搜档网
当前位置:搜档网 › 11-高密度聚乙烯非等温结晶动力学及结晶行为的模拟-杨鸣波

11-高密度聚乙烯非等温结晶动力学及结晶行为的模拟-杨鸣波

11-高密度聚乙烯非等温结晶动力学及结晶行为的模拟-杨鸣波
11-高密度聚乙烯非等温结晶动力学及结晶行为的模拟-杨鸣波

高密度聚乙烯非等温结晶动力学及结晶行为的模拟

陶四平,于润泽,周明,冯建民,杨鸣波*

(四川大学高分子科学与工程学院,高分子材料工程国家重点实验室,四川成都610065)

摘要:通过差示扫描量热法对高密度聚乙烯的非等温结晶动力学进行了探讨,引入非等温

结晶诱导时间后,比较了两种能描述聚合物在变温热历史下的结晶动力学,结果表明

Nakamura法描述HDPE的结晶动力学与实验一致性比Dutta法好。在Nakamura模型中,

结合线性回归分析和试差法,找到了能直接从非等温结晶实验中获取HDPE的结晶动力学

参数的方法。

关键词:高密度聚乙烯;结晶动力学;诱导时间

Modeling of Non-isothermal Crystallization Kinetics of High Density

Polyethylene

TAO Si-ping ,YU Run-ze ,ZHOU Ming ,FENG Jian-min ,YANG Ming-bo

(College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering,

Sichuan University, Chengdu, 610065, China)

Abstract: Non-isothermal crystallization kinetics of high density polyethylene was investigated via differential scanning calorimeter (DSC). Non-isothermal crystallization kinetics data obtained from DSC were employed to estimate the kinetic parameters of mathematical models describing the non-isothermal crystallization of HDPE. It was found that the non-isothermal crystallization kinetics of HDPE can be best described by Nakamura model with the inclusion of induction times.

A linear regression method and trial-and-error method were presented using the Nakamura model to obtain crystallization rate equation parameters directly from non-isothermal crystallinity data. Key words: high density polyethylene; crystallization kinetics; induction times

高密度聚乙烯(HDPE)作为一种半结晶型聚合物,由于物化性能优异、成型加工简易、价格相对便宜等优点,已广泛用于国民生产的各个领域,成为产量和需求量最大的一类合成树脂之一。

通常,半结晶型聚合物在成型加工过程中由熔体等温或非等温冷却至特定形状的制品时都会产生晶体结构,这一微观结构往往又是控制制品性能好坏的重要因素,如刚度、韧性、透明度等。因此,为了寻求最佳的成型加工条件并获得最优性能的制品,定量探讨它们在成型加工过程中的结晶行为或结晶度的增长规律,已越来越受学者们关注[1-3]。为实现HDPE

收稿日期:

基金项目:国家自然科学基金重点项目资助(29934070)

作者简介:杨鸣波(1957-), 教授, 博导. 研究方向: 高分子材料加工工程

*通讯联系人

注射成型过程结晶行为的计算机模拟,本文意在获得HDPE 的结晶动力学参数,同时通过其在不同冷却速度下结晶度变化的差示扫描量热法(DSC )实验值与理论值的比较,寻求能描述HDPE 在快速冷却热历史下的结晶动力学的最佳形式。

1 理论基础

1.1 结晶动力学部分

Avrami [4]从金属结晶推出的等温结晶动力学,用在聚合物方面颇有成效,现已得到广泛应用。方程具体形式如下:

式中X(t)为t 时刻的相对结晶度;n 为Avrami 指数,与成核及生长方式有关;T 为等温结晶时的温度;k 为等温结晶动力学速率常数,包括成核速率与晶体生长速率。

但是,由于在实验中要实现等温结晶,需选取合适的结晶温度区间,这一温度区间往往比聚合物在实际加工过程中出现结晶的温度高,而不能准确反映出聚合物在加工过程中的结晶型为。因此有必要研究它们在变温情况下的非等温结晶动力学。目前,很多学者都是基于Avrami 方程等温结晶出发,同时考虑非等温结晶的特点而修正得到的非等温动力学方程。

Nakamura 等[5,6]基于晶体生长速率与成核数率的比值与温度无关的假设,即等动力学条件下,将Avrami 方程成功推广到变温情况下的相变过程,具体形式为:

式中积分下限表示结晶起始时刻,计为0时刻;K(T)为温度T(t)下的非等温结晶动力学速率常数,K(T)=k(T)1/n 。

Isayev 等[7]在分析聚对苯二甲酸乙二醇酯(PET )的非等温结晶时,引入Hoffman-Lauritzen 形式[8]的速率常数,将Nakamura 方程成功推广到降温速度为2到40℃·min -1下的结晶过程。

式中,t 1/2为半结晶时间;(t 1/2)0为指前因子,与温度无关;R ,普适气体常数;ΔT 表示过冷

度,ΔT =T m °-T ,其中T m °为广义平衡熔点,取T m °= T m +8K ,Tm 为平衡熔点;T ∞为广义玻璃化转变温度,取T ∞=T g -40K ,T g 为玻璃化转变温度;f 为校正因子,f =2T/(T m °+T);U *为结晶单元穿过液固界面到达结晶表面所需活化能,对于大多数聚合物而言,U *=6280J ·mol -1;K g 为形成临界尺寸晶核所需活化能,即成核活化能。

将(3)、(4)代入(2),并对(2)进行适当变形可得:

式中,C =(ln2)(1/t 1/2)0n

,与温度和冷却速度无关;*

0()exp(

)exp()()t

g K U f t dt R T T T Tf

∞--=-?? 于是以log[-log(1-X(t))]对logf(t)作图,可以得出一条与冷却速度无关的直线,直线截距为

logC ,斜率为n 。因此,选择合适的K g ,使log[-log(1-X(t))]对logf(t)的图形在不同的冷却速度下具有很好的同一线性关系,进而求得研究体系的结晶动力学参数K g 、Avrami 指数n 及(1/t 1/2)0,这比文献上报导的非线性回归分析方法具有更好的操作性[8-10]。

()1exp(())

n X t k T t =--(1)

()1exp[(())]

t

n X t K T dt =--?(2)

1/1/1/2()()(ln 2)(1/)

n n K T k T t ==(3) *

01/21/211()exp()exp()()g K U t t R T T T Tf

∞--=-?(4)

log[log(1())]log log ()

X t C n f t --=+(5)

Dutta [11]曾假定Avrami 方程的微分形式可用于非等温结晶,即

并且假定其中的结晶速率Z 与温度的关系可用Arrhenius 公式描述:

导出了如下关系式:

式中,T 0和T p 分别为DSC 曲线上结晶峰的起始温度和峰值温度;X p 和X p ’分别为DSC 曲线峰值时的相对结晶度和相对结晶度对时间的导数。根据方程(8),以方程左侧对(T p -T 0)/T p 2作图应为直线,斜率为E d /R ,截距为n-1。

基于Dutta 法原理,将(7)式代入(6)式,并对(6)式进行积分,也可得出另外一种能描述结晶聚合物在变温热历史下的非等温结晶动力学形式[12],见式(9),从而实现它们在成型加工过程中结晶行为的模拟。

1.2 结晶诱导时间

结晶诱导时间是指材料产生结晶行为、出现放热峰时的起始时间,对于聚合物而言,结晶放热峰可出现在熔体冷却时低于平衡熔点的某一温度,或在淬冷样品加热时高于玻璃化转变温度的某一温度。结晶诱导时间的引入对于成型加工过程中聚合物结晶行为的模拟非常重要[10,13],因此已越来越受众多学者重视。

一般认为,非等温结晶诱导时间t I 与等温结晶诱导时间t i 满足[14]:

对于熔体冷却时的等温结晶诱导时间t i 符合Godovsky -Slonimsky 方程[15],即:

式中,t m 、a 为材料系数,与温度无关。

2 实验部分

实验采用中国石油大庆石化公司生长的高密度聚乙烯,PE-LA-50D012(5000S)。实验时称取约10mg 样品,在NETZSCH DSC204差示扫描量热计上以10℃·min -1速度升温到200℃,使样品熔融,保持4min 以消除样品的热历史,分别在氮气保护下用不同冷却速度Φ=5、10、11、14、15、20、40℃·min -1冷却至室温20℃,得到七种不同降温速率的DSC 图谱。

通过对DSC 曲线上部分峰积分的方法可获得降温过程中不同时刻的结晶度:

式中,T 0、T ∞分别表示DSC 曲线上的结晶起始温度和终止温度。此时计算出的结晶度为相

对质量结晶度,需将其转变为相对体积结晶度(X v (t),或X(t))方可用于结晶动力学上的计算,对应变化可按下式进行:

1/(1)

n dX dt nZt X -=-(6) exp(/)

d Z A E RT =-(7)

002

'()()1(1)

p p d p p p X T T E T T n X RT --=-+

Φ-(8)

10

()1exp[()]

t

n X t Z T nt dt -=--?(9)

1I

t i

dt t =?

(10)

()a

i m m t t T T -=-(11)

00(

)()

()()()T

T w w T

w T dH dT X t dt X t dH X dT

dt ∞==∞??(12)

()()1(1)()

a

w

c a w b

X t X t X t ρρρ

ρ=

--(13)

其中,ρa 为完全无定型HDPE 的密度,取0.857g ·cm -3;ρc 为完全结晶HDPE 的密度,取1.002g ·cm -3 [16]。

3 结果与讨论

图l 为不同降温速率下HDPE 的DSC 曲线。随着降温速率的增大,结晶峰变宽,结晶起始温度T 0和结晶峰温度T p 都向低温方向变化。对DSC 曲线峰部分,可通过三次样条插值获得峰值处相对结晶度X p 及相对结晶度对时间的导数X p ’.从图1中获得的特征点列于表1,可按前述理论部分进行HDPE 的结晶动力学计算。

DSC 曲线上降温过程中偏离基线的温度一般被认为是该冷却速度下的结晶起始温度,于是相对于材料的平衡熔点T m ,我们可得出该冷却速度下的表现结晶诱导时间t I :

将所得不同冷却速度下的表现结晶诱导时间代入式(10),并结合式(11)进行非线性回归,可得出HDPE 的材料系数t m =5.29×105s ·K a ,a=4,进而可获得HDPE 在不同热历史下的非等温结晶诱导时间,(见图2)。可以看出,随着冷却速率的增大,结晶诱导时间变短,当冷却速率小于15℃·min -1时,冷却速率对结晶诱导时间的影响很大,而当冷却速率超过15℃·min -1之后,诱导时间对冷却速率的依赖性不是很明显。

对DSC 曲线特征点按Dutta 法处理,可得HDPE 的结晶动力学参数,Avrami 指数n=2.3,结晶活化能E d /R=4003.6K 。拟合结果见图3,可以看出有较好的线性关系。将n 和E d 值代入式(9),并针对不同冷却速度下相对结晶度X(t)和时间t 的关系,可获得Dutta 法中的指前因子A 的平均值为0.001,将上述结晶动力学参数代入式(9),得到HDPE 在不同热历史下相对结晶度对时间的关系。在等速降温的情况下,并引入非等温结晶诱导时间后,HDPE 相对结晶度的模拟值与DSC 上实验值的比较见图4。可以看出,理论值与实验值具有较好的一致性,但随着结晶的进行,两者的偏差略有增大,而且理论上HDPE 完成结晶过程的时间相对实验值早。

图1 不同冷却速度下HDPE 的DSC 曲线 Fig. 1 The DSC curves of HDPE in

different cooling rates.

非等温结晶诱导时间t I (s )

冷却速度Φ (℃min -1)

图2 不同冷却速度下HDPE 的结晶诱导时间,符号点

和直线分别代表实验值和拟合值

Fig. 2 Non-isothermal induction time as a function of

cooling rate. Symbols and lines represent experimental and fitted values, respectively.

m I T T t φ

-=

(14)

将HDPE 在不同冷却速度下的DSC 数据,按式(5)处理,其中K g 分别取6×10

4、7×104、

8×104、9×104K 2,见图5中(a)、(b)、(c)、(d),可以发现其中K g 取7×104K 2时,不同冷却速度下log[-log(1-X(t))]对logf(t)作图具有一致的线性关系,因此本体系HDPE 的K g 取7×104K 2,将其代入式(5)中,并对冷却速度分别为20℃·min -1和40℃·min -1的DSC 数据进行线性回归,可得C=400,n=1.3,回归系数R =99%。其中Avrami 指数n=1.3,我们认为是因为聚合物在结晶过程由于杂质、壁面等外界因素以及HDPE 成核和生长形态的复杂性[17,18]所致。将上述结晶动力学系数代入式(2),可获得HDPE 在不同热历史下相对结晶度对时间的关系。在等速降温热历史下,并引入非等温结晶诱导时间后,HDPE 相对结晶度的模拟值与DSC 上实验值的比较见图6。并比较图4后,可以看出用Nakamura 法模拟HDPE 的结晶动力学理论和实验值的一致性,比Dutta 法好,因此Nakamura 可较好地用于注射成型HDPE 结晶行为的模拟,这为定量探讨结晶聚合物在成型加工过程中凝聚态结构变化奠定很好的基础。

图3 Dutta 法获得HDPE 结晶动力学参数图 Fig. 3 Plot of HDPE crystallization kinetics

using Dutta model

图4 Dutta 法模拟出的HDPE 结晶动力学与实验值的

比较

Fig. 4 Comparison of the fitted non-isothermal crystallization of HDPE using Dutta with DSC curves

4 结论

1)针对DSC 曲线的特点,引入非等温结晶诱导时间,获得了HDPE 的材料系数,t m =5.29×105s ·K a ,a=4。在此基础上得出了HDPE 在不同热历史下的结晶诱导时间,这为确定HDPE 在成型时的结晶起始时间提供了理论依据。

2)通过对HDPE 在不同冷却速度下结晶动力学的模拟值与DSC 实验值的比较,得到了两种能描述聚合物在变温热历史下的结晶动力学形式,即Dutta 法和Nakamura 法,发现Nakamura 法的模拟值与实验值具有更好的一致性。在Nakamura 模型中,直接从HDPE 的等速降温DSC 实验上获得了材料的结晶动力学参数,根据log[-log(1-X(t))]对logf(t) 作图时与冷却速度的无关性,找出了H-L 方程中K g 的最佳值,进而确定了其它的动力学参数。

参考文献:

[1]J-M Gonnet, J Guillet, J Sirakov, etc . “In -situ”Monitorin g of the non-isothermal crystallization of polymers by dielectric spectroscopy[J]. Polymer Engineering and Science, 2002, 42(6): 1159 ~ 1170.

[2]C A Hieber . Modeling/Simulating the injection molding of isotactic polypropylene[J]. Polymer Engineering and Science, 2002, 42(7): 1387 ~1409.

[3]Dongman Choi, James L White . Comparison of structure development in injection molding of isotactic and syndiotactic polypropylenes[J]. Polymer Engineering and Science, 2002,42(8):

图5 不同Kg 值下log[-log(1-X(t))]对logf(t)作图。圆

形符号和方形符号分别代表冷却速度为20℃·min -1和40℃·min -1

Fig. 5 Plot of log[-log(1-X(t))] vs. logf(t) with

different Kg values. Symbols of circle and square represent 20℃·min -1 and 40℃·min -1 cooling rate

图6 Nakamura 法模拟出的HDPE 结晶动力学与实验

值的比较

Fig. 6 Comparison of the fitted non-isothermal

crystallization HDPE using Nakamura model with DSC curves

1642 ~ 1656.

[4]Avrami M J . Kinetics of phase change Ⅱ: transformation-time relations for random

distribution of nuclei[J]. Journal of Chemical Physics, 1940, 8: 212 ~ 224.

[5]K Nakamura, T Watanabe, K Katayama, etc . Some aspects of nonisothermal crystallization of

polymers. Ⅰ. Relationship between crystallization temperature crystallinity, and cooling conditions[J]. Journal of Applied Polymer Science, 1972, 16: 1077 ~ 1091.

[6]K Nakamura, K Katayama, T Amano . Some aspects of nonisothermal crystallization of

polymers. Ⅱ. Consideration of the isokinetic condition[J]. Journal of Applied Polymer Science, 1973, 17: 1031 ~ 1041.

[7]Chan T W, Isayev A I . Quiescent polymer crystallization: Modeling and measurements[J].

Polymer Engineering and Science, 1994, 34(6): 461 ~474.

[8]Rajen M Patel, Joseph E Spruiell . Crystallization kinetics during polymer processing-Analysis

of available approaches for process modeling[J]. Polymer Engineering and Science, 1991, 31(10): 730 ~738.

[9]B A Wesson . Melt crystallization kinetics of syndiotactic polystryrene[J]. Polymer Engineering

and Science, 1994, 34(14): 1157 ~1160.

[10]A J Isayev, J W Chan, K Shimoio, etc . Injection molding of semicrystalline polymers Ⅰ.

Material Characterization[J]. Journal of Applied Polymer Science, 1995, 55: 807 ~819.

[11]A Dutta . Method to obtain Avrami parameters directly from non-isothermal crystallization

data[J]. Polymer Communications, 1990, 31: 451 ~ 452.

[12]Haoyue Zhang Brian S Mitchell . A method for determining crystallization kinetic parameters

from one nonisothermal calorimetric experiment[J]. Journal of Materials Research, 2000, 15(4): 1000 ~ 1007.

[13]X Guo, A I Isayev, L Guo . Crystallinity and microstructure in injection moldings of isotactic

polypropylenes. Part 1: a new approach to modeling and model parameters[J]. Polymer engineering and science, 1999, 39(10): 2096 ~2114.

[14]W Sifleet, N Dinos, J R Collier . Unsteady-state heat transfer in a crystallizing polymer[J].

Polymer Engineering and Science, 1973, 13(1): 10 ~16.

[15]Godovsky Y K, Slonimsky G L . Kinetcs of polymer crystallization from the melt

(calorimetric approach)[J]. Journal of Polymer Science. Polymer Physics Edition, 1974, 12(^), 1053 ~ 1080.

[16]桂祖桐, 谢建玲. 聚乙烯树脂及其应用[M]. 北京: 化学工业出版社材料科学与工程中

心, 2002 . 72 ~ 73.

[17]余坚, 何嘉松. 聚合物熔体结晶的方式(Regime)理论[J]. 高分子通报, 2001, (1): 25 ~ 33.

[18]J D Hoffman, R L Miller . Kinetics of crystallization from the melt and chain folding in

polyethylene fractions revisited: theory and experiment[J]. Polymer, 1997, 38(13): 3151 ~3212.

《结晶学与矿物学》思考题

《结晶学与矿物学》思考题 绪论 1、什么是矿物?矿物与岩石、矿石的区别? 2、什么是晶体?晶体与非晶体有何本质区别? 3、判别下列物质中哪些是晶体,哪些是非晶体?哪些是矿物,哪些不是矿物? 冰糖金刚石沥青水晶 玻璃水空气方解石 4、为什么要学习矿物学? 第一篇 第一章 1、网面密度大的面网,其面网间距也大,这种说法对不对?试画简图加以定性的说明。 2、为什么晶体被面网密度较大的晶面所包围? 3、为什么形态各异的同种晶体,其对应晶面夹角恒等? 4、为什么晶体具有均一性和异向性? 5、为什么晶体具有一定的熔点?试举例说明之 6、从能量的角度说明晶体的稳定性 7、晶体与非晶体在内部结构和基本性质上的主要区别是什么? 8、什么是晶体构造中的相当点?下图是石墨(C)晶体构造中的碳原子层,黑圆点代表碳 原子的中心位置。找出点m的所有相当点,并画出平行四边形(二维格子——面网)的形状。再找出点A的相当点,用另外的颜色画出平行四边形的形状。比较两次画出的平行四边形的形状和大小是否相同。 第二章 1、对称的概念?晶体的对称与其他物体的对称有何本质区别? 2、什么是对称面、对称中心、对称轴及旋转反伸轴? 3、为什么晶体上不可能存在L5及高于六次的对称轴? 4、怎样划分晶族与晶系?下列对称型各属何晶族与晶系? L2PC 3L23PC L44L25PC L66L27PC C 3L44L36L29PC L33L2L33L23PC 3L24L33PC

5、中级晶族的晶体上,若有L2与高次轴并存,一定是彼此垂直而不能斜交,为什么? 第三章 1、为什么在实际晶体上,同一单形的各个晶面性质相同?在理想发育的晶体上同一单形的 各个晶面同形等大? 2、怎样区别八面体、四方双锥、斜方双锥? 3、五角十二面体和菱形十二面体与三根彼此垂直的L4(或L2)的空间交截关系有何异同? 4、四角三八面体与三根彼此垂直的L4(或L2)相交的特点? 5、菱面体与三方双锥都是六个晶面,他们之间的区别何在? 6、在四十七种几何单形中,下列单形能否相聚 八面体与四方柱六方柱与菱面体五角十二面体与平行双面三方双锥与六方柱斜方柱与四方柱三方单锥与单面 第四章 1、晶体定向的定义? 2、晶体定向的原则,各晶系晶体定向的方法及晶体常数特点? 3、何谓晶面的米氏符号?某晶面与X、Y、Z轴上的截距系数分别为2、2、4,请写出此晶 面的米氏符号。 4、在某等轴晶系的晶体上,某晶面与X、Y、Z轴上的截距分别为2.5mm,5mm,∞,试 写出此晶面的米氏符号 5、为什么四方晶系及三、六方晶系晶体的轴单位具有a=b≠c的特征? 6、下列晶面,哪些属于[001]晶带,哪些属于[010]晶带,哪些晶面为[001]与[010]二晶带共 有? (100)、(010)、(001)、(001)、(100)、(010)、(110)、(110)、(011)、(011)、(101)、(101)、(110)、(110)、(101)、(101)、(011)、(011) 7、{111}在等轴、四方、斜方、单斜(L2PC对称型)和三斜晶系中分别代表什么单形? 8、判断晶面与晶面、晶面与晶棱,晶棱与晶棱之间的空间关系(平行、垂直或斜交) (1)等轴晶系、四方晶系及斜方晶系: (001)与[001];(010)与[001];[001]与[110];(110)与(010)。 (2)单斜晶系晶体 (001)与[001];(001)与(100);[100]与[001];(100)与(010)。 (3)三、六方晶系晶体 (1010)与(0001);(1010)与(1120);(1010)与(1011);(0001)与(1120)。 9、写出各晶系常见单形及形号,并总结、归纳以下形号在各晶系中各代表什么单形? {100}、{110}、{111}、{1011} {1010} {1120} {1121} 第五章 1、双晶的定义。 2、双晶与平行连生的区别? 3、双晶面、双晶轴、接合面的涵义及其空间方位的表示方法? 4、双晶面为什么不能平行晶体的对称面? 5、双晶轴为什么不能平行晶体的偶次对称轴? 6、斜长石(C)可以有卡式律双晶和钠长石律双晶,为什么正长石(L2PC)只有卡式律双 晶,而没有钠长石律双晶? 第二篇 第一章

结晶学与矿物学习题及答案[宝典]

结晶学与矿物学习题及答案[宝典] 习题1 一. 名词解释: 晶体 矿物 解理、断口 矿物的脆性与韧性 结构水 结核体 条痕 解理、断口 岛状硅酸盐 矿物的脆性与韧性 硅氧骨干 结晶习性 晶体常数和晶胞参数 对称型 晶面符号 类质同象 配位数与配位多面体 同质多象 单形与聚形 二. 填空题:

1. 晶体分类体系中,低级晶族包括晶系,中级晶族包括 晶系,高级晶族包括晶系。 2. 六方晶系晶体常数特点是,。 3(某晶体中的一个晶面在X,Y,U(负端),Z轴的截距系数分别为2、2、1、0,该晶面符号为,该晶面与Z轴的位置关系为。 4(等轴晶系晶体定向时,选择晶轴的原则是。 5. 两个以上单形可以形成聚形,但是单形的聚合不是任意的,必须是属于的单形才能相聚。 6.晶体的基本性质有、、、、、。 7. 当配位数是6时,配位多面体的形状是。当配位数是8时,配位多面体的形状是。 8. 从布拉维法则可知,晶体常常被面网密度的晶面所包围。 9( 和是等大球最紧密堆积方式中最常见的两种堆积方式。 10(常见的特殊光泽有、、、。 12(可作宝石的氧化物类矿物、、。 13(硅酸盐类矿物的晶体结构可以看作是和组成,其他阳离子把这些联系在一起,形成一定的结构型。 14(普通辉石和普通角闪石的主要区别 是,、、。 15(橄榄石的晶体化学式为。 16(用简易刻划法测定矿物硬度时,指甲硬度为 ;小刀的硬度为 ;玻璃的硬度为。 17.红柱石的集合体形态常为。 18(一般来说,矿物的光泽分、、、。 19(可作宝石的硅酸盐类矿物有、、、。 20(黄铜矿和黄铁矿的主要区别是、。 21(刚玉和水晶的晶体化学式分别为、。 22(石英和方解石的主要区别

结晶学及矿物学试题及答案

考试课程名称:结晶学学时: 40学时 考试方式:开卷、闭卷、笔试、口试、其它 考试内容: 一、填空题(每空分,共10分) 1.晶体的对称不仅体现在上,同时也体现在上。 2.中级晶族中,L2与高次轴的关系为。 3.下面的对称型国际符号对应晶系分别为:23为晶系,32为晶系,mm2为晶系,6mm为晶系。 4.金刚石晶体的空间群国际符号为Fd3m,其中F表示,d表示,根据其空间群符号可知金刚石属于晶系,其宏观对称型的全面符号为。 5.正长石通常发育双晶,斜长石发育双晶。 6.晶体中的化学键可以分为、、、和等五种。 7.最紧密堆积原理适用于晶格和晶格的晶体。 二、选择题(每题1分,共10分,前4题为单选) 1.对于同一种晶体而言,一般说来大晶体的晶面数与小晶体的晶面数,哪个更多() A、大晶体的 B、小晶体的 C、一样多 D、以上均错误 2. 类质同象中,决定对角线法则的最主要因素是:() A、离子类型和键型 B、原子或离子半径 C、温度 D、压力 3. 具有L i 4和L i 6的晶体的共同点是:() A、有L2 B、无P C、无C D、有垂直的P 4.关于布拉维法则说法不正确的是:() A、实际晶体的晶面往往平行于面网密度大的面网 B、面网密度越大,与之平行的晶面越重要

C、面网密度越大,与之平行的晶面生长越快 D、面网密度越大,与之平行的晶面生长越慢 5.可以与四面体相聚的单形有() A、四面体 B、立方体 C、八面体 D、四方柱 E、斜方双锥 6.黄铁矿晶体通常自发地生长成为立方体外形,这种现象说明晶体具有()性质: A、自限性 B、均一性 C、异向性 D、对称性 7.下面说法中正确的有:() A、准晶体具有近程规律 B、非晶体具有远程规律 C、准晶体具有远程规律 D、非晶体具有近程规律 8.某晶面在X、Y、Z轴上截距相等,该晶面可能的晶面符号有() A、(hhl) B、(hkl) C、(1011) D、(hh h2l) 9.同一晶带的晶面的极射赤平投影点可能出现的位置有() A、基圆上 B、直径上 C、大圆弧上 D、小圆弧上 10.关于有序-无序现象说法正确的有() A、有序-无序是一种特殊的类质同象 B、形成的温度越高晶体越有序 C、形成的温度越高晶体越无序 D、有序-无序是一种特殊的同质多象 三、名词解释(5个,每个2分,共10分) 1.平行六面体 2.晶体对称定律 3.空间群 4.双晶律 5.多型 四、问答题(29分) 1.石盐(NaCl)晶体的空间群为Fm3m,请在石盐晶体结构平面示意图(下图a,b)中分别以氯离子和钠离子为研究对象,画出各自的平面格子的最小重复单元。它们的形态相同吗为什么(6分)

2012结晶学矿物学总复习总结题

《结晶学与矿物学》复习题 一.名词解释并举例: 1、晶体 2、单形 3、解理 4、矿物、 5、荧光与磷光、 6、面角守恒定律、7.标型特征、8. 假色与他色、9. 类质同象、10、同质多象、11、双晶、12平行连生、13、点群与空间群;14.聚形及聚形相聚的原则,15、等效点系,16. 晶面符号17. 四面体片18. 文象结构,19、共生,20、空间格子 二.填空题: 1.晶体生长的基本理论是,。 2.实际晶体的晶面常平行的面网。中长石的环带结构反映该晶体按机制生长。 3.晶体内部结构特有的对称要素有,,。 4、晶体的基本性质有、、、、 、。 5、某晶体中的一个晶面在X、Y、U(负端)、Z轴的截距系数分别为2、2、1、0,该晶面符号为,该晶面与Z轴的位置关系为。 6、金刚石晶体空间群的国际符号为Fd3m,其中F表示,d表示,根据其空间群符号可知金刚石属于晶系。 7、方铅矿发育解理。 8、正长石通常发育双晶,斜长石发育双晶。 9、橄榄石族的晶体化学通式为。 10、中级晶族中,L2与高次轴的关系为。

11、从三维空间看,空间格子中的最小重复单位是。 12、晶体测量的理论依据是。 13、晶体生长的基本理论是和。 14、单斜晶系的(001)与Z轴一定是。 15、晶体的对称不仅体现在上,同时也体现在上。 16、在对称要素的极射赤平投影中,其投影基圆的直径相当于的投影。 17、根据的组合定律,对称要素L4+P∥的组合应为。 18、对称型2/m定向时,将2定为轴。 19、对称型L33L24P属于晶系。 20、等轴晶系中,{111}所代表的单形名称是;{110}所代表的单形名称是;{100}所代表的单形名称是; 21、同种几何形态的单形,可以出现于不同的晶类中,这种单形称为。 22、四方晶系的{100}解理组数有组。 23、下面的对称型国际符号对应晶系分别为:23为晶系,32为晶系,mm2为晶系。 24、红宝石和蓝宝石的矿物名称是,在矿物的晶体化学分类中属于 大类;祖母绿和海蓝宝石的矿物名称是,在矿物的晶体化学分类中属于大类。 25、黄铜矿和黄铁矿的主要区别是和。 26、根据反射率的大小,将光泽分为,,,。 27、根据对称要素组合规律,Li6→+P⊥。 28.{110}单形在等轴晶系中为单形,在四方晶系中为

DSC非等温结晶数据处理

DSC非等温结晶数据处理 1 确定结晶的起始温度,DSC软件可以给出,如果没有需要自己来确定,会存在一定误差; 2 确定结晶时间:t=(T0-T)/v,T0-结晶开始温度;T-t时刻的结晶温度;v-降温速率 3 基线调整; 一般所得的DSC曲线的基线不在X轴上,需要对基线进行调整,使其在X轴上。Diamond公司直接可以在仪器上进行调整,对于不能在仪器上进行调整的,可以在Origin上进行调整,下面以Origin8软件为例,简介如下: 3.1 原数据如图所示: 在Graph操作界面,对图像进行处理:Analysis-Spectroscopy-create baseline,出现如下操作界面:

Method 选用 Auto-created a modifiable, Baseline选用 Entire Data with smooth, Number 选项一般为10-15,具体情况还要视具体情况而定, Recacluate 选用Auto。在选择10个点之后界面变作如下: 调整红圈点,使其与基线尽可能完全重合,调整后如下

点击Apply后,如下 Analysis-Data Manipulation-Subtract Reference Data,出现对话框如下:

点击Reference Data右边的三角,在下拉菜单中,选择Plot(2):Baseline1后出现如下对话框: 点击OK 出现如下图面

调整Y轴坐标, 基线已经基本和X轴重合,这样就把基线调整完毕。需要说明的是,调整后,原始数据发生变化,此时,如果不调整Y轴,重新画图还是可以的。 4 根据前面确定的结晶起始温度,截取图像,就是截取起始温度点的数据重新画图。

DSC等等温结晶测试-德国耐驰

简介 在聚合一个相对较须明确的确用。 快速冷却和 对于等 开始时结晶温度会使结在DSC 因为功率补器,同时该 聚丙烯的等 在这个数调节以优将6.75冷却到142从冷却 定性,控温DSC 等合物行业中,较冷的模具中确定。因为等和稳定 等温结晶测试晶;其次,在结晶提早发生 214 出现之补偿型DSC 的该仪器在恒温等温结晶 个例子中,等优化快速冷却5mg 样品以2℃、140℃和却到142℃的温 温误差< 0.1K 等温结晶注射模塑法是,迅速冷却后温结晶实验可试,DSC 实验必指定的结晶温,有些高聚物之前,只有使用的炉体很小。温段具有极好温结晶实验使段到恒温段20K/min 的速和138℃,整温度曲线(图 K。 测试:模编译:耐驰是生产形状确后即可得产品可以模拟模具必须满足两个温度下,温度物(如聚烯烃用功率补偿型NETZSCH DSC 的温控能力,使用NETZSC 的过渡。 速率加热到熔个实验过程在图1)上可以 图 1. 冷模拟注射模驰仪器公司应用确定的零件的品。模具的温具中聚合物的个要求。首先度必须稳定,烃)结晶很快型DSC 才能够C 214 Polyma ,这得益于它CH DSC 214 P 熔融温度,3分在氮气气氛下看出,在达到冷却到 142℃的模塑过程中用实验室 的主要方法。温度会直接影的行为,DSC 先,样品必须不能高于或,温度略低于够实现等温结a 是第一个实它使用的具有olyma 对聚丙分钟的恒温过下进行。 到目标结晶温 的温度曲线 中的结晶行其过程为将影响最终产品C 等温结晶测须快速冷却,或低于目标温于目标温度几结晶测试所需实现快速升降有低热质量的丙烯样品进行过程后,样品温度后, 恒温行为 将熔融的高分品的性能,因测试可以真正防止样品在温度。温度未几秒钟就会开需的高冷却速降温速率的热的Arena 炉体行测试。进行品以程控速率 温段具有极好分子注入到因此温度必正发挥其作在冷却过程未到达目标开始结晶。 速率,这是热流DSC 仪体。 行适当的参率200K/min 好的温度稳

11-高密度聚乙烯非等温结晶动力学及结晶行为的模拟-杨鸣波

高密度聚乙烯非等温结晶动力学及结晶行为的模拟 陶四平,于润泽,周明,冯建民,杨鸣波* (四川大学高分子科学与工程学院,高分子材料工程国家重点实验室,四川成都610065) 摘要:通过差示扫描量热法对高密度聚乙烯的非等温结晶动力学进行了探讨,引入非等温 结晶诱导时间后,比较了两种能描述聚合物在变温热历史下的结晶动力学,结果表明 Nakamura法描述HDPE的结晶动力学与实验一致性比Dutta法好。在Nakamura模型中, 结合线性回归分析和试差法,找到了能直接从非等温结晶实验中获取HDPE的结晶动力学 参数的方法。 关键词:高密度聚乙烯;结晶动力学;诱导时间 Modeling of Non-isothermal Crystallization Kinetics of High Density Polyethylene TAO Si-ping ,YU Run-ze ,ZHOU Ming ,FENG Jian-min ,YANG Ming-bo (College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China) Abstract: Non-isothermal crystallization kinetics of high density polyethylene was investigated via differential scanning calorimeter (DSC). Non-isothermal crystallization kinetics data obtained from DSC were employed to estimate the kinetic parameters of mathematical models describing the non-isothermal crystallization of HDPE. It was found that the non-isothermal crystallization kinetics of HDPE can be best described by Nakamura model with the inclusion of induction times. A linear regression method and trial-and-error method were presented using the Nakamura model to obtain crystallization rate equation parameters directly from non-isothermal crystallinity data. Key words: high density polyethylene; crystallization kinetics; induction times 高密度聚乙烯(HDPE)作为一种半结晶型聚合物,由于物化性能优异、成型加工简易、价格相对便宜等优点,已广泛用于国民生产的各个领域,成为产量和需求量最大的一类合成树脂之一。 通常,半结晶型聚合物在成型加工过程中由熔体等温或非等温冷却至特定形状的制品时都会产生晶体结构,这一微观结构往往又是控制制品性能好坏的重要因素,如刚度、韧性、透明度等。因此,为了寻求最佳的成型加工条件并获得最优性能的制品,定量探讨它们在成型加工过程中的结晶行为或结晶度的增长规律,已越来越受学者们关注[1-3]。为实现HDPE 收稿日期: 基金项目:国家自然科学基金重点项目资助(29934070) 作者简介:杨鸣波(1957-), 教授, 博导. 研究方向: 高分子材料加工工程 *通讯联系人

结晶学与矿物学试题

06 /07
学年第 2 学期《结晶学与矿物学》试卷
甲 课程编号:010*******
使用班级:资源 0641、0642、0643、0644 班 姓 名 题号 得分 共 8 页 第 1 页 一 二 三 四 五 六
闭卷 答题时间: 七 八 九 120 十 分钟 总分
一、填空题(每空 0.5 分,共 20 分) 1、晶体的对称不仅体现在 专 业 班 级 2、中级晶族中,L2 与高次轴的关系为 垂直
得分
上,同时也体现在 。 等轴 六方 聚片 、 晶系, L3 3L2 为三方 晶系。 双晶。 和 上。
3 、下面的 对称型 对应晶 系分别为 : 3L2 4L3 为 晶系,L2 2P 为 斜方
晶系,L6 6P 为
4、正长石通常发育 卡斯巴 5、 晶体中的晶格类型可以分为 学 籍 号 等四种。 6、等大球体的最紧密堆积方式有 积 。
双晶,斜长石发育 、
立方体最紧密堆积

六方体最紧密堆
7、地壳中化学元素分布最多的 8 种元素为 因此地壳中 和 大类矿物分布最广。

8、白云石主要化学成分 CaMg[CO3 ]2 和镁方解石主要化学成分(Ca,Mg)[CO3 ]中的 Ca2+ 和 Mg2+ 间 的关系分别为 9 、 矿物中的水分为 吸附水 、 、 结晶水 。 和结构水
等三种基本类型,蛋白石(SiO2 ? nH2 O)中的水为 结晶 水为 结构 水。
水,水镁石(Mg(OH)2 )中的
10、矿物的光泽根据矿物对可见光波的反光能力分为 、 四个等级。 与

11、矿物单体形态特征包括
两个方面。

结晶学及矿物学试题及答案

结晶学及矿物学试题及 答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

考试课程名称:结晶学学时:40学时 考试方式:开卷、闭卷、笔试、口试、其它 考试内容: 一、填空题(每空分,共10分) 1.晶体的对称不仅体现在上,同时也体现在上。 2.中级晶族中,L2与高次轴的关系为。 3.下面的对称型国际符号对应晶系分别为:23为晶系,32为晶系,mm2为 晶系,6mm为晶系。 4.金刚石晶体的空间群国际符号为Fd3m,其中F表示,d表示,根据其空间群符号可知金刚石属于晶系,其宏观对称型的全面符号为。 5.正长石通常发育双晶,斜长石发育双晶。 6.晶体中的化学键可以分为、、、和等五种。 7.最紧密堆积原理适用于晶格和晶格的晶体。 二、选择题(每题1分,共10分,前4题为单选) 1.对于同一种晶体而言,一般说来大晶体的晶面数与小晶体的晶面数,哪个更多( ) A、大晶体的 B、小晶体的 C、一样多 D、以上均错误 2. 类质同象中,决定对角线法则的最主要因素是:() A、离子类型和键型 B、原子或离子半径 C、温度 D、压力 3. 具有L i4和L i6的晶体的共同点是:() A、有L2 B、无P C、无C D、有垂直的P 4.关于布拉维法则说法不正确的是:() A、实际晶体的晶面往往平行于面网密度大的面网 B、面网密度越大,与之平行的晶面越重要 C、面网密度越大,与之平行的晶面生长越快

D、面网密度越大,与之平行的晶面生长越慢 5.可以与四面体相聚的单形有() A、四面体 B、立方体 C、八面体 D、四方柱 E、斜方双锥 6.黄铁矿晶体通常自发地生长成为立方体外形,这种现象说明晶体具有()性质: A、自限性 B、均一性 C、异向性 D、对称性 7.下面说法中正确的有:() A、准晶体具有近程规律 B、非晶体具有远程规律 C、准晶体具有远程规律 D、非晶体具有近程规律 8.某晶面在X、Y、Z轴上截距相等,该晶面可能的晶面符号有() A、(hhl) B、(hkl) C、(1011) D、(hh h2l) 9.同一晶带的晶面的极射赤平投影点可能出现的位置有() A、基圆上 B、直径上 C、大圆弧上 D、小圆弧上 10.关于有序-无序现象说法正确的有() A、有序-无序是一种特殊的类质同象 B、形成的温度越高晶体越有序 C、形成的温度越高晶体越无序 D、有序-无序是一种特殊的同质多象 三、名词解释(5个,每个2分,共10分) 1.平行六面体 2.晶体对称定律 3.空间群 4.双晶律 5.多型 四、问答题(29分) 1.石盐(NaCl)晶体的空间群为Fm3m,请在石盐晶体结构平面示意图(下图a,b)中分别以氯离子和钠离子为研究对象,画出各自的平面格子的最小重复单元。它们的形态相同吗为什么(6分) 2.简述同质多象的概念、同质多象转变的类型,并举例说明。(8分) 3.判断下列晶面与晶面,晶面与晶棱,晶棱与晶棱之间的空间关系(平行、垂直或斜交):(8分) 1)等轴晶系和斜方晶系晶体:(001)与[001],(010)与[010],(111)与[111],(110)与(010)。

结晶学与矿物学试题

共 8 页第 1 页 一、填空题(每空0.5分,共20分) 1、晶体的对称不仅体现在上,同时也体现在上。 2、中级晶族中,L2与高次轴的关系为。 3、下面的对称型对应晶系分别为:3L24L3为晶系,L33L2为晶系,L22P为晶系,L66P为晶系。 4、正长石通常发育双晶,斜长石发育双晶。 5、晶体中的晶格类型可以分为、、和等四种。 6、等大球体的最紧密堆积方式有和。 7、地壳中化学元素分布最多的8种元素为,因此地壳中和大类矿物分布最广。 8、白云石主要化学成分CaMg[CO3]2和镁方解石主要化学成分(Ca,Mg)[CO3]中的Ca2+和Mg2+间的关系分别为、。 9、矿物中的水分为、和等三种基本类型,蛋白石(SiO2? nH2O)中的水为水,水镁石(Mg(OH)2)中的水为水。 10、矿物的光泽根据矿物对可见光波的反光能力分为、 、四个等级。 11、矿物单体形态特征包括与两个方面。

12、方解石的摩氏硬度为,长石的摩氏硬度为,石英的摩氏硬度为。 13、Al2SiO5有、和等三种同质多相变体,其中为铝的铝硅酸盐。C的两种同质多像变体是▁▁▁▁▁▁。14、在矿物学书刊中经常使用的化学式是。 二、名词解释(本题共15分,每题1.5分) 1、面角: 答: 2、晶体对称定律: 答: 3、对称型: 答: 4、双晶律: 答: 5、结晶习性: 答: 6、层状生长理论: 答: 7、解理: 答: 8、条痕: 答:

9、铝硅酸盐: 答: 10、矿物标型特征 答: 三、选择题(共14分,1—12题为单选,每题0.5分;13—20题为多选,每题1分) 1、对于同一种晶体而言,一般说来大晶体的晶面数与小晶体的晶面数, 哪个更多?() A、大晶体的 B、小晶体的 C、一样多 D、以上均错误 2、类质同象中,左上右下对角线方向的元素容易形成类质同象的最主要因素是:() A、离子类型和键型 B、原子或离子半径 C、温度 D、压力 3、具有L i4和L i6的晶体的共同点是:() A、有L2 B、无P C、无C D、有垂直的P 4、关于布拉维法则说法不正确的是:() A、实际晶体的晶面往往平行于面网密度大的面网 B、面网密度越大,与之平行的晶面越重要 5、常与硫元素相结合形成硫化物的离子为:() A、惰性气体型 B、铜型 C、过渡型 D、以上均可 6、矿物的珍珠光泽根据矿物对可见光波的反光强度应属于下面哪一类型标准光泽范畴: () A、金属光泽 B、半金属光泽 C、金刚光泽 D、玻璃光泽 7、绿柱石呈现绿色是因为:() A、含有色素离子 B、色心 C、含有杂质包裹体 D、干涉效应 8、方铅矿常常与闪锌矿、黄铁矿在一起出现,它们间的关系为:() A、共生 B、伴生 C、世代 D、假像 9、聚片双晶纹出现在:() A、晶面上 B、解理面上 C、断口上 D、以上均可

最新结晶学及矿物学试题及答案

考试课程名称:结晶学学时:40学时 考试方式:开卷、闭卷、笔试、口试、其它 考试内容: 一、填空题(每空0.5分,共10分) 1.晶体的对称不仅体现在上,同时也体现在上。 2.中级晶族中,L2与高次轴的关系为。 3.下面的对称型国际符号对应晶系分别为:23为晶系,32为晶系,mm2为晶系,6mm为晶系。 4.金刚石晶体的空间群国际符号为Fd3m,其中F表示,d表示,根据其空间群符号可知金刚石属于晶系,其宏观对称型的全面符号为。 5.正长石通常发育双晶,斜长石发育双晶。 6.晶体中的化学键可以分为、、、和等五种。 7.最紧密堆积原理适用于晶格和晶格的晶体。 二、选择题(每题1分,共10分,前4题为单选) 1.对于同一种晶体而言,一般说来大晶体的晶面数与小晶体的晶面数,哪个更多?() A、大晶体的 B、小晶体的 C、一样多 D、以上均错误 2. 类质同象中,决定对角线法则的最主要因素是:() A、离子类型和键型 B、原子或离子半径 C、温度 D、压力 3. 具有L i4和L i6的晶体的共同点是:() A、有L2 B、无P C、无C D、有垂直的P 4.关于布拉维法则说法不正确的是:() A、实际晶体的晶面往往平行于面网密度大的面网 B、面网密度越大,与之平行的晶面越重要

C、面网密度越大,与之平行的晶面生长越快 D、面网密度越大,与之平行的晶面生长越慢 5.可以与四面体相聚的单形有() A、四面体 B、立方体 C、八面体 D、四方柱 E、斜方双锥 6.黄铁矿晶体通常自发地生长成为立方体外形,这种现象说明晶体具有()性质: A、自限性 B、均一性 C、异向性 D、对称性 7.下面说法中正确的有:() A、准晶体具有近程规律 B、非晶体具有远程规律 C、准晶体具有远程规律 D、非晶体具有近程规律 8.某晶面在X、Y、Z轴上截距相等,该晶面可能的晶面符号有() A、(hhl) B、(hkl) C、(1011) D、(hh h2l) 9.同一晶带的晶面的极射赤平投影点可能出现的位置有() A、基圆上 B、直径上 C、大圆弧上 D、小圆弧上 10.关于有序-无序现象说法正确的有() A、有序-无序是一种特殊的类质同象 B、形成的温度越高晶体越有序 C、形成的温度越高晶体越无序 D、有序-无序是一种特殊的同质多象 三、名词解释(5个,每个2分,共10分) 1.平行六面体 2.晶体对称定律 3.空间群 4.双晶律 5.多型 四、问答题(29分) 1.石盐(NaCl)晶体的空间群为Fm3m,请在石盐晶体结构平面示意图(下图a,b)中分别以氯离子和钠离子为研究对象,画出各自的平面格子的最小重复单元。它们的形态相同吗?为什么?(6分)

结晶学与矿物学模拟题

《结晶学与矿物学》模拟题(补) 一.名词解释 1.矿物:地壳天然产物;有一定化学成分、晶体结构和形态物性,相对稳定的单质和化合物;是组成岩石和矿石的基本单位; 2.晶体化学:晶体化学成分与晶体结构的关系。 3.同质多象变体:成分相同而结构不同的晶体 4.含氧盐:各种含氧酸的络阴离子与金属阳离子所组成的盐类化合物。 5.晶格类型:根据化学键划分的晶体结构类型,有离子、原子、金属、分子晶格等。6.晶体习性:晶体常出现的单形;单体在三维空间发育的程度及自形程度。 7.矿物的假象:经交代或溶解再充填作用,新矿物保留原矿物外形的现象。 8.同质多象:化学成分相同的物质,具有不同晶体结构的现象。 9.整数定律:晶面在晶轴上截距系数之比是简单的整数比 10.晶簇的几何淘汰律:垂直或接近垂直基底的晶芽能得到良好发育和保存,其他方向的晶芽常被排挤和淘汰。 11.晶面花纹:晶体在生长或溶蚀过程留在晶面上的、各种形态和微形貌。 12.间层矿物(或混层矿物):两种以上层状硅酸盐矿物的晶片沿轴方向堆砌而成的多矿物集合体 二.判断题 1.聚形纹只能出现在晶面上。(√)2.晕色是透明矿物表面呈现的一种假色。(√)3.矿物的结晶水是可自由进出矿物的结构而不破坏晶格的水。(×)4.矿物特殊光泽的产生与该矿物表面性质及集合方式有关。(√)5.同质多象的每个变体都是独立的矿物种。(√)6.矿物多型都是独立的矿物种。(×)7.内部结构为左旋(31)的石英,外形表现为左形晶。(×)8.结核体形成方式是围绕一个中心自内向外生长而成。(√)9.辉锑矿解理面上的横纹和纵纹都是聚片双晶纹。(×)10.与晶轴的截距分别为2a、6b、3c的晶面符号为(263)。(×)11.蛇纹石Mg3[Si4O10](OH)2属三八面体型层状硅酸盐矿物。(√)12.叶蜡石Al2[Si4O10](OH)2属二八面体型层状硅酸盐矿物。(√)13.钠钙长石系列是个完全类质同象系列。(√)14.钾钠长石系列是个完全类质同象系列。(×)15.平行连生体是由多个同种晶体的晶面与晶棱相互平行连生而成的。(×)16.金刚光泽比半金属光泽要强些。(×)

结晶学矿物学复习题答案答案

名词解释: 1.矿物; 2. 晶体;3荧光与磷光;4面角守恒定律与整数定律;5. 解理、断口;6.硫盐与硫酸盐; 7.自色;8. 假色与他色;9. 类质同象与同质多象;10脆性与延展性;11.有序与无序; 12.双晶与平行连生;13.结晶水、结构水、层间水、沸石水、吸附水;14. 结核体、分泌体; 15. 层状硅酸盐的二八面体型与三八面体型结构;16.点群与空间群;17.解理与裂开;18.对称型与等效点系 20. 单形与聚形. 21矿物的条痕 22、岛状硅酸盐;23、结晶习性24、晶体常数和晶胞参数;25、对称型;26、晶面符号、单形符号;27类质同象;28、配位数与配位多面体;29同质多象;30、层间域;31、层状硅酸盐的四面体片与八面体片32、荧光、磷光;33、发光性;34.一般形、特殊形;35、开形、闭形;36、左形、右形;37正形、负形;38、定形、变形 二.填空题: 1.晶体生长的基本理论是层生长理论,螺旋位错生长理论。 2.实际晶体的晶面常平行网面结点密度最大的面网。中长石的环带结构反映该晶体按 层生长理论机制生长。 3.晶体内部结构特有的对称要素有平移轴,螺旋轴,滑移面。 4.晶体的基本性质主要有:自限性,均一性,异向性,对称型,最小内能,稳定性。 5.{110}单形在等轴晶系中为菱形十二面体单形,在四方晶系中为四方柱单 形,在斜方晶系中为斜方柱单形。 6.六方晶系的晶体常数特点是 a≡b≠c ,α=β=90°γ=120°。 7.石英的晶体常数特点是a≡b≠c ,α=β=90°γ=120°。(三方晶系) 8.写出4种基本的晶体格子类型:原始格子,底心格子,面心格子,体心格子。 9.根据对称要素组合规律,L i6→ L3 +P, L n×L2┴→ L nL2┴ , L n×P∥→ L n nP∥ . 10.最常见的紧密堆积方式是六方最紧密堆积和立方最紧密堆积。 11.等大球最常见的紧密堆积方式是六方最紧密堆积和立方最紧密堆积。 12.自然金属元素矿物中原子的堆积方式为六方最紧密堆积或立方最紧密堆积 13.常见的特殊光泽有珍珠光泽,丝绢光泽,油脂光泽,土状光泽。 14.石棉包括角闪石石棉和蛇纹石石棉两类。 15.下列矿物中可综合利用的类质同象元素:辉钼矿中有 Re铼和铂族元素(Os、Pd、 Ru、Pt);锆石中有 Hf铪;微斜长石中有Rd、Cs ;闪锌矿中有 Cd、In、Ga、Ge 。 16.主要的铁矿石矿物有赤铁矿;磁铁矿;褐铁矿;菱铁矿。 17.主要的铜矿石矿物有黄铜矿;斑铜矿;辉铜矿。 18.在风化蚀变条件下,角闪石易变成绿泥石;橄榄石易变成蛇纹石 ; 长石易变成高岭石。 19.Al2SiO5的同质多象变体有红柱石,蓝晶石,夕线石。 21.软玉的主要矿物成分是阳起石,透闪石。

PP、PET的等温和非等温结晶动力学

PP、PET的等温和非等温结晶动力学

仪器:差示扫描量热仪DSC 1

非等温结晶参数(参考文献JAPS,1984,29,1595) Tp -结晶峰温度; T onset -起始结晶温度;T endset -结晶终止温度; T onset -Tp -结晶速度的大小,其值越小,结晶速度越快; Si -结晶放热峰起始斜率,可表示成核速度;ΔW -结晶半峰宽,表示晶体的分布,ΔW 越小,晶体分布越窄。 s i = tg αH e a t f l o w , e x p o Temperature, o C Tp T onset a w T endset

两种PP 产品的结晶参数对比 47.49 45.33Xc %38 2-3MI g/10min 5.5 117.7 112.2 PPS2040 4.311 5.5111.2PPF401T ons e t -T p , ℃T onset ,℃T p ,℃样品

非等温结晶动力学方程 在DSC 曲线中任意结晶温度时的相对结晶度Ⅹ(T)可用下式进行计算: 其中, T 0是开始结晶时的温度, T ∞是结晶完全时的温度,Q T 和Q T ∞ 是在结晶温度为T 0和结晶温度为T ∞所释放的热量。 Avrami 方程: 式中,X (t ) 是不同时间t 的相对结晶度,K (T )是结晶速率常数,n 为Avrami 指数,其值与成核机理和晶体的生长方式有关。 再利用公式t = (T 0-T) / Ф进行时温转换,即可得到试样相对结晶度与结晶温度,结晶时间的关系。式中t 是结晶时间, T 0是结晶起始温度, T 是结晶温度, Ф是降温速率。 n t T K t X )(exp(1)(??=(2) ∫ ∫∞ ∞==T T T T T T dT dT dH dT dT dH Q Q T X 0 0)()()((1)

2019年云南昆明理工大学结晶学与矿物学考研真题A卷

2019年云南昆明理工大学结晶学与矿物学考研真题A卷 一、选择题(每题2分,共26分;1-10题为单选题,11-13题为多选题) 1、对于同一种晶体而言,一般说来大晶体的晶面数与小晶体的晶面数,哪个更多?() A、大晶体的 B、小晶体的 C、一样多 D、以上均错误 2、关于布拉维法则说法不正确的是() A、实际晶体的晶面往往平行于面网密度大的面网 B、面网密度越大,与之平行的晶面越重要 C、面网密度越大,与之平行的晶面生长越快 D、面网密度越大,与之平行的晶面生长越慢 3、对称型L33L24P属于() A、低级晶族 B、高级晶族 C、六方晶系 D、三方晶系 4、从三维空间看,空间格子中的最小重复单位是() A、单位晶胞 B、平行六面体 C、晶格 D、简单格子 5、类质同象中,决定对角线法则的最主要因素是() A、离子类型和键型 B、原子或离子半径 C、温度 D、压力 6、珍珠光泽常常出现在下面哪些部位() A、解理面上 B、断口上 C、裂开面上 D、晶面上 7、电气石晶体属于3m点群,是热电类晶体,其热电性是由下列对称特点所决定的() A、不具有对称中心 B、有一个对称轴 C、具有单向极轴L3 D、具有3个对称面 8、金刚石属于()晶格的矿物 A、离子晶格 B、原子晶格 C、分子晶格 D、金属晶格 9、三斜晶系中晶面(001)与Z轴之间() A、平行 B、垂直 C、斜交 D、不确定 10、常与硫元素相结合形成硫化物的离子为() A、惰性气体型 B、铜型 C、过渡型 D、以上均可 11、同一晶带的晶面的极射赤平投影点可能出现的位置有() A、基圆上 B、直径上 C、大圆弧上 D、小圆弧上 12、关于有序-无序现象说法正确的有() A、有序-无序是一种特殊的类质同象 B、形成的温度越高晶体越有序

结晶学及矿物学试卷及答案3套

结晶学考试试卷 一、填空题(每空0.5分,共10分) 1.晶体的对称不仅体现在上,同时也体现在上。 2.中级晶族中,L2与高次轴的关系为。 3.下面的对称型国际符号对应晶系分别为:23为晶系,32为晶系,mm2为晶系,6mm为晶系。 4.金刚石晶体的空间群国际符号为Fd3m,其中F表示,d表示,根据其空间群符号可知金刚石属于晶系,其宏观对称型的全面符号为。 5.正长石通常发育双晶,斜长石发育双晶。 6.晶体中的化学键可以分为、、、和等五种。 7.最紧密堆积原理适用于晶格和晶格的晶体。 二、选择题(每题1分,共10分,前4题为单选) 1.对于同一种晶体而言,一般说来大晶体的晶面数与小晶体的晶面数,哪个更多?() A、大晶体的 B、小晶体的 C、一样多 D、以上均错误 2. 类质同象中,决定对角线法则的最主要因素是:() A、离子类型和键型 B、原子或离子半径 C、温度 D、压力 3. 具有L i4和L i6的晶体的共同点是:() A、有L2 B、无P C、无C D、有垂直的P 4.关于布拉维法则说法不正确的是:() A、实际晶体的晶面往往平行于面网密度大的面网 B、面网密度越大,与之平行的晶面越重要 C、面网密度越大,与之平行的晶面生长越快 D、面网密度越大,与之平行的晶面生长越慢 5.可以与四面体相聚的单形有() A、四面体 B、立方体 C、八面体 D、四方柱 E、斜方双锥 6.黄铁矿晶体通常自发地生长成为立方体外形,这种现象说明晶体具有()性质:

A、自限性 B、均一性 C、异向性 D、对称性 7.下面说法中正确的有:() A、准晶体具有近程规律 B、非晶体具有远程规律 C、准晶体具有远程规律 D、非晶体具有近程规律 8.某晶面在X、Y、Z轴上截距相等,该晶面可能的晶面符号有() A、(hhl) B、(hkl) C、(1011) D、(hh h2l) 9.同一晶带的晶面的极射赤平投影点可能出现的位置有() A、基圆上 B、直径上 C、大圆弧上 D、小圆弧上 10.关于有序-无序现象说法正确的有() A、有序-无序是一种特殊的类质同象 B、形成的温度越高晶体越有序 C、形成的温度越高晶体越无序 D、有序-无序是一种特殊的同质多象 三、名词解释(5个,每个2分,共10分) 1.平行六面体 2.晶体对称定律 3.空间群 4.双晶律 5.多型 四、问答题(29分) 1.石盐(NaCl)晶体的空间群为Fm3m,请在石盐晶体结构平面示意图(下图a,b)中分别以氯离子和钠离子为研究对象,画出各自的平面格子的最小重复单元。它们的形态相同吗?为什么?(6分) 2.简述同质多象的概念、同质多象转变的类型,并举例说明。(8分) 3.判断下列晶面与晶面,晶面与晶棱,晶棱与晶棱之间的空间关系(平行、垂直或斜交):(8分)

聚乳酸的等温结晶研究

聚乳酸(PLA)是一种无毒、良好的生物相容性,可塑性好、易于加工成型的生物可降解塑料。结晶态的PLA具有较好的力学性能,且能够提高PLA材料的耐热性。因此,研究影响聚乳酸结晶和结晶形态的因素不论在理论方面,还是在实际应用方面,都具有十分的意义[1]。 在PLA树脂中加入成核剂能有效地提高其结晶速率和结晶度,缩短加工的周期,提升耐热性。Kyung Su Kang等[2]对比了化学改性的热塑性淀粉(CMPS),颗粒淀粉和滑石粉对聚乳酸等温结晶的影响,得出仅0.1%的含量CMPS作为成核剂仍与颗粒淀粉效果相当,但弱于滑石。然而,CMPS为生物基和可生物降解高分子,作为成核剂较颗粒淀粉和滑石粉更为绿色。李春等[3]研究了取代芳基磷酸金属盐类成核剂对聚乳酸的影响,得出取代芳基的一价盐和三价盐可以较好改善聚乳酸结晶,其中锂盐效果最好,二价盐则对聚乳酸结晶效果不明显。冯立栋等[4]研究了不同初始条件下聚乳酸 聚乳酸的等温结晶研究 徐栋周密钱欣徐书隽 (浙江工业大学化学工程与材料学院,杭州,310014) 摘要研究了成核剂SX,滑石粉(Talc)及SX与Talc复合对聚乳酸(PLA)结晶的影响。等温结晶动力学表明,各个体系Avrami参数均在1~2.5之间,为异相成核。SX含量从0.2%(质量分数,下同)增加到0.6%后,结晶速率大大提高,结晶半周期t1/2为0.65min,并且随着等温结晶温度的减小,t1/2减小。Talc含量变化对提高PLA结晶速率没有明显影响。SX是比Talc更高效的成核剂,当其添加到0.6%,120℃时等温t1/2为0.65min,远小于添加6%Talc的。SX与Talc有协同作用,添加0.2%SX+4%Talc的样品t1/2达到0.10min。 关键词聚乳酸结晶性能成核剂结晶动力学 Study on Poly(Lactic Acid)Isothermal Crystallization Xu Dong Zhou Mi Qian Xin Xu Shujun (College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou,310014) Abstract:The effect of nucleating agent SX,talcium powder(Talc)on poly(lactic acid)(PLA)crystalliza-tion was studied.The isothermal crystallization kinetic showes that each system is heterogeneous nucleation when Avrami parameters is between1to2.5.When the content of SX grows from0.2wt%to0.6wt%,the crystallization rate greatly improves,crystallization half cycle(t1/2)is0.65min,following the isothermal crystal-lization temperature decreases,the crystallization half cycle decreases.The change of Talc content has no ob-vious influence for acceleration of PLA crystallization rate.SX is a more efficient nucleating agent than Talc, when it adds to0.6wt%in120℃,t1/2is0.65min,far less than adds6wt%Talc.SX with Talc has syner-gism.When0.2wt%SX and4wt%Talc are mixed with PLA,t1/2reaches0.10min and relative crystallinity is49.03%. Keywords:poly(lactic acid),crystallinity,nucleating agent,crystallization kineticss 收稿日期:2011-09-13

相关主题