对固相反应制备莫来石陶瓷性能影响

第43卷第5期人工晶体学报

Vol.43No.5

2014年5月

JOURNAL OF SYNTHETIC CRYSTALS

May ,

2014TiO 2对固相反应制备莫来石陶瓷性能影响

齐大彬1,罗旭东1,2,谢志鹏

2

(1.辽宁科技大学,鞍山114051;2.清华大学材料学院新型陶瓷与精细工艺国家重点实验室,北京100084)

摘要:以天然红柱石和活性氧化铝为原料,固相反应烧结制备莫来石陶瓷,研究了TiO 2对莫来石陶瓷的烧结性能和热震稳定性的影响,利用XRD 、SEM 及相关软件对莫来石陶瓷的晶相组成、晶胞参数和显微结构进行分析和讨论。研究结果表明:通过高温固相反应可以制备出以Al 4.52Si 1.48O 9.74莫来石固溶体为主晶相的反应烧结莫来石陶瓷。引入2wt%的TiO 2对于提高干压成型的反应烧结莫来石陶瓷热震稳定性有利。TiO 2对于反应烧结莫来石陶瓷起到促烧结作用,掺杂Ti 4+

改变了主晶相莫来石固溶体晶胞参数,但未影响莫来石固溶体类型。

关键词:莫来石陶瓷;固相反应;烧结性能;热震稳定性

中图分类号:TQ174

文献标识码:A

文章编号:1000-

985X (2014)05-1223-06Effect of TiO 2on the Properties of Mullite Ceramic Prepared by Solid Reaction

QI Da-bin 1,LUO Xu-dong 1,2,XIE Zhi-peng 2

(1.Liaoning University of Science and Technology ,Anshan 114051,China ;2.State Key Laboratory of New Ceramics and Fine Processing ,

School of Materials Science and Engineering ,Tsinghua University ,Beijing 100084,China )

(Received 27November 2013,accepted 24February 2014)

Abstract :Mullite ceramic was prepared by solid state reaction using natural andalusite and active alumina as raw materials.The effect of TiO 2on sintering property and thermal shock of mullite ceramic was studied.The crystalline phase compositon ,lattice parameters and microstructure of ceramic were determined and observed by XRD ,SEM and related software.The results indicate that the mullite ceramic that Al 4.52Si 1.48O 9.74is the main phase can be produced by solid reaction at high temperature.The thermal shock resistance of mullite ceramic shaped by dry pressing was the best when the TiO 2addition was 2wt%.The sintering property of mullite ceramic can be promoted by TiO 2addition.The lattice parameters of main crystalline phase in mullite ceramic can be changed by Ti 4+doped.Mullite solid solution type can not be affected by Ti 4+doped.

Key words :mullite ceramic ;solid state reaction ;sintering property ;thermal shock resistance

收稿日期:2013-11-27;修订日期:2014-02-24基金项目:国家“十二五”科技支撑计划项目(2012BAB06B01);辽宁省高校杰出青年学者成长计划项目(LJQ2013032)作者简介:齐大彬(1972-),男,辽宁省人。E-mail :qdbinner@163.com 通讯作者:罗旭东。E-

mail :luoxd100@mail.tsinghua.edu.cn 1引言

莫来石因具有高熔点、低膨胀率、优良的抗蠕变性能和化学稳定性,因此传统应用主要是作为耐火材料

来砌筑窑炉和熔炉的内衬[1,2]

。随着高纯超细莫来石粉体烧结技术的进步,莫来石陶瓷作为高温工程陶瓷部件(如高温隔热部件、热交换器部件、保护管、高温垫板和喷嘴)得到更为广泛的应用。莫来石陶瓷烧结一

般采用常规烧结和反应烧结两种方式[3]

。常规烧结一般采用工业莫来石粉体为原料,在1500 1800?进行

DOI:10.16553/https://www.sodocs.net/doc/017392040.html,ki.issn1000-985x.2014.05.041

1224人工晶体学报第43卷

烧结[4,5]。由于莫来石晶格中Si4+和Al3+的互扩散速率非常小,因此如果采用电熔法和烧结法制得的莫来石粉体为原料制备莫来石陶瓷的烧结性很差[6-9]。而如果采用化学法合成的莫来石超细粉为原料,可以在1500 1700?烧结,并可获得相对密度大于96%的高纯莫来石结构陶瓷制品,典型溶胶凝胶法制备的莫来石粉末在1700?烧结时,可以获得理论密度为99%的莫来石制品[10-12]。而对于商业莫来石粉体压坯的固相烧结行为,得到制品的致密性相对较低,比较而言,烧结莫来石粉体的烧结活性高于熔融莫来石粉体[13-17]。反应烧结莫来石一般烧结温度较低,所制备的材料纯度、均匀性较好,原料通常为胶体或溶胶-凝胶法制备的莫来石前躯体粉体进行反应烧结。反应烧结莫来石陶瓷的显微结构和烧结机制与前躯体粉末烧结温度、Al2O3/SiO2比、烧结温度计HIP条件有关[18-24]。

课题借鉴莫来石陶瓷反应烧结机制,利用天然红柱石及活性氧化铝为主要原料,通过细磨、干压成型或等静压成型、高温烧成等工艺制备反应烧结莫来石陶瓷,重点研究TiO2对于反应烧结莫来石陶瓷烧结及热震稳定性的影响。

2实验

2.1原料

试验原料为天然红柱石和活性氧化铝,原料化学组成如表1所示。试验选用的天然红柱石为经过超细磨工艺制备的平均粒径为2.031μm的粉体,比表面积为3.89m2/g。试验选用的高活性氧化铝的平均粒径为3.765μm的微米级粉体,比表面积为2.52m2/g。

表1原料化学组成

Table1Chemical composition of raw materials/wt%Raw material Al2O3SiO2Fe2O3TiO2CaO MgO Na2O K2O

Andalusite60.837.90.420.100.050.100.100.15

Active alumina99.80.060.03---0.02-

2.2实验过程

试验基础配方(T0)为76wt%的红柱石和24wt%的活性氧化铝。在基础配方基础上,分别添加2wt%、

,配方编号T1 T4。按照表2所示试验配方,对物料进行共湿4wt%、6wt%和8wt%的四价金属氧化物TiO

2

磨处理,研磨介质为氧化铝研磨球和酒精。对研磨12h后浆料进行干燥,干燥制度为50?保温12h,干燥后物料加入12wt%的PVA溶液,造粒并过筛。成型采用两种方式:第一种为干压成型,试样大小60mm?60 mm?2 3mm,成型压力50MPa;第二种为等静压成型,在干压成型基础上,再进行等静压成型,成型压力200MPa。将成型后坯体在110?下,干燥12h,干燥后试样在1500?条件下烧成,保温3h。

表2TiO

对莫来石陶瓷性能影响试验配方

2

Table2Experimental formula of TiO

on property of mullite ceramic/wt%

2

T0T1T2T3T4 Andalusite7676767676

Corundum2424242424

TiO2-2468

2.3表征

利用Philips X'Pert-MPD型X射线衍射仪对烧后试样的相组成进行分析(CuKα1辐射,管压:40kV,管流:100mA,步长0.02?,扫描速度为4?·min-1,扫描范围10? 80?)。通过X射线衍射图中提供数据,并利用X射线衍射仪配套软件X'Pert Plus对烧后试样中主晶相莫来石的晶胞参数进行计算。利用日本电子JSM6480LV型扫描电镜对烧后试样的断口微观形貌进行观察。利用阿基米德排水法测定烧后试样的体积密度、显气孔率。试验通过常温耐压强度大小反映试样烧结性能,并且通过计算烧后试样热震前后(3次1100?水冷热循环)常温耐压强度保持率,间接评价莫来石陶瓷材料的抗热震稳定性。

第5期齐大彬等:TiO 2对固相反应制备莫来石陶瓷性能影响1225

3

结果与讨论

3.1

TiO 2对莫来石陶瓷材料组成的影响

图1加入TiO 2烧后试样XRD 图谱

Fig.1

XRD patterns of burned samples with TiO 2addition

图1所示为加入TiO 2的莫来石陶瓷烧后试样XRD 图谱。从图中XRD 图谱定性分析结果发现,T0配方烧后试样中主晶相为Al 4.52Si 1.48O 9.74莫来石固溶体,加入不同含量TiO 2的T1 T4莫来石陶瓷烧后试样中主晶相类型未发生变化。对图中衍射峰进行定性分析,发现结晶相组成中未出现有与TiO 2相关的化合物结晶相,说明TiO 2与莫来石固溶体形成固溶相的可能性较大。为说明Ti 4+

对反应烧结莫来石陶瓷材料制备过程的作用机理,试验对制备的莫来石陶瓷烧后试样的XRD 图谱进行拟合,计算莫来石固溶体相的晶胞参数和晶胞体积。

表3所示为反应烧结制备莫来石陶瓷试样中主晶相莫来石固溶体晶胞参数和晶胞体积。从表中晶胞参数和晶胞体积的变化趋势,可以看出,当TiO 2加入量小于6wt%时,随着TiO 2加入量增大,莫来石固溶体晶胞参数和晶胞体积呈现逐渐增大趋势。根据Baudin 等人研究TiO 2在莫来石中固溶范围为2 6wt%,

TiO 2进入莫来石固溶体过程中,只能是Ti 4+代替Al 3+或者是Ti 4+代替Si 4+,

但是根据Si 4+

(0.026nm )、Al 3+(0.053nm )和Ti 4+(0.061nm )的离子半径大小,发现Ti 4+更容易进入八面体间隙,引起晶格常数b 的增大[25]

从表2中T0 T3试样中莫来石固溶体晶胞参数b 的变化趋势,也可以看出晶胞参数b 变化趋势较为明显。

然而对于加入8wt%TiO 2的T4试样中莫来石固溶体晶胞参数和晶胞体积却出现减小趋势,

分析认为这与Ti 4+置换莫来石Al 3+过程中结构缺陷形式变化有关。当系统中引入少量TiO 2时,

Ti 4+置换Al 3+过程中所形成Ti ·Al 和O ''i ,

致使莫来石固溶体晶胞参数有所增大。当系统中TiO 2引入量增大到一定程度时,大量Ti 4+

置换Al 3+过程中形成Ti ·Al 和V '''

Al ,

空位的形成会导致莫来石固溶体晶胞参数减小。表3

主晶相莫来石固溶体晶胞参数

Table 3

Lattice parameters of mullite solid solution as main crystalline phase

Sample a /nm b /nm c /nm α=β=γ/(?)

Cell volume /nm 3

T00.75300.76730.288190

0.1664

T10.75380.76790.2885900.1670T20.75350.76780.2886900.1670T30.75460.76890.2889900.1677T4

0.7540

0.7682

0.2888

90

0.1673

3.2

TiO 2

对莫来石陶瓷材料微观结构影响

图2T0(a ,b )和T3(c ,d )烧后试样SEM 照片

Fig.2

SEM images of T0(a ,b )and T3(c ,d )samples burned

1226人工晶体学报第43卷

图2所示为干压成型的T0和T3坯体烧后试样SEM照片(500倍和3000倍)。试样内部形成了较大程度微小气孔,孔径大小在微米级别。分析认为反应烧结莫来石陶瓷所采用的原料天然红柱石和活性氧化铝粒径均较小,均在微米级别,烧后试样内部容易形成微米级孔隙。从图中T3试样放大500倍的断口显微结构,可以看出,莫来石陶瓷结构中微孔数量减少,微孔间距离增大,有些微孔明显为封闭气孔。从放大3000倍的显微结构照片可以看到,微孔结构中还有更为狭小的微孔结构,结构相对均匀,结构中依稀出现莫来石典型的柱状晶相。与0#试样相比,T3试样的结构致密性更好,结构中微孔数量减少,结晶相直接结合程度更高。为了更好说明TiO2添加剂对莫来石陶瓷材料的助烧作用,试验对各配方试样干压成型和等静压成型的烧后试样体积密度和显气孔率进行了检测。

3.3TiO

对莫来石陶瓷材料体积密度和显气孔率的影响

2

图3所示为TiO2对干压成型和等静压成型莫来石陶瓷烧后试样体积密度和显气孔率的影响图。从图中莫来石陶瓷烧后试样体积密度的变化趋势,了解到采用干压成型和等静压成型的莫来石陶瓷烧后试样体积密度与TiO2加入量几乎成线性关系。干压成型莫来石陶瓷的体积密度的斜率高于等静压成型试样的体积密度增大斜率,同时发现,烧后试样的显气孔率随着TiO2加入量的增大而逐渐减小,显气孔率的减小趋势与TiO2加入量同样接近线性趋势。当TiO2加入量为8wt%时,等静压成型和干法成型莫来石陶瓷烧后体积密度分别为2.92g/cm3、2.82g/cm3。等静压成型莫来石陶瓷烧后体积密度普遍高于干压成型试样体积密度,说明了增大反应烧结面积有利于实现莫来石陶瓷的烧结致密性。

图3TiO2对反应烧结莫来石陶瓷体积密度和显气孔率的影响

Fig.3Effect of TiO

on bulk density and apparent porosity of reaction mullite ceramic

2

图4TiO2对莫来石陶瓷材料热震前后常温耐压强度及其保持率的影响

Fig.4Effect of TiO

on CCS and the retention of CCS before and after thermal shock of mullite ceramics

2

3.4TiO

对莫来石陶瓷材料烧结性及热震稳定性的影响

2

图4所示为TiO2对莫来石陶瓷材料热震前后常温耐压强度及其保持率的影响图。图中分别列出莫来石陶瓷通过干压和等静压两种成型方式烧后试样的常温耐压强度与TiO2加入量之间的关系。TiO2对莫来石陶瓷烧后常温强度的影响与TiO2对莫来石陶瓷体积密度的影响规律相类似,烧后试样常温强度随着TiO2

第5期齐大彬等:TiO2对固相反应制备莫来石陶瓷性能影响1227

加入量增大而逐渐增大,等静压成型试样烧后常温强度增大趋势更为显著,然而试样热震后常温强度保持率却随着TiO2加入量增大而逐渐减小。从干压成型烧后试样的热震前后常温耐压强度保持率就可以明显看出,大于2wt%的TiO2引入,不利于干压成型莫来石陶瓷材料的热震稳定性。而对于采用等静压成型的莫来石陶瓷材料,引入TiO2是完全不利于材料的热震稳定性的提高。分析结果说明反应烧结莫来石陶瓷的热震稳定性与烧后材料的致密度存在一定的矛盾关系。

4结论

(1)以天然红柱石和活性氧化铝为原料,通过超细磨工艺,干压成型和等静压成型工艺,经1500?保温2h,通过高温固相反应可以制备出以莫来石固溶体为主晶相的反应烧结莫来石陶瓷。

(2)TiO

对于反应烧结莫来石陶瓷均起到促烧结作用,随着TiO2加入量增大,反应烧结莫来石陶瓷体2

积密度和常温耐压强度逐渐增大。

(3)掺杂6wt%的Ti4+导致反应烧结莫来石陶瓷材料中主晶相莫来石固溶体晶胞参数和晶胞体积最大,固溶体类型始终保持Al4.52Si1.48O9.74结构。

(4)适量引入TiO

有利于提高干压成型的反应烧结莫来石陶瓷热震稳定性。

2

参考文献

[1]Kong L B,Chen Y Z,Zhang T S,et al.Effect of Alkaline-earth Oxides on Phase Formation and Morphology Development of Mullite Ceramics [J].Ceramics International,2004,30(7):1319-1323.

[2]吴任平,于岩,阮玉忠.矿化剂对铝厂污泥和硅微粉合成莫来石的影响[J].硅酸盐学报,2007,35(8):1092-1094.WuRP,Yu Y,Ruan Y Z.Effect of Mineralizers on Synthesis of Mullite from Waste Aluminum Slag and Silica fume[J].Journnal of the Chinese Ceramic Society,2007,35(8):1092-1094(in Chinese).

[3]Boccaccini AR,Bücker M,Kahlil T K,et al.Fabrication of Mullite Ceramics byRotary Forging and Pressureless Sintering[J].Journal of the European Ceramic Society,1999,19(15):2613-2618.

[4]Ji H P,Fang M H,Huang Z H,et al.Effect of La2O3Additives on the Strength and Microstructure of Mullite Ceramics Obtained from Coal Gangue andγ-Al2O3[J].Ceramics International,2013,39(6):6841-6846.

[5]Hamidouche M,Bouaouadja N,Olagnon C,et al.Thermal Shock Behaviour of Mullite Ceramic[J].Ceramics International,2003,29(6):599-609.

[6]于岩,阮玉忠.莫来石固溶体Al4+2x Si2-2x O10-x合成与晶体缺陷表征[J].硅酸盐学报,2006,34(9):1041-1045.Yu Y,Ruan Y Z.Synthesis of Mullite Solid Solution Al4+2x Si2-2x O10-x and Characterization of Its Crystal Defects[J].Journnal of the Chinese Ceramic Society,2006,34(9):1041-1045(in Chinese).

[7]Basu A K,Mitra A,Ghatak S,Synthesis of a Powder Precursor in the Form of Hydroxyhydrogel forReaction Sintering of BN-mullite Composite [J].Ceramics International,2006,32(2):213-219.

[8]Souto P M,MenezesRR,KiminamiRH G A.Effect of Y2O3Additive on Conventional and Microwave Sintering of Mullite[J].Ceramics International,2011,37(1):241-248.

[9]Maitra S,Pal S,Nath S,et al.Role of MgO and Cr2O3Additives on the Properties of Zirconia-mullite composites[J].Ceramics International,2002,28(7):819-826.

[10]Mitra N K,Maitra S,Gnanabharathi D,et al.Effect of Cr2O3on the Sintering of Aluminosilicate Precursor Leading to Mullite Formation[J].Ceramics International,2001,27(3):277-282.

[11]Moo-Chin W,Nan-Chung W,Sheng Y,et al.Morphology and Microstructure in the Sintering of-spodumene Precursor Powders with TiO2 Additive[J].Journal of the European Ceramic Society,2003,23(3):437-443.

[12]Sanad M M S,Rashad M M,Abdel-Aal E A,et al.Mechanical,Morphological and Dielectric Properties of Sintered Mullite Ceramics at Two Different HeatingRates Prepared from Alkaline Monophasic Salts[J].Ceramics International,2013,39(2):1547-1554.

[13]Sasmita P,Mishra D K,Mohapatra B K,et al.Effect of MgO in the Microstructure Formation of Zirconia Mullite Composites from Sillimanite and Zircon[J].Ceramics International,2012,38(3):2363-2368.

[14]She J H,Mechnich P,Schmücker M,et al.Low-temperatureReaction-sintering of Mullite Ceramics with an Y2O3Addition[J].Ceramics International,2001,28(7):847-852.

[15]She J H,Mechnich P,Schmücker M,et al.Reaction-bonding Behavior of Mullite Ceramics with Y2O3Addition[J].Journal of the European

1228人工晶体学报第43卷

Ceramic Society,2002,22(3):323-328.

[16]Ebadzadeh T,Sarrafi M H,Salahi E.Microwave-assisted Synthesis and Sintering of Mullite[J].Ceramics International,2009,35(8):3175-3179.

[17]Wang X,Li J H,Tong L X,et al.Phase Evolution and Dynamics of Cerium-doped Mullite Whiskers Synthesized by Sol-gel Process[J].Ceramics International,2013,39(8):9677-9681.

[18]孔德钰,陈立宗,吕乃伟,等.Fe2O3含量对SiO2-Al2O3-MgO-F系微晶玻璃析晶特征的影响[J].人工晶体学报,2013,42(8):1649-1652.Kong D Y,Chen L Z,Lv N W,et al.Influence of Fe2O3Content on the Crystallization of SiO2-Al2O3-MgO-F Glass Ceramic[J].Journal of Synthetic Crystals,2013,42(8):1649-1652(in Chinese).

[19]Yung-Feng C,Moo-Chin W,Min-Hsiung H.Phase Transformation and Growth of Mullite in Kaolin Ceramics[J].Journal of the European Ceramic Society,2004,24(8):2389-2397.

[20]Zeng J X,Ruan Y Z,Chen YR,et al.Effect of Na2SiF6on Preparing Mullite Material with Sluge from the Aluminum Profile Factory and Pyrophyllite[J].Chinese Journal of Structure Chemical,2010,29(10):1562-1566.

[21]Zhou M H,Ferreira J M F,Fonseca A T,et al.Sintering of Mullite-alumina Composites from Diphasic Precursors[J].Ceramics International,1999,25(4):325-330.

[22]Bai J H.Fabrication and Properties of Porous Mullite Ceramics from Calcined Carbonaceous Kaolin andα-Al2O3[J].Ceramics International,2010,36(2):673-678.

[23]诸华军,姚晓,郭宗艳,等.透辉石改性粉煤灰基莫来石的性能和微观结构[J].人工晶体学报,2013,42(10):2092-2098.Zhu H J,Yao X,Guo Z Y,et al.Properties and Microstructure of Fly Ash Based Mullite Modified by Diopside[J].Journal of Synthetic Crystals,2013,42(10):2092-2098(in Chinese).

[24]申见昕,杨得鑫,陈永博,等.反应温度对低品位铝矾土和钛铁矿制备β-Sialon/Ti(C,N)复相粉体的影响[J].人工晶体学报,2013,42(3):470-474.

Shen J X,Yang D X,Chen Y B,et al.Effect ofReaction Temperature on the Synthesis ofβ-Sialon/Ti(C,N)Composites from Low Grade Bauxite and Ilmenite[J].Journal of Synthetic Crystals,2013,42(3):470-474(in Chinese).

[25]Baudín C,Osendi M I,Moya J S.Solid Solution of TiO2in Mullite[J].Journal of Materials Science Letters,1983,2(5):

185-187.櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒·信息·

中国科大提出一种纳米线界面掺杂的新策略近日,中国科学技术大学微尺度物质科学国家实验室在界面掺杂调控研究中取得新进展,实现了ZnO 单纳米线光电性能优质集成。相关研究成果发表在5月21日出版的Adv.Mater.杂志上。

ZnO纳米线有着完美的光学纳腔结构和室温下丰富的多量子态耦合作用,不仅是凝聚态物理和量子光学领域的重要研究对象,也是纳米尺度紫外光子学和光电器件的候选材料之一。要实现纳米尺度的优质紫外光源,必须使ZnO纳米线同时拥有高效的带边发光和优良的电学性质,但现有的体掺杂方式难以同时满足上述要求。这是因为优良的电学性质要求材料通过掺杂提供浓度足够高的自由载流子,而过多的掺杂必将导致带边辐射复合效率的显著下降。

针对上述挑战,研究人员提出了一种新颖的纳米线界面掺杂策略,通过发展CVD再生长技术,制备出具有“核-界面-壳”结构的ZnO纳米线,其电导率高达4?104S/m,比常规纳米线提高一个量级以上,且其带边发光强度也高出一个量级。通过进一步的高分辨表征发现:界面Zn掺杂提供高浓度的自由电子,这些自由电子在界面区域形成准二维电子气,导致优异的电学性能;同时,界面层又会显著减少激子向纳米线表面耗尽层扩散并被消解的几率,从而提高激子的带边发射效率。

新的策略打破了传统ZnO材料光电性能的内在相互制约,实现了高效带边发光和优良电学性能在单纳米线内的优质集成,这将对设计和制备基于ZnO的高性能纳米光电器件具有重要的指导意义。论文的第一作者是该国家实验室博士生丁怀义。

(来源:中国科学技术大学)

大学物理实验报告5

【实验题目】声速得测定班级姓名学号 上课日期 2015年月日教室房间组号 任课教师签字: 最终成绩: 【实验目得】 1.了解压电陶瓷换能器得功能 2.了解超声波产生与接收得原理 3.学会用共振干涉法与相位比较法与时差法测定声速。 【实验原理】 1.压电传感器得工作原理。 2.共振干涉(驻波)法测量波长得原理。 3.相位比较法测量波长得原理。 4、时差法测量声速得原理:声波传播得距离L与传播得时间t存在下列关系:L=V*t ,只要测出L与t就可测出声波传播得速度V。通过测量二换能器发射接收平面之间距离L与时间t ,就可以计算出当前介质下得声波传播速度。 固体中得纵波声速: 铝:C棒=5150m/s, 有机玻璃:C棒=1500~2200m/s。 5、固体介质中得声速测量 在固体中传播得声波就是很复杂得,它包括纵波、横波、扭转波、弯曲波、表面波等,而且各种声速都与固体棒得形状有关,金属棒一般为各向异性结晶体,沿任何方向可有三种波传播。所以本仪器实验时采用同样材质与形状得固体棒。固体介质中得声速测量需另配专用得SVG固体测量装置,用时差法进行测量。实验提供两种测试介质:有机玻璃棒与铝棒。每种材料有长50mm三根样品,只需将样品组合成不同长度测量两次,即可按上面得方法算出声速: 1 1 i i i i i L L v t t - - - = - (5-2-11) 图5-2-5 测量固体介质中声速得接线图 (1)按图5-2-5连接线路,将测试方法设置到“脉冲波”方式。 (2)将接收增益调到适当位置(一般为最大位置),以计时器不跳字为好。将发射换能器发射端面朝上竖立放置于托盘上,在换能器端面与固体棒得端面上涂上适量得耦合剂,再把固体棒放在发射面上,使其紧密接触并对准,然后将接收换能器接收端面放置于固体棒得上端面上并对准,利用接收换能器得自重与固体棒端面接触。 (3)记录计时器得读数为t i-1(时间由声速测试仪信号源时间显示窗口直接读出),固体棒得长度为L i-1。 (4)移开接收换能器,将另1根固体棒端面上涂上适量得耦合剂,置于下面一根固体棒之上,并保持良好接触,再放上接收换能器,这时计时器得读数为t i,固体棒得长度为L i。测量超声波在不同固体介质中传播

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

大学物理实验报告思考题部分答案 周岚

实验十三 拉伸法测金属丝的扬氏弹性摸量 【预习题】 1.如何根据几何光学的原理来调节望远镜、光杠杆和标尺之间的位置关系?如何调节望远镜? 答:(1)根据光的反射定律分两步调节望远镜、光杠杆和标尺之间的位置关系。第一步:调节来自标尺的入射光线和经光杠杆镜面的反射光线所构成的平面大致水平。具体做法如下:①用目测法调节望远镜和光杠杆大致等高。②用目测法调节望远镜下的高低调节螺钉,使望远镜大致水平;调节光杠杆镜面的仰俯使光杠杆镜面大致铅直;调节标尺的位置,使其大致铅直;调节望远镜上方的瞄准系统使望远镜的光轴垂直光杠杆镜面。第二步:调节入射角(来自标尺的入射光线与光杠杆镜面法线间的夹角)和反射角(经光杠杆镜面反射进入望远镜的反射光与光杠杆镜面法线间的夹角)大致相等。具体做法如下:沿望远镜筒方向观察光杠杆镜面,在镜面中若看到标尺的像和观察者的眼睛,则入射角与反射角大致相等。如果看不到标尺的像和观察者的眼睛,可微调望远镜标尺组的左右位置,使来自标尺的入射光线经光杠杆镜面反射后,其反射光线能射入望远镜内。 (2)望远镜的调节:首先调节目镜看清十字叉丝,然后物镜对标尺的像(光杠杆面镜后面2D 处)调焦,直至在目镜中看到标尺清晰的像。 2.在砝码盘上加载时为什么采用正反向测量取平均值的办法? 答:因为金属丝弹性形变有滞后效应,从而带来系统误差。 【思考题】 1.光杠杆有什么优点?怎样提高光杠杆测量微小长度变化的灵敏度? 答:(1)直观 、简便、精度高。 (2)因为 D x b L 2?=?,即b D L x 2=??,所以要提高光杠杆测量微小长度变化的灵敏度L x ??,应尽可能减小光杠杆长度b (光杠杆后支点到两个前支点连线的垂直距离),或适当增大D (光杠杆小镜子到标尺的距离为D )。 2.如果实验中操作无误,得到的数据前一两个偏大,这可能是什么原因,如何避免? 答:可能是因为金属丝有弯曲。避免的方法是先加一两个发码将金属丝的弯曲拉直。 3.如何避免测量过程中标尺读数超出望远镜范围? 答:开始实验时,应调节标尺的高低,使标尺的下端大致与望远镜光轴等高,这样未加砝码时从望远镜当中看到的标尺读数接近标尺的下端,逐渐加砝码的过程中看到标尺读数向上端变化。这样就避免了测量

实验十二 压电陶瓷压电性能测定

实验十二压电陶瓷压电性能测定 实验名称: 压电陶瓷压电性能测定 实验项目性质: 普通实验 所涉及课程: 电子材料 计划学时:2学时 一、实验目的 1.了解压电常数的概念和意义; 2.掌握压电陶瓷压电常数的测定方法。 3.学会操作ZJ-3AN型准静态d33测量仪。 二、实验内容 1.实验老师介绍使用压电常数测量仪测试d33的原理与步骤; 2.测试压电陶瓷的压电常数。 三、实验(设计)仪器设备和材料清单 ZJ-3AN型准静态d 33测量仪、压电陶瓷晶片等。 四、实验原理 压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,是一种具有压电效应的材料。

当在某一特定方向对晶体施加应力时,在与应力垂直方向两端表面能出现数量相等、符号相反的束缚电荷,这一现象被称为“正压电效应”。 逆压电效应: 当一块具有压电效应的晶体置于外电场中,由于晶体的电极化造成的正负电荷中心位移,导致晶体形变,形变量与电场强度成正比。 压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦合的线性响应系数。通常用d ij表示,下标中第一个数字代表电场方向或电极面的垂直方向,第二个数字代表应力或应变方向。 五、实验步骤 (1)用两根多芯电缆把测量头和仪器本体连接好,接通电源。 (2)把Φ20尼龙片插入测量头的上下探头之间,调节手轮,使尼龙片刚好压住为止。 (3)把仪器后面板上的“显示选择”开关置于“d 33”一侧,此时面板右上方绿灯亮。 (4)把仪器后面板上的“量程选择”开关置于“×1”档。 (5)按下“快速模式”,仪器通电预热10分钟后,调节“调零”旋钮使面板表指示在“0”与“-0”之间跳动。调零即完成,撤掉尼龙片开始测量。 (6)依次接入待测元件,表头显示d 33结果及正负极性,记录。 (7)取三次测量的平均值。 六、实验报告要求 1.实验目的;

压电陶瓷性能参数解析

压电陶瓷性能参数解析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在机械自由条件下,测得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。 根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗 介质损耗是包括压电陶瓷在内的任何介质材料所 具有的重要品质指标之一。在交变电场下,介质 所积蓄的电荷有两部分:一种为有功部分(同 相),由电导过程所引起的;一种为无功部分 (异相),是由介质弛豫过程所引起的。介质损 耗的异相分量与同相分量的比值如图1-1所示, Ic为同相分量,IR为异相分量,Ic与总电流I 的夹角为δ,其正切值为 (1-4) 式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,I R大时,tanδ也大;I R小时tanδ也小。通常用 tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。 处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。 (3)弹性常数 压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的

压电陶瓷综合实验

信息功能陶瓷材料综合实验 高春华黄新友 江苏大学材料科学与工程学院

序言 “信息功能陶瓷材料综合实验”是为大学生“陶瓷工艺学”、“无机材料物理性能”、“电子元器件概论”和“无机材料研究方法”等课程及实验编写的。 本实验是由十个综合实验所组成的系列实验,包括材料工艺实验:配料与混合、可塑法成型工艺、主晶相的固相法合成、硅碳棒电炉的使用、陶瓷的金属化与封接、压电陶瓷的极化等;材料性能评价实验:差热分析、陶瓷介电性能的测定、陶瓷压电性能的测定、PTC热敏陶瓷阻温特性测定等,以及进行信息功能陶瓷材料研究所需的基本技术实验。通过此系列实验,能使学生全面掌握信息功能陶瓷材料的研究和生产的整套生产工艺过程。 一实验目的 信息功能陶瓷材料综合实验,起着验证和巩固基本理论的作用,并可培养学生掌握有关材料的基本研究方法,是加强理论联系实际的重要环节之一。而且,也能够训练实验操作技能,培养分析、综合与处理实验数据的能力,能对提高学生的综合素质、动手能力、创新能力越到重要的促进作用。 二实验要求 实验前应该作好充分准备,弄清实验原理、实验目的、要求以及实验条件和可能产生偏差的因素等。 实验过程中应该操作准确、观察细心、正确地记录有关实验数据,并将实验过程中的异常现象及时记录下来。 实验数据的可靠性是分析与阐明实验结果,并作出必要结论的关键所在,所以在整个实验过程中,都应注意将实验误差限制在尽可能小的范围内,因此,对每一实验的操作、读数、记录都应认真对待,一丝不苟。 三注意事项 1.自觉遵守实验室规则。 2.实验前应根据实验讲义进得充分准备,实验前经老师提问合格后,方可开始实验。 3.实验过程中,严肃认真,保持实验室安静。严格按操作规程进行,注意安全,爱护仪器。 4.实验时,每个学生都应了解、掌握整个实验过程。 5.实验完毕,必须将实验记录交教师检查,合格者方可结束实验,不合格者重新进行实验。 6.每人必须认真填写一份实验报告,实验报告除包括必要的实验目的及原理以外,还应包括原始数据、计算方法、必要的数据表格与图形,主要的实验过程等。另外,还应对实验结果作必要的讨论,分析引起偏差的原因。书写应清楚整洁。7.实验时应保持实验台整洁,实验结束后应整理仪器,作好室内清洁卫生。

电子工程师必备知识

电子工程师的设计经验笔记(经典) 关键字:电子工程师设计经验 电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 更多阅读:电容性负载的稳定性—具有双通道反馈的RISO(1) 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。

电子材料实验报告

锆钛酸钡电子陶瓷材料的制备 前言 电子陶瓷是指以电、磁、光、声、热、力、化学和生物等信息的检测、转换、耦合、传输及存储等功能为主要特征的陶瓷材料,主要包括压电、介电、离子导体、超导和磁性陶瓷等。电子陶瓷在小型化和便携式电子产品中占有十分重要的地位,世界各国元器件生产企业都在电子陶瓷及其元器件的新产品、新技术、新工艺、新材料、新设备方面投入巨资进行研究开发。每年都有大量新型功能陶瓷材料及元器件问世。近年来,在国家诸多重点科研计划的支持和推动下,我国在电子陶瓷材料的科学研究与产业化方面有很大发展,但总体来看,我国的电子信息产业,特别是一些附加价值高、技术含量高的新型电子信息产品和一些基础电子产品的生产水平与发达国家相比仍存在很大差距,不少高端产品在相当大的程度上被外资企业所控制。国外的大公司如日本的村田、松下、京都陶瓷,美国的摩托罗拉等近年来长驱直入中国市场,目前已占据了国内片式元器件特别是高档片式元器件市场相当大的份额。我国信息产业正面临着产品升级换代的机遇和挑战。 随着电子信息技术的高速发展,电子陶瓷材料应用领域正在从传统的消费类电子产品转向数字化的信息产品,包括通信设备、计算机和数字化音视频设备等,数字技术对陶瓷元器件提出了一系列特殊的要求。为了满足这些要求,世界各国的大学、研究机构和企业都在以信息技术为应用领域的功能陶瓷新材料、新工艺、新产品方面投入巨资进行研究开发。 传统电子陶瓷材料在电子工业、微电子工业等领域中已经获得了广泛的应用,为高科技发展和国民经济繁荣做出了卓越的贡献。目前这类材料的研究领域主要是利用先进的材料制备技术来进一步改善和提高性能。 钛酸钡BaTi03是一种被普遍研究的具有钙钛矿结构的铁氧体,因其优良的介电性能,在电容器件等方面具有广泛的应用。为了增加介电常数的可调性,降低介电损耗,往往通过掺杂的方法,如用化学性能更为稳定的Zr4+,取代Ti4+,得到锆钛酸钡Ba(Ti0.95 Zr0.05) 03( BZT)。传统的烧结陶瓷方法多采用固相反应烧结。大致分为:热压烧结,热等静压烧结,微波烧结,超高压烧结,真空烧结,气氛烧结,原位加压成型烧结等。本文研究用固相反应法烧结锆钛酸钡压电陶瓷及其特性分析。 实验过程 本实验采用固相烧结法,即固体粉末在高温环境各自分子扩散形成陶瓷化学结

压电陶瓷测量基本知识

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1 、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,I C为同相分量,I R为异相分量,I C与总电流I的夹角为,其正切值为

2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时, 材料内部能量消耗程度的一个参数, 它也是衡 量压电陶瓷材料性能的一个重要参数。 机械品质因数越大, 能量的损耗越小。产生能量损耗 的原因在于材料的内部摩擦。机械品质因数 Q m 的定义为: 谐振时振子储存的机械能 c Qm 谐振时振子每周所 损失的机械能 2 兀 机械品质因数可根据等效电路计算而得 式中 R 1为等效电阻 (Q ) , s 为串联谐振角频率(Hz ), C 1为振子谐振时的等效电容 (F ),L 1为振子谐振时的等效电感。 Q m 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的 Q m 值的要求不同,在大多数的场合下(包括声波 测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的 Q m 值要高。 3、压电常数 压电陶瓷具有压电性, 即在其外部施加应力时能产生额外的电荷。 其产生的电荷与施加 tan 1 CR 其中3为交变电场的角频率, R 为损耗电阻,C 为介质电容。 s R 1C 1 s L 1 图1交流电路中电压-电流矢量图(有损耗时)

压电陶瓷振动的干涉测量实验报告

一、实验目 压电陶瓷振动的干涉测量实验报告 的与实验仪 器 1.实验目的 (1)了解压电陶瓷的性能参数;? (2)了解电容测微仪的工作原理,掌握电容测微仪的标定方法; ? (3)、掌握压电陶瓷微位移测量方法。 2.实验仪器 压电陶瓷材料(一端装有激光反射镜,可在迈克尔逊干涉仪中充当反射镜)、光学防震平台、半导体激光器、双踪示波器、分束镜、反射镜、二维可调扩束镜、白屏、驱动电源、光电探头、信号线等。 二、实验原理 1. 压电效应 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释。晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象,因此压电陶瓷的压电性与极化、形变等有密切关系。 1) 正压电效应:压电晶体在外力作用下发生形变时,正、负电荷中心发生相对位移,在某些相对应的面上产生异号电荷,出现极化强度。对于各向异性晶体,对晶体施加应力时,晶体将在 X,Y,Z 三个方向出现与应力成正比的极化强度,即: E = g·T(g为压电应力常数), 2) 逆压电效应:当给压电晶体施加一电场 E 时,不仅产生了极化,同时还产生形变,这种由电场产生形变的现象称为逆压电效应,又称电致伸缩效

应。这是由于晶体受电场作用时,在晶体内部产生了应力(压电应力),通过应力作用产生压电应变。存在如下关系: S = d·U(d为压电应变常数) 对于正和逆压电效应来讲, g和d 在数值上是相同的。 2. 迈克耳逊干涉仪的应用 迈克耳逊干涉仪可以测量微小长度。上图是迈克耳逊干涉仪的原理图。分光镜的第二表面上涂有半透射膜,能将入射光分成两束,一束透射,一束反射。分光镜与光束中心线成 45°倾斜角。M1和 M2为互相垂直并与分束镜都成 45°角的平面反射镜,其中反射镜 M1后附有压电陶瓷材料。 由激光器发出的光经分光镜后,光束被分成两路,反射光射向反射镜 M1(附压电陶瓷),透射光射向测量镜 M2(固定),两路光分别经 M1、M2反射后,分别经分光镜反射和透射后又会合,经扩束镜到达白屏,产生干涉条纹。M1和 M2与分光镜中心的距离差决定两束光的光程差。因而通过给压电陶瓷加电压使 M1随之振动,干涉条纹就发生变化。由于干涉条纹变化一级,相当于测量镜 M1移动了λ/2,所以通过测出条纹的变化数就可计算出压电陶瓷的伸缩量。 三、实验步骤 1)将驱动电源分别与光探头,压电陶瓷附件和示波器相连,其中压电陶瓷 附件接驱动电压插口,光电探头接光探头插口,驱动电压波形和光探头波形插口分别接入示波器 CH1 和 CH2; 2)在光学实验平台上搭制迈克尔逊干涉光路,使入射激光和分光镜成 45 度,反射镜 M1 和 M2与光垂直,M1 和 M2 与分光镜距离基本相等;

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

实验十二 压电陶瓷压电性能测定

实验十二压电陶瓷压电性能测定 实验名称:压电陶瓷压电性能测定 实验项目性质:普通实验 所涉及课程:电子材料 计划学时:2学时 一、实验目的 1.了解压电常数的概念和意义; 2.掌握压电陶瓷压电常数的测定方法。 3.学会操作ZJ-3AN型准静态d33测量仪。 二、实验内容 1. 实验老师介绍使用压电常数测量仪测试d33的原理与步骤; 2. 测试压电陶瓷的压电常数。 三、实验(设计)仪器设备和材料清单 ZJ-3AN型准静态d33测量仪、压电陶瓷晶片等。 四、实验原理 压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,是一种具有压电效应的材料。 当在某一特定方向对晶体施加应力时,在与应力垂直方向两端表面能出现数量相等、符号相反的束缚电荷,这一现象被称为“正压电效应”。 逆压电效应:当一块具有压电效应的晶体置于外电场中,由于晶体的电极化造成的正负电荷中心位移,导致晶体形变,形变量与电场强度成正比。 压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦合的线性响应系数。通常用d ij 表示,下标中第一个数字代表电场方向或电极面的垂直方向,第二个数字代表应力或应变方向。 五、实验步骤 (1)用两根多芯电缆把测量头和仪器本体连接好,接通电源。 (2)把Φ20尼龙片插入测量头的上下探头之间,调节手轮,使尼龙片刚好压住为止。(3)把仪器后面板上的“显示选择”开关置于“d33”一侧,此时面板右上方绿灯亮。(4)把仪器后面板上的“量程选择”开关置于“×1”档。 (5)按下“快速模式”,仪器通电预热10分钟后,调节“调零”旋钮使面板表指示在“0”与“-0”之间跳动。调零即完成,撤掉尼龙片开始测量。 (6)依次接入待测元件,表头显示d33结果及正负极性,记录。 (7)取三次测量的平均值。 六、实验报告要求

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。 (一)压电陶瓷得主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。 (2)压电陶瓷得主要参数 1、介质损耗 介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。

图1 交流电路中电压电流矢量图(有损耗时) 2、机械品质因数 机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。机械品质因数越大,能量得损耗越小。产生能量损耗得原因在于材料得内部摩擦。机械品质因数得定义为: 机械品质因数可根据等效电路计算而得 式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。与其它参数之间得关系将在后续详细推导。 不同得压电器件对压电陶瓷材料得值得要求不同,在大多数得场合下(包括声波测井得压电陶瓷探头),压电陶瓷器件要求压电陶瓷得值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外得电荷。其产生得电荷与施加得应力成比例,对于压力与张力来说,其符号就是相反得,电位移D(单位面积得电荷)与应力得关系表达式为: 式中Q 为产生得电荷(C),A 为电极得面积(m2),d 为压电应变常数(C/N)。在逆压电效应中,施加电场 E 时将成比例地产生应变S,所产生得应变S 就是膨胀还就是收缩,取决于样品得极化方向。 S=dE 两式中得压电应变常数d 在数值上就是相同得,即 另一个常用得压电常数就是压电电压常数g,它表示应力与所产生得电场得关系,或应变与所引起得电位移得关系。常数g 与 d 之间有如下关系: 式中为介电系数。在声波测井仪器中,压电换能器希望具有较高得压电应变常数与压电电压常数,以便能发射较大能量得声波并且具有较高得接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电得方法把能量加到压电材料上时,由于压电效应与逆压电效应,机械能(或电能)中得一部分要转换成电能(或机械能)。这种转换得强弱用机电耦合系数k 来表示,它就是一个量纲为一得量。机电耦合系数就是综合反映压电材料性能得参数,它表示压

压电陶瓷实验报告

压电陶瓷微位移性能测量实验报告 一、实验目的: 1、了解压电陶瓷的性能参数; 2、了解电容测微仪的工作原理,掌握电容测微仪的标定方法; 3、掌握压电陶瓷微位移测量方法; 二、实验仪器: 电容测微仪一台:型号JDC-2000测微台架一台:型号BCT-5C,斜度1:50直流调压器一台:电压量程(0~300V)标定平铁板一块压电陶瓷管一根 三、实验原理: (一)利用测微台架标定电容测微仪 在测微台架的台架上放置一金属平板,将电容测微仪探头用测微台架夹紧,使探头的端面与平板平行,见图1,移动测微台架的旋钮,分别读出测微仪移动示值和电容测微仪的示值。这样得到一组数据即可对电容测微仪进行标定。 图1 电容侧微仪标定原理图 (二)用标定后的电容测微仪测量压电陶瓷管的线性度 在电容测微仪的线性区(对应机械标定仪的某个位置),通过可调直流电源按一定间隔改变直流电压(见图2),分别对压电陶瓷加压,使之分别产生轴向变形(见图3)和弯曲变形(见图4),从而得到压电陶瓷的伸长与偏转量与施加其上的电压的关系。

图2 可调高压电源图3 测压电陶瓷轴向伸缩图4测压电陶瓷侧向弯曲 四、实验步骤 (一)标定电容测微仪的线性度 1、实验前,了解实验原理及其实验注意事项,并检查实验仪器是否齐全。 2、使用仪器前,将传感器端面与被测物(标定平铁板)表面用汽油认真清洗干净,以清洗掉杂质及灰尘微粒;而后将电源线和传感器与电缆分别连接好并拧紧。 3、将标定平铁板安放在测微台架的台架上,而后用夹具将电容传感器探头夹紧,接着上下调整探头使探头与标定平铁板距离接近测量区。 4、为便于进行数据分析,可将测微台架示值调至某一合适值,并将电容测微仪示值调零,而后进行实验;实验采用一人细调(等间距)测微台架,另一人记录的方式,为了标定线性区,测定线性误差,调值采用先等间距调至140μm,再等间距调回的方法。(为了节约时间,调值范围为0~140μm,调值间距为5μm,共计读29个数。)5、实验完成后,调整测微台架使探头远离标定平板到合适位置,取下标定平板(并估算找出电容测微仪的线性工作区,我们找的较为好的线性工作区是0~100μm)以进行压电陶瓷的性能及其微位移测量的实验。 (二)、压电陶瓷加电时的性能及其微位移测量 测压电陶瓷轴向伸缩: 1、将压电陶瓷的中线(Z)接至变压器的U+端,两边的两个接线头均接至变压器的地接口端(GND)。 2、将压电陶瓷小心垂直轻放在测微台架的台架上(如图3),并将探头靠近压电陶瓷至电容测微仪线性工作区(注:应先粗调而后细调以使电容测微仪示值在6~94μm以内,

压电陶瓷参数整理

压电材料的主要性能参数 (1) 介电常数ε 介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求材料的介电常数要小。 介电常数ε与元件的电容C ,电极面积A 和电极间距离t 之间的关系为 ε=C ·t/A 式中C ——电容器电容;A ——电容器极板面积;t ——电容器电极间距 当电容器极板距离和面积一定时,介电常数ε越大,电容C 也就越大,即电容器所存储电量就越多。由于所需的检测频率较低,所以ε应大一些。因为ε大,C 就相应大,电容器充放电时间长,频率就相应低。 (2)压电应变常数 压电应变常数表示在压电晶体上施加单位电压时所产生的应变大小: 31(/)t d m V U = 式中 U ——施加在压电晶片两面的压电; △t ——晶片在厚度方向的变形。 压电应变常数33d 是衡量压电晶体材料发射性能的重要参数。其值大,发射性能好,发射灵敏度越高。 (3)压电电压常数33g 压电电压常数表示作用在压电晶体上单位应力所产生的压电梯度大小: 31(m/N)P U g V P =? 式中 P ——施加在压电晶片两面的应力; P U —— 晶片表面产生的电压梯度,即电压U 与晶片厚度t 之比,P U =U/t 。 压电电压常数33g 是衡量压电晶体材料接收性能的重要参数。其值大,接收性能好,接收灵敏度高。 (4)机械品质因数 机械品质因数也是衡量压电陶瓷的一个重要参数。它表示在振动转换时材料内部能量消耗的程度。产生损耗的原因在于内摩擦。

m E E θ=储损 m θ值对分辨力有较大的影响。机械品质因数越大,能量的损耗越小,晶片持 续振动时间长,脉冲宽度大,分辨率低。 (5)频率常数 由驻波理论可知,压电晶片在高频电脉冲激励下产生共振的条件是: 0 22L L C t f λ== 式中 t ——晶片厚度;L λ——晶片中纵波波长;L C ——晶片中纵波的波速; 0f ——晶片固有频率。 则: 02 L t C N tf == 这说明压电片的厚度与固有频率的乘积是一个常数,这个常数叫做频率常数。因此,同样的材料,制作高频探头时,晶片厚度较小;制作低频探头时,晶片厚度较大。 (6)机电耦合系数K 机电耦合系数K 是综合反映压电材料性能的参数,它表示压电材料的机械能与电能之间的耦合效应。机电耦合系数可定义为 K =转换的能量输入的能力 探头晶片振动时,同时产生厚度方向和径向两个方向的伸缩变形,因此机电耦合系数分为厚度方向t K 和和径向p K 。t K 大,检测灵敏度高;p K 大,低频谐振波增多,发射脉冲变宽,导致分辨率降低,盲区增大。 (7)居里温度C T 压电材料与磁性材料一样,其压电效应与温度有关。它只能在一定的温度范围内产生,超过一定温度,压电效应就会消失。使压电材料的压电效应消失的温度称为压电材料的居里温度,用C T 表示。 探头对晶片的一般要求: (1) 机电耦合系数K 较大,以便获得较高的转换效率。

大学物理实验-介电常数的测量

大学物理实验-介电常数的测量

介电常数的测定实验报告 数学系 周海明 PB05001015 2006-11-16 实验题目:介电常数的测定 实验目的:了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较 法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样 品的电容量,经过计算求出r ε,它们满足如下关系:S Cd r 00εεεε== (1)。式中ε为绝对介电常数,0ε为真空介电常数,m F /10 85.812 0-?=ε,S 为样 品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 一、替代法 替代法参考电路如图1所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。将开关K 2打到B 点,让标准电容箱C s 和交流电阻箱R s 替代C x 调节C s 和R s 值,使I s 接近I x 。多次变换开关K 2的位置(A,B 位),反复调节C s 和R s ,使X S I I =。假定C x 上的介电损耗电阻R x 与标准电容箱的介电损耗电阻R s 相接近(s x R R ≈),则有

s x C C =。 另一种参考电路如图2所示,将标准电容箱C s 调到极小值,双刀双掷开关K 2扳到AA ’,测量C x 上的电压V x 值;再将K 2扳到BB ’,调节C s 让C s 上的电压V S 接近V x 。将开关K 2来回扳到AA ’和BB ’位,不断调节C s 和R s 值,使伏特计上的读数不变,即X S V V =,若s x R R ≈,则有 s x C C =。 二、比较法 当待测的电容量较小时,用替代法测量,标准可变电容箱的有效位数损失太大,可采用比较法。此时电路引入的参量少,测量精度与标准电容箱的精度密切相关,考虑到C s 和R s 均是十进制旋钮调节,故无法真正调到 X S V V =,所以用比较法只能部分修正电压差带来的误 差。比较法的参考电路如图3所示,假定C s 上的R x 与R s 接近(s x R R ≈),则测量C x 和C s 上的电压比V s /V x 即可求得C x :X S s x V V C C /?=。 三、谐振法 谐振法测量电容的原理图见图4,由已知电感L (取1H ),电阻R (取1k Ω)和待测电容C x 组成振荡电路,改变信号 源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出: L f C X 2241 π= (2)。式中f 为频率,L 为已知电感,C x 为待测电容。为减小 误差,这时可采用谐振替代法来解决。 谐振替代法参考电路如图5所示,将电感器的一端与待测电容C x 串联,调节频率f 使电路达到谐振,此时电容上的电压达到极大值,固定频率f 0,用标准电容箱C s 代替C x ,调节C s 使电路达到谐振,电容上的电压再次达到极大值,此时s x C C =。

电子工程师必备基础知识

电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应 1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。 电感是电容的死对头。另外,电感还有这样一个特点:电流和磁场必需同时存在。电流要消失,磁场会消失;磁场要消失,电流会消失;磁场南北极变化,电流正负极也会变化。 电感内部的电流和磁场一直在“打内战”,电流想变化,磁场偏不让变化;磁场想变化,电流偏不让变化。但,由于外界原因,电流和磁场都可能一定要发生变化。给电感线圈加上电压,电流想从零变大,可是磁场会反对,因此电流只好慢慢的变大;给电感去掉电压,电流想从大变成零,可是磁场又要反对,可是电流回路都没啦,电流已经被强迫为零,磁场就会发怒,立即在电感两端产生很高的电压,企图产生电流并维持电流不变。这个电压很高很高,甚至会损坏电子元件,这就是线圈的自感现象。

大物实验报告声速测定(DOC)

声速测定 引言:本实验使用了超声声速测定仪、低频信号发生器(DF1027B)、示波器 (ST16B)设计了共振干涉法、相位比较法、时差法来进行超声速的测定,并对实验数据进行处理、分析,最终得出声速,并与理论值进行比较。 关键词:声速测定。 Abstract:This experiment uses the ultrasonic velocity measurement instrument (DF1027B), low frequency signal generator, oscilloscope (ST16B) design the resonance interferometry, phase comparison method, the time difference method for supersonic were measured, and the experimental data processing and analysis, finally obtains the speed of sound, and compared with the theoretical value. 一、实验目的 1、了解超声波换能器的工作原理和功能; 2、学习不同方法测定声速的原理和技术; 3、熟悉测定仪和示波器的调节和使用; 4、测定声速在空气中的传播速度。 二、仪器设备 ZKY_SS超声声速测定仪、低频信号发生器、示波器。 三、实验原理 由波动理论得知,声波的传播速度v与声波频率和波长之间的关系为。所以只要测出声波的频率和波长,就可以求出声速。其中声波频率可由产生声波的电信号发生器的振荡频率读出,波长则可用共振法和相位比较法进行测量。时差法可通过测量某一定间隔距离声音传播的时间来测量声波的传播速度。 压电陶瓷换能器 本实验采用压电陶瓷换能器来实现声压和电压之间的转换。它主要由压电陶瓷环片、轻金属铅(做成喇叭形状,增加辐射面积)和重金属(如铁)组成。压电陶瓷片由多晶体结构的压电材料锆钛酸铅制成。在压电陶瓷片的两个底面加上正弦交变电压,它就会按正弦规律发生纵向伸缩,从而发出超声波。同样压电陶瓷可以在声压的作用下把声波信号转化为电信号。压电陶瓷换能器在声—电转化过程中信号频率保持不变。 如图1所示,S1作为声波发射器,它把电信号转化为声波信号向空间发射。S2是信号接收器,它把接收到的声波信号转化为电信号供观察。其中S1是固定的,而S2可以左右移动。

相关主题