搜档网
当前位置:搜档网 › 聚合物非等温结晶动力学研究进展

聚合物非等温结晶动力学研究进展

聚合物非等温结晶动力学研究进展
聚合物非等温结晶动力学研究进展

聚合物的结晶

聚合物的结晶 聚合物按其能否结晶可以分为两大类:结晶性聚合物和非结晶性聚合物。后者是在任何条件下都不能结晶的聚合物,而前者是在一定条件下能结晶的聚合物,即结晶性聚合物可处于晶态,也可以处于非晶态。聚合物结晶能力和结晶速度的差别的根本原因是不同的高分子具有不同的结构特征,而这些结构特征中能不能和容易不容易规整排列形成高度有序的晶格是关键。 聚合物结晶的必要条件是分子结构的对称性和规整性,这也是影响其结晶能力、结晶速度的主要结构因素。此外,结晶还需要提供充分条件,即温度和时间。首先讨论分子结构的影响。高聚物结晶行为的一个明显特点就是各种高分子链的结晶能力和结晶速度差别很大。大量实验事实说明,链的结构愈简单,对称性愈高,取代基的空间位阻愈小,链的立构规整性愈好,则结晶速度愈大。例如,聚乙烯链相对简单、对称而又规整,因此结晶速度很快,即使在液氮中淬火,也得不到完全非晶态的样品。类似的,聚四氟乙烯的结晶速度也很快。脂肪族聚酯和聚酰胺结晶速度明显变慢,与它们的主链上引入的酯基和酰胺基有关。分子链带有侧基时,必须是有规立构的分子链才能结晶。分子链上有侧基或者主链上含有苯环,都会使分子链的截面变大,分子链变刚,不同程度地阻碍链段的运动,影响链段在结晶时扩散、迁移、规整排列的速度。如全同立构聚苯乙烯和聚对苯二甲酸乙二酯的结晶速度就慢多了,通过淬火比较容易得到完全的非晶态样品。另外,对于同一种聚合物,分子量对结晶速度是有显著影响的。一般在相同的结晶条件下,分子量大,熔体粘度增大,链段的运动能力降低,限制了链段向晶核的扩散和排列,聚合物的结晶速度慢。最后,共聚物的结晶能力与共聚单体的结构、共聚物组成、共聚物分子链的对称性、规整性有关。无规共聚通常会破坏链的对称性和规整性,从而使共聚物的结晶能力降低。如果两种共聚单元的均聚物结晶结构不同,当一种组分占优势时,该共聚物是可以结晶的。这时,含量少的组分作为结晶缺陷存在。但当两组分配比相近时,结晶能力大大减弱,如乙丙共聚物当丙烯含量达25%左右时,产物便不能结晶而成为乙丙橡胶。如果两种共聚单元的均聚物结晶结构相同,这种共聚物也是可以结晶的。通常,晶胞参数随共聚物组成而变化。嵌段共聚物的各个嵌段基本上保持着相对的独立性,其中能结晶的嵌段将形成自己的晶区。如聚酯-聚丁二烯-聚酯嵌段共聚物,聚酯段仍可较好地结晶,形成微晶区,起到物理交联的作用。而聚丁二烯段在室温下可以有高弹性,使共聚物成为一种良好的热塑性弹性体。 4.4.1结晶动力学 结晶性聚合物因分子结构和结晶条件不同,其结晶速度会有很大差别。而结晶速度大小,又对材料的结晶程度和结晶状态影响显著。为此,研究聚合物的结晶动力学将有助于人们控制结晶过程,改善制品性能。 一、结晶速度的测定方法 研究聚合物结晶速度的实验方法大体可以分为两种:一种是在一定温度下观察试样总体结晶速率,如膨胀计法、光学解偏振法、DSC法等;另一种是在一定温度下观察球晶半径随时间的变化,如热台偏光显微镜法、小角激光光散射法等。

DSC等等温结晶测试-德国耐驰

简介 在聚合一个相对较须明确的确用。 快速冷却和 对于等 开始时结晶温度会使结在DSC 因为功率补器,同时该 聚丙烯的等 在这个数调节以优将6.75冷却到142从冷却 定性,控温DSC 等合物行业中,较冷的模具中确定。因为等和稳定 等温结晶测试晶;其次,在结晶提早发生 214 出现之补偿型DSC 的该仪器在恒温等温结晶 个例子中,等优化快速冷却5mg 样品以2℃、140℃和却到142℃的温 温误差< 0.1K 等温结晶注射模塑法是,迅速冷却后温结晶实验可试,DSC 实验必指定的结晶温,有些高聚物之前,只有使用的炉体很小。温段具有极好温结晶实验使段到恒温段20K/min 的速和138℃,整温度曲线(图 K。 测试:模编译:耐驰是生产形状确后即可得产品可以模拟模具必须满足两个温度下,温度物(如聚烯烃用功率补偿型NETZSCH DSC 的温控能力,使用NETZSC 的过渡。 速率加热到熔个实验过程在图1)上可以 图 1. 冷模拟注射模驰仪器公司应用确定的零件的品。模具的温具中聚合物的个要求。首先度必须稳定,烃)结晶很快型DSC 才能够C 214 Polyma ,这得益于它CH DSC 214 P 熔融温度,3分在氮气气氛下看出,在达到冷却到 142℃的模塑过程中用实验室 的主要方法。温度会直接影的行为,DSC 先,样品必须不能高于或,温度略低于够实现等温结a 是第一个实它使用的具有olyma 对聚丙分钟的恒温过下进行。 到目标结晶温 的温度曲线 中的结晶行其过程为将影响最终产品C 等温结晶测须快速冷却,或低于目标温于目标温度几结晶测试所需实现快速升降有低热质量的丙烯样品进行过程后,样品温度后, 恒温行为 将熔融的高分品的性能,因测试可以真正防止样品在温度。温度未几秒钟就会开需的高冷却速降温速率的热的Arena 炉体行测试。进行品以程控速率 温段具有极好分子注入到因此温度必正发挥其作在冷却过程未到达目标开始结晶。 速率,这是热流DSC 仪体。 行适当的参率200K/min 好的温度稳

DSC非等温结晶数据处理

DSC非等温结晶数据处理 1 确定结晶的起始温度,DSC软件可以给出,如果没有需要自己来确定,会存在一定误差; 2 确定结晶时间:t=(T0-T)/v,T0-结晶开始温度;T-t时刻的结晶温度;v-降温速率 3 基线调整; 一般所得的DSC曲线的基线不在X轴上,需要对基线进行调整,使其在X轴上。Diamond公司直接可以在仪器上进行调整,对于不能在仪器上进行调整的,可以在Origin上进行调整,下面以Origin8软件为例,简介如下: 3.1 原数据如图所示: 在Graph操作界面,对图像进行处理:Analysis-Spectroscopy-create baseline,出现如下操作界面:

Method 选用 Auto-created a modifiable, Baseline选用 Entire Data with smooth, Number 选项一般为10-15,具体情况还要视具体情况而定, Recacluate 选用Auto。在选择10个点之后界面变作如下: 调整红圈点,使其与基线尽可能完全重合,调整后如下

点击Apply后,如下 Analysis-Data Manipulation-Subtract Reference Data,出现对话框如下:

点击Reference Data右边的三角,在下拉菜单中,选择Plot(2):Baseline1后出现如下对话框: 点击OK 出现如下图面

调整Y轴坐标, 基线已经基本和X轴重合,这样就把基线调整完毕。需要说明的是,调整后,原始数据发生变化,此时,如果不调整Y轴,重新画图还是可以的。 4 根据前面确定的结晶起始温度,截取图像,就是截取起始温度点的数据重新画图。

11-高密度聚乙烯非等温结晶动力学及结晶行为的模拟-杨鸣波

高密度聚乙烯非等温结晶动力学及结晶行为的模拟 陶四平,于润泽,周明,冯建民,杨鸣波* (四川大学高分子科学与工程学院,高分子材料工程国家重点实验室,四川成都610065) 摘要:通过差示扫描量热法对高密度聚乙烯的非等温结晶动力学进行了探讨,引入非等温 结晶诱导时间后,比较了两种能描述聚合物在变温热历史下的结晶动力学,结果表明 Nakamura法描述HDPE的结晶动力学与实验一致性比Dutta法好。在Nakamura模型中, 结合线性回归分析和试差法,找到了能直接从非等温结晶实验中获取HDPE的结晶动力学 参数的方法。 关键词:高密度聚乙烯;结晶动力学;诱导时间 Modeling of Non-isothermal Crystallization Kinetics of High Density Polyethylene TAO Si-ping ,YU Run-ze ,ZHOU Ming ,FENG Jian-min ,YANG Ming-bo (College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China) Abstract: Non-isothermal crystallization kinetics of high density polyethylene was investigated via differential scanning calorimeter (DSC). Non-isothermal crystallization kinetics data obtained from DSC were employed to estimate the kinetic parameters of mathematical models describing the non-isothermal crystallization of HDPE. It was found that the non-isothermal crystallization kinetics of HDPE can be best described by Nakamura model with the inclusion of induction times. A linear regression method and trial-and-error method were presented using the Nakamura model to obtain crystallization rate equation parameters directly from non-isothermal crystallinity data. Key words: high density polyethylene; crystallization kinetics; induction times 高密度聚乙烯(HDPE)作为一种半结晶型聚合物,由于物化性能优异、成型加工简易、价格相对便宜等优点,已广泛用于国民生产的各个领域,成为产量和需求量最大的一类合成树脂之一。 通常,半结晶型聚合物在成型加工过程中由熔体等温或非等温冷却至特定形状的制品时都会产生晶体结构,这一微观结构往往又是控制制品性能好坏的重要因素,如刚度、韧性、透明度等。因此,为了寻求最佳的成型加工条件并获得最优性能的制品,定量探讨它们在成型加工过程中的结晶行为或结晶度的增长规律,已越来越受学者们关注[1-3]。为实现HDPE 收稿日期: 基金项目:国家自然科学基金重点项目资助(29934070) 作者简介:杨鸣波(1957-), 教授, 博导. 研究方向: 高分子材料加工工程 *通讯联系人

由结晶动力学评价含结晶聚合物共混物相容性的研究进展

基金项目:教育部留学回国人员科研启动基金; 作者简介:张公正(1956-),男,工学博士,现为北京理工大学化工与环境学院教授,主要进行结晶聚合物共混物结晶动力学及相容性评价研究;E -mail :zg ongz99@https://www.sodocs.net/doc/106792226.html,. 由结晶动力学评价含结晶聚合物共混物相容性的研究进展 张公正 (北京理工大学化工与环境学院,北京100081) 摘要:介绍了用结晶动力学分析的方法评价含结晶聚合物共混物的混合状态的基本理论和解析原理,综述 了最新研究进展。 关键词:结晶动力学;聚合物共混物;相容性;DSC 聚合物共混物的特点是由于高分子链长的原因,混合熵小,而导致相容性差。共混物两组分之间存在特殊的相互作用(如氢键作用、偶极子作用)为相容性提供了原动力。因此,共混物两组分之间相互作用的微小差别都影响共混物的相容性。通过改变共混物的组分配比,来调节分子间相互作用力的大小,使共混物的混合状态发生改变。根据聚合物-聚合物二元体系相图,聚合物共混物有相容、部分相容和不相容三种混合状态。尽管可以借助许多方法评价聚合物共混物的混合状态,目前还缺乏一种手段既可以评价相容的聚合物共混体系又可判断不相容的聚合物共混物。 图1 结晶聚合物共混物的相图与熔融温度曲线示意图(a )相容体系-LCST 型共存曲线(实线)远离熔融解温度曲线(点线);(b )相分离体系-LCST 型共存曲线(实线)与熔融温度曲线(点线)相交 Figure 1 Schematic phase diagram for polymer blend including crystalline polymer (a )miscible system [the separation of LCST binodal curve (s olid line )with melting tem perature (dotted line )];(b )immiscible system [the overlap of LCST binodal curve (s olid line )with melting tem perature (dotted line )] 有一种称为“结晶动力学分析的方法”[1,2],显示出它 特有的优越性。这种方法使用差示扫描量热法(DSC ),通 过对共混物等温结晶测定,解析成核和结晶过程,从结晶 前后化学势的变化(Δ μ)和结晶表面自由能(σ)与共混物中某种成分质量百分数(<)的相关性,来评价聚合物共混 物的相容性和相互作用的大小。本文就这种方法的基本 理论、解析方法和最新研究结果加以阐述。 1 聚合物共混物的结晶 含有结晶的聚合物共混物,从熔融状态到冷却结晶 时,结晶与相分离兼顾发生,可能得到复杂的聚合物-聚合 物二元体系相图。图1为结晶聚合物共混体系的相图与 熔融温度曲线示意图。在图1a 中,共存曲线远离结晶温度线,随着温度的降低,结晶在均相的共混体系中生成。而在图1b 中,共存曲线与熔融温度曲线T max 交叉,当温度 降低时,结晶与相分离相互竞争,结晶在相分离的状态下 生成。对于后面一种情况,不管是在旋节分离曲线的哪 侧温度领域,也就是说不管相分离发生在相图中的双节 线上还是旋节线上,获得的真实相图都是极其复杂的。2 考虑方法 结晶聚合物共混物从熔融到冷却结晶时,足够长的聚合物分子链,使得晶体的生长过程受聚合物分

PP、PET的等温和非等温结晶动力学

PP、PET的等温和非等温结晶动力学

仪器:差示扫描量热仪DSC 1

非等温结晶参数(参考文献JAPS,1984,29,1595) Tp -结晶峰温度; T onset -起始结晶温度;T endset -结晶终止温度; T onset -Tp -结晶速度的大小,其值越小,结晶速度越快; Si -结晶放热峰起始斜率,可表示成核速度;ΔW -结晶半峰宽,表示晶体的分布,ΔW 越小,晶体分布越窄。 s i = tg αH e a t f l o w , e x p o Temperature, o C Tp T onset a w T endset

两种PP 产品的结晶参数对比 47.49 45.33Xc %38 2-3MI g/10min 5.5 117.7 112.2 PPS2040 4.311 5.5111.2PPF401T ons e t -T p , ℃T onset ,℃T p ,℃样品

非等温结晶动力学方程 在DSC 曲线中任意结晶温度时的相对结晶度Ⅹ(T)可用下式进行计算: 其中, T 0是开始结晶时的温度, T ∞是结晶完全时的温度,Q T 和Q T ∞ 是在结晶温度为T 0和结晶温度为T ∞所释放的热量。 Avrami 方程: 式中,X (t ) 是不同时间t 的相对结晶度,K (T )是结晶速率常数,n 为Avrami 指数,其值与成核机理和晶体的生长方式有关。 再利用公式t = (T 0-T) / Ф进行时温转换,即可得到试样相对结晶度与结晶温度,结晶时间的关系。式中t 是结晶时间, T 0是结晶起始温度, T 是结晶温度, Ф是降温速率。 n t T K t X )(exp(1)(??=(2) ∫ ∫∞ ∞==T T T T T T dT dT dH dT dT dH Q Q T X 0 0)()()((1)

聚乳酸的等温结晶研究

聚乳酸(PLA)是一种无毒、良好的生物相容性,可塑性好、易于加工成型的生物可降解塑料。结晶态的PLA具有较好的力学性能,且能够提高PLA材料的耐热性。因此,研究影响聚乳酸结晶和结晶形态的因素不论在理论方面,还是在实际应用方面,都具有十分的意义[1]。 在PLA树脂中加入成核剂能有效地提高其结晶速率和结晶度,缩短加工的周期,提升耐热性。Kyung Su Kang等[2]对比了化学改性的热塑性淀粉(CMPS),颗粒淀粉和滑石粉对聚乳酸等温结晶的影响,得出仅0.1%的含量CMPS作为成核剂仍与颗粒淀粉效果相当,但弱于滑石。然而,CMPS为生物基和可生物降解高分子,作为成核剂较颗粒淀粉和滑石粉更为绿色。李春等[3]研究了取代芳基磷酸金属盐类成核剂对聚乳酸的影响,得出取代芳基的一价盐和三价盐可以较好改善聚乳酸结晶,其中锂盐效果最好,二价盐则对聚乳酸结晶效果不明显。冯立栋等[4]研究了不同初始条件下聚乳酸 聚乳酸的等温结晶研究 徐栋周密钱欣徐书隽 (浙江工业大学化学工程与材料学院,杭州,310014) 摘要研究了成核剂SX,滑石粉(Talc)及SX与Talc复合对聚乳酸(PLA)结晶的影响。等温结晶动力学表明,各个体系Avrami参数均在1~2.5之间,为异相成核。SX含量从0.2%(质量分数,下同)增加到0.6%后,结晶速率大大提高,结晶半周期t1/2为0.65min,并且随着等温结晶温度的减小,t1/2减小。Talc含量变化对提高PLA结晶速率没有明显影响。SX是比Talc更高效的成核剂,当其添加到0.6%,120℃时等温t1/2为0.65min,远小于添加6%Talc的。SX与Talc有协同作用,添加0.2%SX+4%Talc的样品t1/2达到0.10min。 关键词聚乳酸结晶性能成核剂结晶动力学 Study on Poly(Lactic Acid)Isothermal Crystallization Xu Dong Zhou Mi Qian Xin Xu Shujun (College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou,310014) Abstract:The effect of nucleating agent SX,talcium powder(Talc)on poly(lactic acid)(PLA)crystalliza-tion was studied.The isothermal crystallization kinetic showes that each system is heterogeneous nucleation when Avrami parameters is between1to2.5.When the content of SX grows from0.2wt%to0.6wt%,the crystallization rate greatly improves,crystallization half cycle(t1/2)is0.65min,following the isothermal crystal-lization temperature decreases,the crystallization half cycle decreases.The change of Talc content has no ob-vious influence for acceleration of PLA crystallization rate.SX is a more efficient nucleating agent than Talc, when it adds to0.6wt%in120℃,t1/2is0.65min,far less than adds6wt%Talc.SX with Talc has syner-gism.When0.2wt%SX and4wt%Talc are mixed with PLA,t1/2reaches0.10min and relative crystallinity is49.03%. Keywords:poly(lactic acid),crystallinity,nucleating agent,crystallization kineticss 收稿日期:2011-09-13

PET等温结晶速率与其影响因素

PET等温结晶速率与其影响因素 聚对苯二甲酸乙二醇酯(PET)作为结晶型高聚物广泛应用于合成纤维,绝缘材料等领域,但作为工程材料却应用非常有限,这主要是因为PET结晶速率较慢,成型周期过长所致。PE的最大球晶生长速率为5000 ,而PET仅为10 ,加上其结晶温度高,因而经济性很差。为此国内外学者深入研究了PET的结晶机理和影响PET结晶的因素以提高PET结晶速率。本文简要讨论了PET的结晶机理和温度,应力,催化剂等对PET等温结晶速率的影响,并简要阐述了提高PET结晶速率的方法。 一.结晶机理 高分子结晶的研究经历了从溶液培养单晶,确定折叠链模型,到高压结晶获得伸直链聚乙烯晶体,再到成核与生长理论的提出等发展阶段,形成了Hoffman和Lauritzen的成核与生长(Nucleation and Transition)为代表的结晶理论被广泛接受和应用。该模型认为结晶温度愈高,需要克服的活化能愈大,因而二次成核在决定生长速率时起关键作用。 高聚物的等温结晶过程可用Avrami方程描述: 其中k为结晶速率常数,v为t时刻的比容,n为Avrami指数。 高聚物的结晶过程是由晶核的形成和晶体生长所组成,在通常条件下,从浓溶液 或熔体结晶时,结晶高聚物倾向于形成球晶。球晶的生长从球晶中心生成的晶核开始,当形成的晶核进行三维生长时将生成球晶。 由于高聚物晶体的密度比非晶态密度要大,因此在结晶过程中,高聚物体积将发生变化。这种体积收缩的速度反应了高聚物的结晶速度,在等温过程中,体积收缩一半所需的时间可较准确地测量,因此通常就规定体积收缩一半所需的时间地倒数1/t1/2作为该实验温度下的结晶速度。 1/t1/2=(㏑2/k) 几种高聚物在结晶最快的温度下的半结晶期 高聚物尼龙66 等规聚丙烯尼龙6 PET 1/t1/2(s) 0.42 1.25 5.0 42.0 不同高聚物结晶速度各异主要是因为分子链扩散砌入晶格所需的活化能不同,通常链的结构愈简单,对称性愈高,结晶速度愈大。聚乙烯结构简单,对称性好,因此结晶速度快,而PET由于分子链上有-C-O -基使对称性下降,主链还有苯环,使高分子链刚性变大,对链运动起到阻碍作用,影响了分子链扩散的速度,因此PET的结晶速度比PE慢的多。 二.影响PET的结晶速度的因素 1. 熔融温度和熔融时间的影响 任何能结晶的聚合物在成型加工前的聚集态中都具有或多或少的晶体,当其被加工到Tm以上时熔化温度与在该温度下的停留时间会影响熔体中可能残存的晶核数量。晶核存在与否以及晶核大小对聚合物加工过程中的结晶速度影 响很大。当熔融温度高和熔融时间长,熔体冷却时结晶速度快,晶体尺寸小且均匀。

1. 差示扫描量热法测定聚合物等温结晶速率

差示扫描量热法测定聚合物等温结晶速率 一、实验目的 1、加深对聚合物的结晶动力学特征的认识。 2、了解DSC 法测定聚合物等温结晶速率的基本原理。 3、熟悉DSC 204F1型差示扫描量热仪的操作。 4、掌握DSC 法测定等温结晶速率的实验技术。 二、实验原理 聚合物的结晶过程是聚合物分子链由无序的排列转变成在三维空间中有规则的排列,结晶的条件不同,晶体的形态及大小也不同,结晶过程是高分子材料加工成型过程中的一个重要环节,它直接影响制品的使用性能。因此,对聚合物结晶速率的研究和测定有重要的意义。 测定聚合物等温结晶速率的方法很多,其原理都是基于对伴随结晶过程的热力学、物理性能或力学性能的变化的测定,如比容、红外光谱、X 射线衍射、双折射法等都是如此。本实验采用DSC 法,它具有制样简便、操作容易、实验重复性好等优点。 差示扫描量热仪(DSC )是在差热分析的基础上发展起来的一种热分析技术。DSC 仪主要有功率补偿型和热流型两种类型。热流型的测试仪是在同一个炉中或相同的热源下加热样品和参比物。在程序温度(线性升温、降温、恒温及其组合等)运行过程中,当样品发生热效应时,在样品端与参比端之间产生了与温差成正比的热流差,通过热电偶连续测定温差并经灵敏度校正转换为热流差。利用差示扫描量热仪,可以研究材料的熔融与结晶过程、结晶度、玻璃化转变、相转变、 液晶转变、氧化稳定性(氧化诱导期)、反应温度与反应热焓,测定物质的比热、纯度,研究高分子共混物的相容性、热固性树脂的固化过程,进行反应动力学研究等。 采用DSC 法测定聚合物的等温结晶速率时,首先将样品装入样品池,加热到熔点以上某温度保温一段时间,消除热历史,然后迅速降到并保持某一低于熔点的温度,记录结晶热随时间的变化,如图1(a )。可以看到随结晶过程的进行,DSC 谱图上出现一个结晶放热峰。当曲线回到基线时,表明结晶过程已完成。记放热峰总面积为A0,从结晶起始时刻(t 0)到任一时刻t 的放热峰面积A t 与A 0之比记为结晶分数X(t):()0 A A t X t = 图1 DSC 法测定结晶速率 (a)等温结晶DSC 曲线 (b)结晶分数与时间关系 以结晶分数X(t)对时间作图,可得到图1(b )的S 形曲线。这种形状代表了三个不同的结晶阶段。第一阶段相当于曲线起始的低斜率段,代表成核阶段,又称为结晶的诱导期;第二阶段曲线斜率迅速增加,为晶体放射性生长,形成球晶的阶段,称为一次结晶;曲线斜率再次减小即进入第三阶段,到此阶段大多数球晶发生碰撞,结晶只能在球晶的缝隙间进行,生成附加晶片,称为二次结晶。 聚合物等温结晶过程可以用Avrami 方程进行描述: 式中,X 为结晶分数,K 为总结晶速率常数,n 为Avrami 指数,与成核机理和晶粒生长的方式有关。对Avrami 方程取两次对数: 以lg[-ln(1-X)]对lgt 作图得一直线,其斜率为Avrami 指数,其截距为lgK 。 三、实验试剂和仪器 1、主要实验试剂 聚对苯二甲酸-1,3-丙二醇酯(PTT )粒料 2、主要实验仪器 204F1型差示扫描量热仪 四、实验步骤: 1、试样制备

聚丙烯等温结晶动力学的研究

聚丙烯等温结晶动力学的研究 摘要:应用解偏振光强度法研究了不同成核剂对等规聚丙烯结晶行为的影响,以及不同温度下等规聚丙烯的结晶行为。结果表明,加有成核剂的聚丙烯其Avrami指数都在3.0左右,这表明等温结晶过程中成核剂的加入对聚丙烯的结晶方式影响不大,其结晶生长方式为异相成核的三维球晶生长方式。结晶温度对聚丙烯Avrami指数影响较大,随着结晶温度的升高,Avrami指数增大。 关键词:解偏振光强度法、等规聚丙烯、Avrami指数、异相成核、结晶温度Abstract:The isothermal crystallization kinetics of isotactic polypropylene (iPP) was investigated by means of Depolarized Light Intensity(DLI) technique. The results show that the Avrami exponents of iPP with different nucleators a-re analogous,which are all close to 3. Moreover,the Avrami exponents will be higher as the crystallization temperature increases. Keyword:crystallization kinetics,Avrami exponents;crystallization temperature,DLI 1、前言 由于聚合物的力学性能与其结晶性能之间密切相关,通过对结晶动力学的研究可以得到聚合物结晶的相关信息,例如结晶速率常数、Avrami指数等,从而为聚合物的加工提供一定的指导工作,因此对等规聚丙烯结晶动力学进行研究具有重要的理论意义和实际意义。 目前研究聚丙烯的成核机理较为成熟的理论是Binsbergn的异相成核理论,其提出成核剂在聚丙烯的结晶过程中充当异相晶核的作用,成核剂的非极性部分在表面形成凹痕,容纳聚丙烯的分子链并使其排列整齐,促进成核。在空白聚丙烯中由于结晶的晶核都是靠聚丙烯熔体本身的分子运动形成的,因而成核速率慢,且形成的晶核数目少,最后形成的球晶尺寸大,聚丙烯性能较差。而在添加成核剂后,由于大量异相晶核的存在,使得聚丙烯的球晶来不及长大就碰撞到其他的球晶,使得聚丙烯的球晶尺寸大大减小,从而提高聚丙烯的性能。 2、实验部分 2.1、实验材料 未加成核剂的空白聚丙烯样品,添加1号成核剂的1号聚丙烯样品,添加2号成核剂的2号聚丙烯样品,添加3号成核剂的3号聚丙烯样品 2.2、实验仪器

聚乙烯醇结晶动力学

52《维纶通讯》201年3月 聚乙烯醇结晶动力学 [摘要]通过在142七~192咒的温度下长达18min的等温结晶过程,研究了无溶剂聚乙烯醇的结晶动力学。通过Avrami理论分析结晶等温线。指数n在142七~182七的范围内几乎不变(0.67-0.71),但在192t下结晶时将增加至1.53。基于等温线和微晶生长速率的热力学分析,有明显迹象表明PVA是一维结 晶。在不存在水或其他溶胀剂的情况下,由于径基的相互作用,动力学障碍占主导地位。因此,结晶PVA的最大可达的重量分数,显著低于水合PVA样品(的重量分数)。本文讨论了影响结晶生长速率的其他参数,包括通过交联控制的过冷度和平均链长。 1介绍 聚乙烯醇(以下简称PVA)的结晶机理和动力学已有许多研究人员在各种实验条件下如有/无溶剂的情况下进行了研究。由于形成这些聚合物中有序大分子结构动力学障碍较大,因此含有轻基的聚合物(如PVA)的结晶是一个特别有趣的研究课题。 人们认为:在PVA拉伸过程中,氢键结合阻碍了结晶进程,从稀释或浓缩的PVA溶液中结晶,也因超分子结构的形成而变得复杂,这已解释为球状凝胶状结构或假晶结构区域。弗伦克尔和他的同事对这种行为进行了相当完整的描述。 有报道认为:对于半结晶PVA样品,根据制备方法和水解条件以及平均分子量和热处理条件的不同,熔点介于202T至240七之间。无规PVA通常为20%-35%的结晶度,但在高于玻璃化温度的条件下进行拉伸或整理时,其结晶度可提髙至55%,尤其是在稀释剂如水、乙二醇存在的情况下。 Mochizuki和他的同事,首先通过从稀水溶液中等温结晶,以及Monobe和Fujiwara通过从三乙二醇和相关多元醇的稀溶液中结晶,实现了PVA 的单晶生长。晶体属于单斜晶系,晶胞由两个单体单元组成。根据电子显微照片的阴影长度估计,微晶薄片的厚度约为100A~125Ao从高于180咒的水溶液中结晶PVA,可获得平行薄片,而在多元醇溶液中结晶的PVA形成球晶结构,如在130七~175咒的乙二醇中结晶。当用浓的多元醇溶液进行结晶形成PVA膜时,Packter和Ne-rurkar观察到有球晶生长。随着蒸发温度从120七升至180r,球晶£的最终尺寸增大。 即使不存在稀释剂,许多资料证明了PVA的可结晶性。Bessonov和Rudakov的研究表明:PVA 从熔体中冷却时会结晶,并表现出明确的双折射模式。Bunn首次证明PVA大分子链的侧羟基较小,因此它们可以与晶格中的氢互换。因此,有规立构性对PVA的结晶过程及其X射线图案几乎无影响。因此,无规立构PVA的结晶度高达65%。Kenney和Willcockson的实验研究表明,间同立构规整度的增加,似乎不会导致结晶度增加,尽管在流动诱导的结晶条件下其生长,富含间同立构PVA的微晶生长速率似乎更快。 如Sakurada及其同事、Peppas和Merrill、Packter和Nerurkar等人的研究所示,PVA膜和纤维在稀释剂(如水)的存在下结晶更快。 尽管有以前进行的研究工作,但关于有水或无水情况下的PVA结晶机理仍有诸多问题尚无答案。最近对未交联和交联的PVA在水合膜的结晶行为进行研究,以确定其结晶机理。研究观察到了Avrami型微晶生长的依赖性,与其他更易结晶的聚合物的类似等温结晶行为一致。而在未

相关主题