搜档网
当前位置:搜档网 › 飞思卡尔电磁传感器

飞思卡尔电磁传感器

飞思卡尔电磁传感器
飞思卡尔电磁传感器

“飞思卡尔”杯全国大学生智能汽车邀请赛

设计报告

学校:天津职业技术师范大学

制作人:自动化工程学院

电气0714

连刘雷

引言

这份技术报告中,我通过自己对这个比赛了解的传感器方面,详尽的阐述了传感器制作的原理和制作方法。具体表现在电路的可行性和实验的验证结果。

目录

引言 (2)

目录 (2)

第一章、电磁传感器设计思路及实现方案简介 (3)

1.1方案设计思路 (3)

1.2 磁场检测方法 (5)

第二章、电路设计原理 (7)

2.1感应磁场线圈 (7)

2.2信号选频放大 (8)

参考文献 (10)

第一章、电磁传感器设计思路及实现方案简介

1.1方案设计思路

根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能汽车竞赛使用路径导航的交流电流频率为20kHz,产生的电磁波属于甚低频(VLF)电磁波。甚低频频率范围处于工频和低频电磁破中间,为

3kHz~30kHz,波长为100km~10km。如下图所示:

图1.1、电流周围的电磁场示意图

导线周围的电场和磁场,按照一定规律分布。通过检测相应的电磁场的强度和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。

由于赛道导航电线和小车尺寸l 远远小于电磁波的波长λ,电磁场辐射能量

很小(如果天线的长度l 远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。

由毕奥-萨伐尔定律知:通有稳恒电流I 长度为L 的直导线周围会产生磁场,距离导线距离为r 处P 点的磁感应强度为:

图2 直线电流的磁场

B=( 1 )

对于无限长直电流来说,上式中 1 = 0, 2 =π,则有B=。

图3:无限长导线周围的磁场强度

在上面示意图中,感应磁场的分布是以导线为轴的一系列的同心圆。圆上的磁场强度大小相同,并随着距离导线的半径r 增加成反比下降。

1.2 磁场检测方法

人类对于磁场的认识和检测起源很早,我国古代人民很早就通过天然磁铁来

感知地球磁场的方向,从而发明了指南针。但是对于磁场定量精确的测量以及更多测量方法的发现还是在二十世纪初期才得到了突飞猛进的进展。

现在我们有很多测量磁场的方法,磁场传感器利用了物质与磁场之间的各种

物理效应:磁电效应(电磁感应、霍尔效应、磁滞电阻效应)、磁机械效应、磁光效应、核磁共振、超导体与电子自旋量子力学效应。下面列出了一些测量原理以及相应的传感器:

(1)电磁感应磁场测量方法:电磁线磁场传感器,磁通门磁场传感器,磁

阻抗磁场传感器。

(2)霍尔效应磁场测量方法:半导体霍尔传感器、磁敏二极管,磁敏三极管。

(3)各向异性电阻效应(AMR)磁场测量方法。

(4)载流子自旋相互作用磁场测量方法:自旋阀巨磁效应磁敏电阻、自旋

阀三极管磁场传感器、隧道磁滞电阻效应磁敏电阻。

(5)超导量子干涉(SQUID)磁场测量方法:SQUID 薄膜磁敏元件。

(6)光泵磁场测量方法:光泵磁场传感器。

(7)质子磁进动磁场测量方法。

(8)光导纤维磁场测量方法。

以上各种磁场测量方法所依据的原理各不相同,测量的磁场精度和范围相差

也很大,10-11-107G。我们需要选择适合车模竞赛的检测方法,除了检测磁场的精度之外,还需要对于检测磁场的传感器的频率响应、尺寸、价格、功耗以及实现的难易程度进行考虑。

在下面所介绍的检测方法中,我们选取最为传统的电磁感应线圈的方案。它

具有原理简单、价格便宜、体积小(相对小)、频率响应快、电路实现简单等特点,适应于初学者快速实现路经检测的方案。

通电导线周围的磁场是一个矢量场,场的分布如图四所示。如果在通电直导

线两边的周围竖直放置两个轴线相互垂直并位于与导线相垂直平面内的线圈,则可以感应磁场向量的两个垂直分量,进而可以获得磁场的强度和方向。

图4:

图4:导线周围的感应电磁场

导线中的电流按一定规律变化时,导线周围的磁场也将发生变化,则线圈中将感应出一定的电动势。根据法拉第定律,线圈磁场传感器的内部感应电压E 与磁场B(t)、电磁线圈的圈数N 、截面积A的关系有:

感应电动势的方向可以用楞次定律来确定。

由于本设计中导线中通过的电流频率较低,为20kHz,且线圈较小,令线圈中心到导线的距离为r ,认为小范围内磁场分布是均匀的。再根据图3 所示的导线周围磁场分布规律,则线圈中感应电动势可近似为:

即线圈中感应电动势的大小正比于电流的变化率,反比于线圈中心到导线的距离。其中常量K 为与线圈摆放方法、线圈面积和一些物理常量有关的一个量,具体的感应电动势常量须实际测定来确定。

第二章、电路设计原理

从上面检测原理可以知道,测量磁场核心是检测线圈的感应电动势E 的幅值。下面将从感应线圈、信号选频放大、整流与检测等几个方面讨论电路设计的问题,最后给出电路设计系统框图和实际电路。

2.1感应磁场线圈:

检测线圈可以自行绕制,也可以使用市场上能够比较方便购买的工字型

10mH 的电感。如下图所示。

图9 几种10mH 电感

这类电感体积小,Q 值高,具有开放的磁芯,可以感应周围交变的磁场。如下图所示:

图10 工字磁材电感

2.2信号选频放大:

使用电感线圈可以对其周围的交变磁场感应出响应感应电动势。这个感

应电动势信号具有以下特点:

(1)信号弱:感应电压只有几十个毫伏。在检测幅值之前必须进行有效的

放大,放大倍数一般要大于100 倍(40db)。

(2)噪声多:一般环境下,周围存在着不同来源、不同变化频率的磁场。

如下表所示:

-

-

-

比赛选择20kHz 的交变磁场作为路径导航信号,在频谱上可以有效地避开周围其它磁场的干扰,因此信号放大需要进行选频放大,使得20kHz 的信号能够有效的放大,并且去除其它干扰信号的影响。

可以使用LC 串并联电路来实现选频电路(带通电路),如下图所示:

图11:RLC 并联谐振电路

上述电路中,E 是感应线圈中的感应电动势,L 是感应线圈的电感量,R0 是

电感的内阻,C 是并联谐振电容。上述电路谐振频率为:。

已知感应电动势的频率= 20kHz,感应线圈电感为L =10mH ,可以计算出谐振电容的容量为:

通常在市场上可以购买到的标称电容与上述容值最为接近的电容为6.8nF,所以在实际电路中我们选用6.8nF 的电容作为谐振电容。

为了验证RLC 选频电路的效果,我们对比了在有和没有谐振电容两种情况下的电感输出的感应电压。在导线中通有20kHz 左右,100mA 左右方波电流,在距离导线50mm 的上方放置垂直于导线的10mH 电感,使用示波器测量输出电压波形。如下图12 所示。

图12:测量感应线圈两端的感应电压。

从上面结果可以看出,增加有谐振电容之后,感应线圈两端输出感应20KHz 电压信号不仅幅度增加了,而且其它干扰信号也非常小。这样无论导线中的电流波形是否为正弦波,由于本身增加了谐振电容,所以除了基波信号之外的高次谐波均被滤波除掉,只有基波20kHz 信号能够发生谐振,输出总是20KHz 正弦波。

为了能够更加准确测量感应电容式的电压,还需要将上述感应电压进一步放大,一般情况下将电压峰峰值放大到1-5V 左右,就可以进行幅度检测,所以需要放大电路具有100 倍左右的电压增益(40db)。最简单的设计可以只是用一阶共射三极管放大电路就可以满足要求,如下图所示:

图13:单管共射交流放大电路

当然,也可以选用运算放大器进行电压放大。但是需要选择单电源、低噪音、动态范围达、高速运放不太容易,所示不太推荐使用运算放大器进行信号放大。

3、幅度测量

测量放大后的感应电动势的幅值E 可以有多种方法。最简单的方法就是使用二极管检波电路将交变的电压信号检波形成直流信号,然后再通过单片机的AD采集获得正比于感应电压幅值的数值。如下图所示:

图14:倍压检波电路

上图给出了倍压检波电路可以获得正比于交流电压信号峰峰值的直流信号。为了能够获得更大的动态范围,倍压检波电路中的二极管推荐使用肖特基二极管或者锗二极管。由于这类二极管的开启电压一般在0.1-0.3V 左右,小于普通的硅二极管(0.7V),可以增加输出信号的动态范围和增加整体电路的灵敏度。

参考文献:

[1] 张三慧主编. 大学物理学(第三册)电磁学[M].北京: 清华大学出版社, 2005.

[2] 卓晴, 黄开胜, 邵贝贝. 学做智能车[M]. 北京:北航出版社,2007.3

飞思卡尔电磁传感器

“飞思卡尔”杯全国大学生智能汽车邀请赛 电 磁 传 感 器 设计报告 学校:天津职业技术师范大学 制作人:自动化工程学院 电气0714 连刘雷

引言 这份技术报告中,我通过自己对这个比赛了解的传感器方面,详尽的阐述了传感器制作的原理和制作方法。具体表现在电路的可行性和实验的验证结果。 目录 引言 (2) 目录 (2) 第一章、电磁传感器设计思路及实现方案简介 (3) 1.1方案设计思路 (3) 1.2 磁场检测方法 (5) 第二章、电路设计原理 (7) 2.1感应磁场线圈 (7) 2.2信号选频放大 (8) 参考文献 (10)

第一章、电磁传感器设计思路及实现方案简介 1.1方案设计思路 根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能汽车竞赛使用路径导航的交流电流频率为20kHz,产生的电磁波属于甚低频(VLF)电磁波。甚低频频率范围处于工频和低频电磁破中间,为 3kHz~30kHz,波长为100km~10km。如下图所示: 图1.1、电流周围的电磁场示意图 导线周围的电场和磁场,按照一定规律分布。通过检测相应的电磁场的强度和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。 由于赛道导航电线和小车尺寸l 远远小于电磁波的波长λ,电磁场辐射能量 很小(如果天线的长度l 远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。 由毕奥-萨伐尔定律知:通有稳恒电流I 长度为L 的直导线周围会产生磁场,距离导线距离为r 处P 点的磁感应强度为:

飞思卡尔锁相环

备战飞思卡尔智能车大赛.开始模块总结. 锁相环设置. 公式: PLLCLK=2*OSCCLK*(SYNR+1)/(REFDV+1), fbus=PLLCLK/2 void INIT_PLL(void) { CLKSEL &= 0x7f; //选用外部时钟.准备设置锁相环 PLLCTL &= 0x8F; //禁止锁相环 SYNR = 0xc9; //设置SYNR REFDV = 0x81; //设置REFDV PLLCTL |=0x70; //锁相环使能 asm NOP; asm NOP; //两个机器周期缓冲时间 while(!(CRGFLG&0x08)); //等待锁相环锁定 CLKSEL |= 0x80; //设置锁相环为时钟源 } 飞思卡尔XS128的PLL锁相环详细设置说明——关于如何提高总线工作频率PLL锁相环就相当于超频 单片机超频的原因和PC机是个一道理。分频的主要原因是外设需要的工作频率往往远低于CPU/MEMORY 这也和PC机南北桥的原理类似。总线频率设置过程 1、禁止总中断 2、寄存器CLKSEL(时钟选择寄存器)的第七位置0 即CLKSEL_PLLSEL=0。选择时钟源为外部晶振OSCCLK(外接晶振频率) 在PLL(锁相环)程序执行前 内部总线频率为OSCCLK/2 3. PLLCTL_PLLON=1 打开PLL 4.设置SYNR 时钟合成寄存器 、REFDV 时钟分频寄存器 、POSTDIV三个寄存器的参数 5、_asm(nop) _asm(nop);加入两条空指令 使锁相环稳定 6、while(!(CRGFLG_LOCK==1));//时钟校正同步 7、CLKSEL_PLLSEL=1; 下面详细说一下频率的计算一、时钟合成寄存器SYNR寄存器结构 VCOFRQ[1:0]控制压控振动器VCO的增益 默认值为00 VCO的频率与VCOFRQ[1:0]对应表

飞思卡尔单片机编程

关于Codewarrior 中的 .prm 文件 网上广泛流传的一篇文章讲述的是8位飞思卡尔单片机的内存映射,这几天,研究了一下Codewarrior 5.0 prm文件,基于16位单片机MC9S12XS128,一点心得,和大家分享。有什么错误请指正。 正文: 关于Codewarrior 中的.prm 文件 要讨论单片机的地址映射,就必须要接触.prm文件,本篇的讨论基于Codewarrior 5.0 编译器,单片机采用MC9S12XS128。 通过项目模板建立的新项目中都有一个名字为“project.prm”的文件,位于Project Settings->Linker Files文件夹下。一个标准的基于XS128的.prm文件起始内容如下: .prm文件范例: NAMES END SEGMENTS RAM = READ_WRITE DATA_NEAR 0x2000 TO 0x3FFF;

READ_ONLY DATA_NEAR IBCC_NEAR 0x4000 TO 0x7FFF; ROM_C000 = READ_ONLY DATA_NEAR IBCC_NEAR 0xC000 TO 0xFEFF; //OSVECTORS = READ_ONLY 0xFF10 TO 0xFFFF; EEPROM_00 = READ_ONLY DATA_FAR IBCC_FAR 0x000800 TO 0x000BFF; EEPROM_01 = READ_ONLY DATA_FAR IBCC_FAR 0x010800 TO 0x010BFF; EEPROM_02 = READ_ONLY DATA_FAR IBCC_FAR 0x020800 TO 0x020BFF; EEPROM_03 = READ_ONLY DATA_FAR IBCC_FAR 0x030800 TO 0x030BFF; EEPROM_04 = READ_ONLY DATA_FAR IBCC_FAR 0x040800 TO 0x040BFF; EEPROM_05 = READ_ONLY DATA_FAR IBCC_FAR 0x050800 TO 0x050BFF; EEPROM_06 = READ_ONLY DATA_FAR IBCC_FAR 0x060800 TO 0x060BFF; EEPROM_07 = READ_ONLY DATA_FAR IBCC_FAR 0x070800 TO 0x070BFF; PAGE_F8 = READ_ONLY DATA_FAR IBCC_FAR 0xF88000 TO 0xF8BFFF;

飞思卡尔智能车电磁组信号采集

?пㄖ ???? ??? ? ??? ?? ? ? 1? ? ??? ? 哖 世?? ???? ??? ??? ??? ? ??? ㄎ? ?? ??????仁??20kHz??????⌒ ???仁?VLF? ??⌒???仁仁?? ? 仁 ?仁??⌒????3kHz?30kHz?⌒?? 100km?10km? ?? 3.1?? ??? ? ? ?? ? ? ?а ? ?????? ??? ? ? ? ? ?? ??オ???? ??? ??? ? ? ??? ? ? ???о? ??? ??? ??? ? ? ? ? ?? ? ??? й ?????? ? ? ?? ? ???? ?н ????? ? ? на???? ??? ? ? ?? ? ? ?? а ? ???? ?? ??? ?? ? ??? ? ? ?? ?? ??? ??? ?? ??仁? ??? ?? ???? ??? ?? ?? ????? ?? ? ?? ?????? ↓ ? ?? ?? ↓ ? ?? ?? ??? ???? ? ??? ?? ? ? ?? ? ↓ ?? ?? ? ? ? ? ?? っ ?? ???/& ????? ??? ? ? ??/&? ?? ? ?

?йㄐ ???? ?? ?LC? ?? ? ? ?? ?? ? ?? ??????? ??? ??AD???? 享 ?? 儈?↓? фн?? ?? ???AD? ???? ? ?? ?? 3.3 ?? ?? ???????? ?? 傼 ??н ??? ? ? н ? ?? ?? ?н ? н? ? ? ??? ? ?? ?нっ ???? ?????? ? ф? 儈? ? ?

飞思卡尔单片机寄存器及汇编指令详解

附录I:寄存器地址列表 直接页面寄存器总结

高页面寄存器总结

非易失寄存器总结 注:直接页面寄存器表地址的低字节用粗体显示,直接寻址对其访问时,仅写地址低字节即可。第2列中寄存器名用粗体显示以区别右边的位名。有0的单元格表示未用到的位总是读为0,有破折号的单元格表示未用或者保留,对其读不定。

附录II 指令接与寻址方式 HCS08指令集概括 运算符 () = 括号种表示寄存器或存储器位置的内容 ← = 用……加载(读: “得到”) & = 布尔与 | = 布尔或 ⊕= 布尔异或 ×= 乘 ÷ = 除 : = 串联 + = 加 - = 求反(二进制补码) CPU registers A =>累加器 CCR =>条件代码寄存器 H =>索引寄存器,高8位 X => 索引寄存器,低8位 PC =>程序计数器 PCH =>程序计数器,高8位 PCL =>程序计数器,低8位 SP =>堆栈指针 存储器和寻址 M =>一个存储区位置或者绝对值数据,视寻址模式而定 M:M + 0x0001 => 两个连续存储位置的16位值.高8位位于M的地址,低8位位于更高的连续地址. 条件代码寄存器(CCR)位 V => 二进制补码溢出指示,第7位 H => 半进位,第4位 I => 中断屏蔽,第 3位 N => 求反指示器, 第2位 Z => 置零指示器, 第1位 C => 进/借, 第0位 (进位第 7位 ) CCR工作性符号 – => 位不受影响 0 = > 位强制为0 1 = > 位强制为1

= >根据运算结果设置或清除位 U = > 运算后没有定义 机器编码符号 dd =>一个直接寻址0x0000–0x00FF的低8位(高字节假设为0x00) ee => 16位偏移量的高8位 ff => 16位偏移量的低8位 ii => 立即数的一个字节 jj => 16位立即数值的高位字节 kk => 16位立即数值的低位字节 hh => 16位扩展寻址的高位字节 ll => 16位扩展寻址的低位字节 rr => 相对偏移量 n —任何表达范围在0–7之间的一个有符号数的标号或表达式 opr8i —任何一个表达8位立即值的标号或表达式 opr16 —任何一个表达16位立即值的标号或表达式 opr8a —任何一个表达一个8位值的标号或表达式.指令对待这个8位值为直接页面64K 字节地址空间(0x00xx)中地址的低8位. opr16a —任何一个表达16位值的标号或表达式.指令对待这个值为直接页面64K字节地址空间. oprx8 —任何一个表达8位无符号值的标号或表达式,用于索引寻址. oprx16 —任何一个16位值的标号或表达式.因为HCS08有一个16位地址总线,这可以为一个有符号或者无符号值. rel —任何指引在当前指令目标代码最后一个字节之后–128 to +127个字节之内的标号或表达式.汇编器会计算包括当前指令目标代码在内的8位有符号偏移量. 寻址方式 隐含寻址(Inherent)如CLRA,只有操作码,无操作数,需要操作的数据一般为CPU寄存器,因此不需要再去找操作数了。(INH) 立即寻址 (Immediate)如LDA #$0A,“$”表示16进制,此时操作数位于FLASH空间,与程序一起存放。(IMM) 直接寻址 (Direct)如 LDA $88,只能访问$0000-$00FF的存储器空间,指令短速度快; (DIR) 扩展寻址 (Extended)如果操作数地址超出了$00FF,自动为扩展寻址;(EXT) 相对寻址(Relative)如BRA LOOP,指令中一般给出8位有符号数表示的偏移量。(REL) 变址寻址 (Indexed) 采用[H:X]或SP作为指针的间接寻址方式。( IX )( IX1 )( IX2 ) 变址寻址 (Indexed) 1〉无偏移量:CLR ,X 简写(IX) 2〉无偏移量,指令完成后指针加1(H:X = H:X + 0x0001) ,简写(IX+)只用于指令MOV和CBEQ指令中;

飞思卡尔智能车摄像头组freescale程序代码

extern int left,w,top,h; extern HDC m_hdc; CBrush brush3(RGB(0,255,0)); CBrush brush4(RGB(255,0,0)); CBrush brush5(RGB(255,255,0)); #else #include #include "math.h" // #include "LQfun.h" #endif #ifdef ccd #define MAX_VIDEO_LINE 39 #define MAX_VIDEO_POINT 187 #else //#define MAX_VIDEO_LINE 26 // #define MAX_VIDEO_POINT 301 #define MAX_VIDEO_LINE 78 #define MAX_VIDEO_POINT 57 #endif extern unsigned char g_VideoImageDate[MAX_VIDEO_LINE][MAX_VIDEO_POINT]; #define INT8U unsigned char #define INT8S signed char #define INT16U unsigned int #define INT16S int #define INT32S int #define NO_DATA_180 254 //#define INT32U unsigned int unsigned char LIMIT=((MAX_VIDEO_POINT)/2); unsigned char MIDDLE[MAX_VIDEO_LINE]; #define MAX_BLACK_NUM 7 INT8S n;

第五届飞思卡尔智能车大赛华中科技大学电磁组技术报告

第五届飞思卡尔杯全国大学生 智能汽车竞赛 技 术 报 告 学校:华中科技大学 队伍名称:华中科技大学五队 参赛队员:方华启 张江汉 诸金良 带队教师:何顶新 罗惠

关于技术报告和研究论文使用授权的说明 本人完全了解第五届全国大学生“飞思卡尔”杯智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

目录 第1章引言 (1) 1.1 概述 (1) 1.2 全文安排 (2) 第2章电路设计 (3) 2.1 电路系统框图 (3) 2.2 电源部分 (4) 2.3 电机驱动部分 (5) 2.4 电磁传感器 (6) 第3章机械设计 (8) 3.1 车体结构和主要参数及其调整 (8) 3.2 舵机的固定 (10) 3.3 传感器的固定 (11) 3.4 编码器的固定 (11) 第4章软件设计 (12) 4.1 程序整体框架 (12) 4.2 前台系统 (13) 4.3 后台系统 (13) 4.4 软件详细设计 (14) 第5章调试 (15) 第6章全文总结 (16) 6.1 智能车主要技术参数 (16) 6.2 不足与改进 (16) 6.3 致谢与总结 (17) I

参考文献 (18) 附录A 源代码 (18) II

第1章引言 第1章引言 教育部为了加强大学生实践、创新能力和团队精神的培养,在已举办全国大学生数学建模、电子设计、机械设计、结构设计等4大竞赛的基础上,委托教育部高等学校自动化专业教学指导分委员会主办每年一度的全国大学生智能汽车竞赛(教高司函[2005]201号文)[1]。 为响应教育部的号召,本校积极组队参加第五届“飞思卡尔”杯全国大学生智能汽车竞赛。从2009 年12 月开始着手进行准备,历时近8 个月,经过设计理念的不断进步,制作精度的不断提高,经历 2 代智能车硬件平台及相关算法的改进,最终设计出一套完整的智能车开发、调试平台。作为电磁组的华中科技大学五队采用轻质量机械设计、大前瞻传感器和连续化算法处理的基本技术路线,在前瞻距离、噪声抑制、驱动优化、整车布局等方面加强研究创新,在有限计算能力下获得了较高的赛道信息准确率。使智能车能够满足高速运行下的动力性和稳定性需求,获得了良好的综合性能和赛场表现。 本文将对智能车的总体设计和各部分的详细设计进行一一介绍。 1.1 概述 1.1.1 电路设计 飞思卡尔电磁组智能汽车硬件主要分为主控板,传感器板。本车在主控板上主要特色为电机使用H桥驱动,从性能和扩展性上优于集成驱动器方案。传感器板设计着重考虑提高传感器的前瞻量和信号的抗干扰能力。 1.1.2 机械设计 机械方面,主要是对舵机的安装进行了研究,加长了舵机的连杆,以增加反应速度。另外,主要研究车差速性能的研究以及传感器支架的固定。 1.1.3 控制程序设计 一方面使用免费的μCOS操作系统,这给智能车的整体调试提供了很多方便;另一方面,在大前瞻传感器的基础上设计出合理的舵机、电机控制算法,在满足稳定性要求的基础上提高速度。 1

飞思卡尔智能车比赛电磁组路径检测设计方案

飞思卡尔智能车比赛电磁组路径检测设计方案电磁组竞赛车模 路径检测设计参考方案 (竞赛秘书处 2010-1,版本 1.0) 一、前言 第五届全国大学生智能汽车竞赛新增加了电磁组比赛。竞赛车模需要能够通 过自动识别赛道中心线位置处由通有 100mA 交变电流的导线所产生的电磁场进行路径检测。除此之外在赛道的起跑线处还有永磁铁标志起跑线的位置。具体要求请参阅《第五届智能汽车竞赛细则》技术文档。 本文给出了一种简便的交变磁场的检测方案,目的是使得部分初次参加比赛 的队伍能够尽快有一个设计方案,开始制作和调试自己的车模。本方案通过微型车模实际运行,证明了它的可行性。微型车模运行录像参见竞赛网站上视频文件。 二、设计原理 1、导线周围的电磁场 根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能汽车 竞赛使用路径导航的交流电流频率为 20kHz,产生的电磁波属于甚低频(VLF) 电磁波。甚低频频率范围处于工频和低频电磁破中间,为 3kHz,30kHz,波长为 100km,10km。如下图所示: 图 1:电流周围的电磁场示意图

导线周围的电场和磁场,按照一定规律分布。通过检测相应的电磁场的强度 和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。 由于赛道导航电线和小车尺寸 l 远远小于电磁波的波长,,电磁场辐射能量很小(如果天线的长度 l 远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。 由毕奥-萨伐尔定律知:通有稳恒电流 I 长度为 L 的直导线周围会产生磁场,距离导线距离为 r 处 P 点的磁感应强度为: 图 2 sin直线电流的磁场 , d, ,(0 , 4 10, 7 TmA 1 ) B , ,, cos,1 2 ,。 (1) ,1 4 r 由此得: B , cos, 4 r 4 r

飞思卡尔MC9S12XS128单片机中断优先级设置简易教程

本教程试图用最少的时间教你飞思卡尔XS128单片机的中断优先级设置方法和中断嵌套的使用,如果是新手请先学习中断的基本使用方法。 先来看看XS128 DataSheet 中介绍的相关知识,只翻译有用的: 七个中断优先级 每一个中断源都有一个可以设置的级别 高优先级中断的可以嵌套低优先级中断 复位后可屏蔽中断默认优先级为1 同一优先级的中断同时触发时,高地址(中断号较小)的中断先响应 注意:高地址中断只能优先响应,但不能嵌套同一优先级低地址的中断 下面直接进入正题,看看怎么设置中断优先级: XS128中包括预留的中断一共有128个中断位,如果为每个中断都分配一个优先级寄存器的话会非常浪费资源,因此飞思卡尔公司想出了这样一种办法:把128个中断分为16个组,每组8个中断。每次设置中断时,先把需要的组别告诉某个寄存器,再设置8个中断优先寄存器的某一个,这样只需9个寄存器即可完成中断的设置。 分组的规则是这样的:中断地址位7到位4相同的中断为一组,比如MC9SX128.h中 这些中断的位7到位3都为D,他们就被分成了一组。0~F正好16个组。

INT_CFADDR就是上面说到的用来设置组别的寄存器: 我们需要设置某个组别的中断时,只要写入最后8位地址就行了,比如设置SCI0的中断优先级,就写入0xD0。 设置好组别之后,我们就要该组中相应的中断进行设置,设置中断的寄存器为 这其实是一组寄存器,一共有8个,每个都代表中断组中的一个中断。对应规则是这样的:中断地址的低四位除以2 比如还是SCI0,低四位是6,除以二就是3,那么我们就需要设置INT_CFDATA3 往INT_CFDATAx中写入0~7就能设置相应的中断优先级了 拿我本次比赛的程序来举个例子:我们的程序中需要3个中断:PIT0,PORTH,SCI0。PIT0定时检测传感器数值,PORTH连接干簧管进行起跑线检测,SCI0接收上位机指令实现急停等功能。因此中断优先级要SCI0>PORTH>PIT0。 我们先要从头文件中找出相应中断的地址: PIT0【7:4】位为7,选择中断组: INT_CFADDR=0x70;

飞思卡尔智能车设计报告

飞思卡尔智能车设计报告

目录 1.摘要 (3) 2.关键字 (3) 3.系统整体功能模块 (3) 4.电源模块设计 (4) 5.驱动电路设计 (4) 6.干簧管设计 (5) 7.传感器模块设计 (6) 8.传感器布局 (6) 9.软件设计 (7) 9.1控制算法 (7) 9.2软件系统实现(流程图) (10) 10.总结 (11) 11.参考文献 (12)

1.摘要 “飞思卡尔”杯全国大学生智能汽车竞赛是由教育部高等自动化专业教学指导分委员会主办的一项以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。该竞赛以汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的科技创意性比赛。 本文介绍了飞思卡尔电磁组智能车系统。本智能车系统是以飞思卡尔32 位单片机K60为核心,用电感检测赛道导线激发的电磁信号, AD 采样获得当前传感器在赛道上的位置信息,通过控制舵机来改变车的转向,用增量式PID进行电机控制,用编码器来检测小车的速度,共同完成智能车的控制。 2.关键字 电磁、k60、AD、PID、电机、舵机 3.系统整体功能模块 系统整体功能结构图

4.电源模块设计 电源是一个系统正常工作的基础,电源模块为系统其他各个模块提供所需要的能源保证,因此电源模块的设计至关重要。模型车系统中接受供电的部分包括:传感器模块、单片机模块、电机驱动模块、伺服电机模块等。设计中,除了需要考虑电压范围和电流容量等基本参数外,还要在电源转换效率、噪声、干扰和电路简单等方面进行优化。可靠的电源方案是整个硬件电路稳定可靠运行的基础。 全部硬件电路的电源由7.2V,2A/h的可充电镍镉电池提供。由于电路中的不同电路模块所需要的工作电流容量各不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。 电源模块由若干相互独立的稳压电源电路组成。在本系统中,除了电机驱动模块的电源是直接取自电池外,其余各模块的工作电压都需要经电源管理芯片来实现。 由于智能车使用7.2V镍镉电池供电,在小车行进过程中电池电压会有所下降,故使用低压差电源管理芯片LM2940。LM2940是一款低压稳压芯片,能提供5V的固定电压输出。LM2940低压差稳压芯片克服了早期稳压芯片的缺点。与其它的稳压芯片一样,LM2940需要外接一个输出电容来保持输出的稳定性。出于稳定性考虑,需要在稳压输出端和地之间接一个47uF低等效电阻的电容器。 舵机的工作电压是6伏,采用的是LM7806。 K60单片机和5110液晶显示器需要3.3伏供电,采用的是LM1117。 5.驱动电路设计 驱动电路采用英飞凌的BTS7960,通态电阻只有16mΩ,驱动电流可达43A,具有过压、过流、过温保护功能,输入PWM频率可达到25KHz,电源电压5.5V--27.5V。BTS7960是半桥驱动,实际使用中要求电机可以正反转,故使用两片接成全桥驱动。如图下图所示。

飞思卡尔寄存器整理

S12的输入/输入端口(I/O口) I/O端口功能 可设置为通用I/O口、驱动、内部上拉/下拉、中断输入等功能。 设置I/O口工作方式的寄存器有: DDR、IO、RDR、PE、IE和PS。 DDR:设定I/O口的数据方向。 IO :设定输出电平的高低。 RDR:选择I/O口的驱动能力。 PE:选择上拉/下拉。 IE:允许或禁止端口中断。 PS:1、中断允许位置位时,选择上升沿/下降沿触发中断;2、中断禁止时且PE有效时,用于选择上拉还是下拉。 I/O端口设置 1、A口、B口、E口寄存器 (1)数据方向寄存器DDRA、DDRB、DDRE DDRA、DDRB、DDRE均为8位寄存器,复位后其值均为0。 当DDRA=0、 DDRB=0、 DDRE=0 时A口、B口和E口均为输入口。 否则,A口、B口、E口为输出口。当DDRA、DDRB、DDRE的任何一位置1时,则该位对应的引脚被设置为输出。 例如,将A口设置为输出口,则其C语言程序的语句为:DDRA=0xff; (2)A口、B口、E口上拉控制寄存器PUCR PUCR为8位寄存器,复位后的值为0。当PUPAE、PUPBE、PUPEE被设置为1时,A口、B口、E口具有内部上拉功能;为0时,上拉无效。当A口、B 口、E口为地址/数据总线时,PUPAE和PUPBE无效。 (3)A口、B口、E口降功率驱动控制寄存器RDRIV RDRIV为8位寄存器,复位后的值为0,此时,A口、B口、E口驱动保持全功率;当RDPA、RDPB、RDPE为1时, A口、B口、E口输出引脚的驱动功率下降 (4)数据寄存器PORTA、PORTB、PORTE PORTA、PORTB、PORTE均为8位寄存器,复位后的值为0,端口引脚输出低电平;要使引脚输出高电平,相应端口对应位应该置1。 由于PE0是/XIRQ、PE1是IRQ,因此,PE0和PE1只能设置为输入。

飞思卡尔智能车电磁组程序员成长之路(未完待续)

飞思卡尔智能车电磁组程序员成长之路 1.飞思卡尔智能车小车入门 智能汽车电磁组简介: 第五届全国大学“飞思卡尔杯”智能汽车竞赛新增加了“电磁组”。根据比赛技术 要求,电磁组竞赛,需要选手设计的智能车能够检测到道路中心线下电线中20KHz 交 变电流产生的磁场来导引小车沿着道路行驶。在平时调试和比赛过程中需要能够满足比 赛技术要求的 20KHz 的交流电源驱动赛道中心线下的线圈。同时参赛选手需要自行设 计合适的电磁传感器来检测赛道信息完成智能寻迹功能。 智能车制作是一个涵盖电子、电气、机械、控制等多个领域和学科的科技创新活动。简单点来说可以将其分为硬件电路(包括电源、MUC 控制部分、电机驱动、传感器)、机械、算法三方面的设计。电磁组在机械方面可以参照光电组的设计方案,这里不再赘述。本设计指导只讲述20KHZ 电源、电磁传感器设计方案以及部分算法。 智能车对单片机模块需求: 飞思卡尔单片机资源:

智能车涉及到IO模块,中断模块,PWM模块,DMA模块,AD模块等。在车模调试中还有必须的模块。如SCI模块、定时器模块,SPI模块等。其中还涉及到一些算法和数据的存储和搬移。一个好程序框架对智能车的制作过程中会达到事半功倍的效果。但是就智能车这样系统来说,如果完全专门移植一个操作系统或者写一个程序的bootload,感觉有一些本末倒置,如果有成熟的,可以借用的,那样会比较好。 2.电磁传感器的使用 20KHz电源参考设计方案: 电源技术指标要求: 根据官网关于电磁组赛道说明,20KHz 电源技术要求如下: 1.驱动赛道中心线下铺设的 0.1-0.3mm 直径的漆包线; 2.频率围:20K±2K; 3.电流围:50-150mA; 图 2.1 是赛道起跑区示意图,在中心 线铺设有漆包线。 首先分析赛道铺设铜线的电抗,从而得 到电源输出的电压围。我们按照普通的练习 赛道总长度 50m,使用直径 0.2mm 漆包线。在30 摄氏度下,铜线的电阻率大约为 0.0185 欧姆平方毫米/米。计算可以得到中心线的电阻大约为 29.4 欧姆。 按照导线电感量计算机公式: 其中 l, d 的单位均为 cm。可以计算出直径为 0.2mm,长度 50 米的铜线电感量为131 微亨。对应 20KHz 下,感抗约为 16.5 欧姆。

飞思卡尔单片机外设模块寄存器翻译

PIT 模块译: 翻译来自MC9S12X128英文原文PDF.P347-P357 PIT 块结构图: PIT0中断向量66, 1->67, 2->68, 3->69 PIT 相关寄存器详解: 1、 PITCFLMT :寄存器基本控制和基本时钟加载控制寄存器(8位) 1:PIT 使能 PITSWAI: 0:等待模式下仍然工作 1:等待模式下不工作 PITFRZ: 0:冻结模式下仍然工作 1:冻结模式下不工作 PFLMT1: 写1强制加载基本定时计数器1,写0无效,读也总为0 PFLMT0: 同PFLMT1 2、 PITFLT :PIT 计数器强制加载定时器寄存器(8位)

PFLT[3:0]写1相对应的16位计数寄存器会立即载入相对应的16位计数加载寄存器(PITLDn)中的值。 3、PITCE:PIT通道使能存器(8位) PCE[3:0]:如果PITE已经使能,对寄存器PCEn写1后,每输入一个时钟相对应的计数寄存器 开始递减,写0无效。 4、PITMUX:PIT基本时钟通道选择寄存器(8位) PMUX[3:0]:对PMUXn写1,则对应定时器通道选择基本时钟1作为输入,写0则选择基本时 钟0为输入。 5、PITINTE:PIT定时中断使能寄存器(8位) PINTE[3:0]:对PINTEn写1,当相对应的计数寄存器和基本计数寄存器归0时,产生中断请求,否则无效。 6、PITTF:PIT时钟输出标志寄存器(8位)

7、PITMTLD0-1:PIT基本时钟计数器预加载寄存器(8位) 会被加载到基本定时器n,无论什么时刻PFLMTn置“1”会立即更新基本定时器寄存器的值. 8、PITLD0–3:PIT0-3计数器预加载寄存器(16位) PITLD0-3的值用来加载到相对应计数器0-3的寄存器中。当相应通道计数器归零时,或PITFLT寄存器中相应的强制加载位置“1”时,PITLDn中的值将会被立即加载到PITCNTn。 9、PITCNT0–3:PIT0-3计数寄存器(16位) 变计数周期。

飞思卡尔智能车简介

智能车制作 F R E E S C A L E 学院:信息工程学院 班级:电气工程及其自动化132 学号:6101113078 姓名:李瑞欣 目录: 1. 整体概述 2.单片机介绍 3.C语言 4.智能车队的三个组 5.我对这门课的建议

一、整体概述 智能车的制作过程包括理论设计、实际制作、整车调试、现场比赛等环节,要求学生组成团队,协同工作。内容涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械与汽车等多学科多专业。 下面是一个智能车的模块分布: 总的来说智能车有六大模块:信号输入模块、控制输出模块、数据处理模块、信息显示模块、信息发送模块、异常处理模块。 1、信号输入模块: 智能车通过传感器获知赛道上的路况信息(直道,弯道,山坡,障碍物等),同时也通过传感器获取智能车自身的信息(车速,电磁电量等)。这些数据构成了智能车软件系统(大脑)的信息来源,软件系统依靠这些数据,改变智能车的运行状态,保证其在最短的时间内按照规定跑完整个赛道。 2、控制输出模块: 智能车在赛道上依靠转向机构(舵机)和动力机构(电机)来控制运行状态,这也是智能车最主要的模块,这个模块的好坏直接决定了你的比赛成绩。 电机和舵机都是通过PWM控制的,因此我们的软件系统需要根据已有的信息进行分析计算得到一个合适的输出数据(占空比)来控制电机和舵机。 3数据处理模块: 主要是对电感、编码器、干簧管的数据处理。信号输入模块得到的数据非常原始,有杂波。基本上是不能直接用来计算的。因此需要有信号处理模块对采集的数据进行处理,得到可用的数据。 4信息显示模块: 智能车调试过程中,用显示器来显示智能车的部分信息,判断智能车是否正常运行。正式比赛过程中可关闭。主流的显示器有:Nokia 5110 ,OLED模块等,需要进行驱动移植。

飞思卡尔单片机 DG128 Timer寄存器说明

Timer寄存器说明 1、定时器/计数器系统控制寄存器1(TSCR1) TSCR1 寄存器是定时器模块的总开关,它决定模块是否启动以及在中断等待、BDM 方式下的行为,还包括标志的管理方式。其各位的意义如下: TEN:定时器使能位,此外它还控制定时器的时钟信号源。要使用定时器模块的IC/OC 功能,必须将TEN 置位。如果因为某种原因定时器没有使能,脉冲累加器也将得不到ECLK/64 时钟,因为ECLK/64 是由定时器的分频器产生的,这种情况下,脉冲累加器将不能进行引脚电平持续时间的累加。 0:定时器/计数器被禁止,有利于降低功耗。 1:定时器/计数器使能,正常工作。 TSWAI:等待模式下计时器关闭控制位。 【注意】定时器中断不能用于使MCU 退出等待模式。 0:在中断等待模式下允许MCU 继续运行。 1:当MCU 进入中断等待模式时,禁止计时器。 TSFRZ:在冻结模式下计时器和计数器停止位。 0:在冻结模式下允许计时器和计数器继续运行。 1:在冻结模式下禁止计时器和计数器,用于仿真调试。 【注意】TSFRZ 不能停止脉冲累加。 TFFCA:定时器标志快速清除选择位。 0:定时器标志普通清除方式。 1:对于TFLGl($0E)中的各位,读输入捕捉寄存器或者写输出比较寄存器会自动清除相应的标志位CnF。对于TFLG2($0F)中的各位,任何对TCNT 寄存器($04、$05)的访问均会清除TOF 标志;任何对PACN3 和PACN2 寄存器($22,$23)的访问都会清除PAFLG 寄存器($21)中的PAOVF 和PAIF 位。任何对PACN1 和PACN0 寄存器($24,$25)的访问都会清除PBFLG 寄存器($21)中的PBOVF 位。 【说明】这种方式的好处是削减了另外清除标志位的软件开销。此外,必须特别注意避免对标志位的意外清除。 2、计时器系统控制寄存器2(TSCR2) 寄存器偏移量:$000D

AD转换基准电压总结(飞思卡尔电磁组)

基准电压总结 通常AD/DA芯片都有两个电压输入端,一个是Vcc,一个是Vref,上图所示的芯片是DAC0832,Vcc是芯片的工作电压,Vref是DA转换的基准电压,AD/DA芯片对Vcc 的要求不是很高,但对基准电压Vref的要求就比较高。 S12的VRH引脚就是AD转换的基准电压输入端,在最小系统板上通过0Ω电阻和Vcc连在了一起。 一、什么叫基准电压 我们知道,AD/DA转换时需要一个电压参考值,而且要求这个参考值要稳定,这个稳定的电压参考值就叫做基准电压。比如AD(8位)转换时,假设参考电压时5V,输入量是2V,则转换后得到的数字量就是(2/5)*255=102。 二、智能车制作过程中遇到的问题 最开始我们组是利用LM2940稳压芯片输出的5V电压作为S12芯片内部AD转换的电压参考值,但采集回来的电磁信号AD值时常出现跳变,为什么?经过排除其他原因后,我们发现原因就在于基准电压不稳定,夸张地举个例子(8位AD),假设参考电压是5V,采集到的电磁模拟信号是2V,那么得到的数字量是102,但是由于某种原因参考电压突然变为4V,那么得到的数字量就突变为127,转换不准确,使得S12单片机产生误动作,要是时常发生这类突变,后果可想而知,车子根本跑不了!!! 三、LM2940与MC1403芯片 通过上面举的例子,我想说的是,LM2940输出的5V电压并非稳定,因为LM2940属于功率型稳压芯片,就是说其输出的电压会受流过LM2940的电流的影响,电流短时间发生较大变化时,其输出电

压也会相应发生变化(1V以内,典型值是0.5V),由于挂在LM2940上的负载较多,电流值变化较大,也就是说输出电压也会变化,而AD转换需要的却是一个稳定的参考电压,显然LM2940无法满足这个条件,因此AD值跳变是肯定的; 那么用哪个芯片作为基准电压更为恰当呢,答案肯定是有很多的,我们后来采用的芯片是MC1403,其输出电压很稳定,输出电压值为2.5V,关键在于即使输入电压变化较大,MC1403的输出误差也在1%以内,显然这可以满足我们AD转换所需基准电压的要求。下图是MC1403芯片的一个简介。 但是,2.5V作为基准电压显然是太低啦,因此我们需要对其进行升压,利用运算放大器的放大功能,采用的运算放大器是LMV358,电路图如下:

飞思卡尔MC9S12XET256 SCI串口寄存器说明

串口寄存器说明 该模块指南提供了串行通信接口(SCI)模块概述。 SCI的允许与外围设备和其他CPU异步串行通信。 1.1 SCI包括这些特征: ?全双工或单线运行 ?标准标记/空间不归零(NRZ)格式 ?可选的IrDA1.4返回到零倒置(RZI)与可编程脉冲宽度格式 ?13位的波特率选择 ?可编程8位或9位数据格式 ?分别使能发射机和接收机 ?可编程极性对发射机和接收机 ?可编程发送器输出校验 ?两个接收器唤醒的方法: -唤醒空闲线 - 地址标志唤醒 ?中断驱动的操作有八个标志: -发送器空 - 传输完成 - 接收器满 - 空闲接收器输入 - 接收器溢出 -噪声误差 -帧错误 - 奇偶错误 - 接收有效边缘唤醒 - 发送冲突检测支持LIN -间隔检测支持LIN ?接收帧错误检测 ?硬件奇偶校验 ?1 / 16位时间噪声检测 1.2 操作模式 SCI的功能相同在正常、特殊和仿真模式。它有两种低功耗模式,等待和停止模式。 ?运行模式 ?等待模式 ?停止模式 1.3 寄存器说明 1、波特率控制寄存器(SCIBDH、SCIBDL) SCIBDH和SCIBDL一起构成了一个16位的波特率控制寄存器。SBR12~~SBR0为波特率常数。

IREN:红外调制模式使能位 1 使能 0 禁止 TNP[0..1]:窄脉冲发射位,这些位使能SCI是否能发送一个1 / 16,3 /16,1/ 32或1 / 4的窄脉冲。见表20-3。 SBR[0..12]:波特率设置位 When IREN = 0 then, SCI baud rate = SCI bus clock / (16 x SBR[12:0]) When IREN = 1 then, SCI baud rate = SCI bus clock / (32 x SBR[12:1]) 【说明】波特率发生器在复位后是禁止的,在设置TE、RE(在SCICR2寄存器中)后才会工作。当(SBR[12:0] = 0 and IREN = 0) 或者(SBR[12:1] = 0 andIREN = 1),波特率发生器不工作。 【注意】在未写入SCIBDL,写SCIBDH没有反应。一般地,设置IREN=0,SR=52(总线频率8MHz),波特率为9600。 2、控制寄存器(SCICR1) 一般此寄存器可默认设置。

飞思卡尔 电磁组

第十届“飞思卡尔”杯全国大学生 智能汽车竞赛 技术报告 学校:常熟理工学院 队伍名称:物电电磁二队 参赛队员:梅亚军、沈锦杰、黄志鹏、张峰 带队老师:徐健、顾涵

关于技术报告和研究论文使用授权的说明 本人完全了解第十届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

摘要 本文介绍了常熟理工学院物电电磁二队电磁车的成果。智能车的硬件平台采用带MK60DN256Vll10处理器,软件平台为IAR Embedded Workbench开发环境,车模采用大赛组委会统一提供的两辆B型车模。 文中介绍了智能车机械结构调整,传感器电路设计,舵机、电机控制算法以及起跑线的检测等。车模以MK60DN256Vll10单片机为控制核心,以安装在车体前的工字电感作为循迹传感器,采用干簧管检测起跑线,以欧姆龙编码器检测速度信息。车模系统的简单工作原理是MK60DN256Vll10单片机通过AD口采集电感检测的拟量,并通过算法处理,然后返回值用于舵机控制,根据编码器返回值进行电机的闭环控制。通过串口,借用蓝牙等工具进行舵机PD参数,电机PID的调节,以及整定传感器参数的整合处理,再通过数字红外进行两车之间联系,保持车距。 关键字:机械结构、电磁寻线、舵机PD控制、电机PID控制

目录 第一章总体方案设计------------------------------------------------------------------------------------------- 6 第二章智能车机械结构调整与优化 ------------------------------------------------------------------------ 9 2.1 主销内倾 ---------------------------------------------------------------------------------------------- 9 2.2 主销后倾 -------------------------------------------------------------------------------------------- 10 2.3 外倾角 ------------------------------------------------------------------------------------------------ 11 2.4车轮安装示意图如下:---------------------------------------------- 12 2.5 舵机的安装----------------------------------------------------------------------------------------- 12 2.6 舵机安装示意图如下: ------------------------------------------------------------------------- 13 2.7 小结 --------------------------------------------------------------------------------------------------- 13 第三章电路设计说明 --------------------------------------------------------------------------------------- 14 3.1 电源模块--------------------------------------------------------------------------------------------- 14 3.2 传感器模块------------------------------------------------------------------------------------------ 15 3.3 电机模块--------------------------------------------------------------------------------------------- 15 3.4 舵机模块--------------------------------------------------------------------------------------------- 16 3.5 最小系统板设计 ----------------------------------------------------------------------------------- 16 3.6 系统主板设计 -------------------------------------------------------------------------------------- 17 3.7 小结 --------------------------------------------------------------------------------------------------- 18 第四章智能车控制软件设计说明 ------------------------------------------------------------------------- 19 4.1 软件设计总体框架 -------------------------------------------------------------------------------- 19 4.2 电机PID控制 -------------------------------------------------------------------------------------- 20 4.3 舵机的控制----------------------------------------------------------------------------------------- 24 4.4 传感器数据的处理 -------------------------------------------------------------------------------- 24 4.5 小结 --------------------------------------------------------------------------------------------------- 24 第五章开发工具、制作、安装、调试过程说明 ------------------------------------------------------ 25 5.1 软件编译环境 -------------------------------------------------------------------------------------- 25 5.2 显示模块 -------------------------------------------------------------------------------------------- 25 5.3 蓝牙调试模块-------------------------------------------------------------------------------------- 26 5.4 上位机调试----------------------------------------------------------------------------------------- 26 5.5 本章小结 -------------------------------------------------------------------------------------------- 27 模型车的主要技术参数说明 --------------------------------------------------------------------------------- 28 结论 ---------------------------------------------------------------------------------------------------------------- 29 参考文献 ---------------------------------------------------------------------------------------------------------- 31 附录A:程序源代码 ------------------------------------------------------------------------------------------ 32

相关主题