搜档网
当前位置:搜档网 › 高中数学三角函数复习专题(2)

高中数学三角函数复习专题(2)

高中数学三角函数复习专题(2)
高中数学三角函数复习专题(2)

高中数学三角函数复习专题

一、知识点整理

1角的概念的推广:

正负,范围,象限角,坐标轴上的角; 2、角的集合的表示: ① 终边为一射线的角的集合: x|x 2k ② 终边为一直线的角的集合:

xx k

3、任意角的三角函数:

(1) 弧长公式:1

aR R 为圆弧的半径,a 为圆心角弧度数,1为弧长 (2) 扇形的面积公式 :S 1 -IR R 为圆弧的半径,1为弧长。

2

(3)

三角函数定义: 角 中边上任意一点P 为(x,y),设|OP| r 则:

sin — ,cos r x

J r

tan y

r=寸孑圧 x 女口:公式 cos( ) cos cos sin sin 的证明

(4)特殊角的三角函数值

③两射线介定的区域上的角的集合: x2k

④两直线介定的区域上的角的集合: x k

x k ,k Z ? k 360', k Z

,k Z = |

,k Z ;

反过来,角 的终边上到原点的距离为 r 的点P 的坐标可写为:P r cos ,r sin

4

x

4 4

sin

cos tan

- -si n + cos

-ta n

- + si n -cos

-ta n +

-si n

-cos

+ tan

2 . -si n

+ cos -ta n

2k +

+ si n + cos + tan

sin

con

tan 2 + cos + sin + cot

2

+ cos

-si n

-cot

3 2 -cos

-si n

+ cot

3_

2

-cos

+ sin

-cot

三角函数值等于 的同名三角函数值,前面 加

上一个把 看作锐角时,原三角函数值的 符

号;即:函数名不变,符号看象限 三角函数值等于 的异名三角函数值,前面 加

上一个把 看作锐角时,原三角函数值的 符号;

即:函数名改变,符号看象限:

sin x

比如

cos 一 x

4

cos x

cos x

sin 一

(6)三角函数线:(判断正负、比较大小,解方程或不等式等) 如图,角 的终边与单位圆交于点P ,过点P 作x 轴的垂线, 垂足为M ,则

过点A(1,0)作x 轴的切线,交角终边0P 于点T ,贝U (7)同角三角函数关系式:

③ 平方关系:sin 2 a cos 2 a 1

①倒数关系: tan acota 1 ②商数关系:

tana ^ina

cosa

(8)诱导公试

4.两角和与差的三角函数: (1) 两角和与差公式:

.a 2 b 2 sin(x ) a 2 b 2 cos(x )

—=、、2 cos

4 4 sin a±、3cos a= 2sin = 2cos

等.

3

3

降次公式:(sin cos )2

1 sin 2

2

1 cos

2 . 2

1 cos2

cos

,sin

2 2

tan tan tan( )(1 tan tan )

5、三角函数的图像和性质: (其中

)

cos( ) cosa cos sinasin

,

,

、 tan a tan

tan a(a

)

1 tan a tan

(2)二倍角公式: sin2a 2sin acosa

sin(a ) sin a cos

cosasin

注:公式的逆用或者变形

cos2a cos 2 a sin 2 a 1 2sin 2 a 2cos 2 a 1

2ta na tan 2a

厂 1 tan a

(3)几个派生公式:

①辅助角公式:;

asinx bcosx ± cos a = 、2 sin 例如:sin

6、.函数y Asin( x )的图像与性质:

(本节知识考察一 般能化成形如 y Asin( x

)图像及性质)

(1)

函数y

Asin( x

)和 y Acos( x

)的周期都是T

2

n (2)

函数y Atan( x )和 y Acot( x )的周期都是T

n

(3)

五点法作 y Asi n( x )的简图,设t

x

,取

o 、

3

、、3

、 2来求相应x

2 2

的值以及对应的y 值再描点作图。

(4) 关于平移伸缩变换可具体参考函数平移伸缩变换,提倡先平移后伸缩。切记每一个变换总

是对字母x 而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。

(附上函

数平移伸缩变换):

函数的平移变换:

①y f (x) y f (x a)(a 0)将y f (x)图像沿x 轴向左(右)平移 a 个单位 (左加右减)

②y f(x) y f (x) b(b 0)将y f(x)图像沿y 轴向上(下)平移 b 个单位 (上加下减)

函数的伸缩变换:

1

①y f(x)

y f (wx)(w 0)将y f(x)图像纵坐标不变,横坐标缩到原来的

w

(w 1缩短,0 w 1伸长)

②y f (x)

y Af(x)(A 0)将y

f (x)图像横坐标不变,纵坐标伸长到原来的

A 倍

(A 1伸长,0 A 1缩短) 函数的对称变换: ①y f (x)

y f ( x))将y f (x)图像沿y 轴翻折180°(整体翻折)

(对三角函数来说:图像关于 y 轴对称)

②y f(x) y f(x)将y f(x)图像沿x 轴翻折180°(整体翻折)

(对三角函数来说:图像关于 x 轴对称)

③ y f (x)

y f (X)将 y f (x )图像在y 轴右侧保留,并把右侧图像绕y 轴翻折到左侧(偶

5

函数局部翻折) ④ y f (x) f (x)保留y f (x )在x 轴上方图

像,

x 轴下方图像绕x 轴翻折上去(局部翻

动)

7、 解三角形 正弦定理: a sin A b

sinB

cosA 余弦定理:

2

a b 2 2

c b 2

2 a 2 a 2

c 2 c b 2 2bccosA, 2accosB, 2abcosC.

cosB .2 2 2

b c a

2bc 2 2 2

a c

b 推论:正余弦定理的边角互换功能

① a 2RsinA , b 2RsinB , c ② sin

A

③—

sin A

a

2R , b sin B sinB — , sinC

2R ④ a: b: c cosC

2Rs inC

c 2R a b c

—=

=2R

sin C sin A sin B sinC

sin A:sin B:sin C 1 1

⑷面积公式:S=-ab*sinC= - bc*sinA= 2 丄

ca*sinB

2

二、练习题 1、sin330 等于 2、若 sin 0 且 tan 0是, A.第一象限角 3、如果1弧度的圆心角所对的弦长为 A 亠 sin 0.5 B. 第二象限角 B . sin0.5

C .

2,

2

c 2ab —

.3 2

第三象限角

则这个圆心角所对的弧长为 D.第四象限角 C . 2sin0.5 D . tan0.5 1 2

A .仅充分条件

B .仅必要条件

C .充要条件

4、在厶 ABC 中,“ A > 30°” 是 “ si nA >

D .既不充分也不必要条件

5、角 的终边过点(-b,4),且cos

3

,则b 的值(

A、3 B 、-3

6、已知- 3

-,则tan(-)的值为5

7、A.-

4

2 y (si nx cosx) 1 是

A. 最小正周期为2 n的偶函数C. 最小正周期为n的偶函数

若动直线x a与函数f (x) MN的最大值为

9

为得到函数y cos x

A.

C. 向左平移上个长度单位

6

向左平移55个长度单位

6

10、

B.

D.

最小正周期为

最小正周期为

2 n的奇函

n的奇函

sinx和g(x) cosx的图像分别交于M ,

C.- D . 2

的图象,只需将函数y sinx的图像(

B?向右平移芒个长度单位

6

D.向右平移士个长度单位

6

正弦型函数在一个周期内的图象如图所示,

A. y = 2sin(x )

4

C. y = 2sin (2x )

8

N两点,则

B. y = 2si n(x + )

4

D. y = 2si n (2x + )

8

11、函数y cos(- -) 的单调递增区间是( )

2 3

A. 2k -,2k 2 (k Z)

B. 4k 4 “ 2

,4k

3 3 3 3

C. 2k 2 ,2k 8 (k Z)

D. 4k 2 川8

,4 k

(k

(k

3333Z) Z)

12、

ABC中,角代B,C的对边分别为a,b,c,已知A A.1 B.2 C. -.3

1

,a

3

D. ,3

3, b 1,则 c ()

13、在厶ABC中, AB=3 BC='13,AC=4 则边AC上的高为(

A.32

B33 C. 3 D. 3 3

2 2 2

14、在厶ABC中,

已知sin2

B sin2 C

?2

sin A 、、3 sin As in C,贝U B 的大小为()

A. 150

B. 30

C. 120 D

. 60

15、ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c 2a ,

则cosB ()

A. 1

B. 3

C. J

D.

4 4 4 3

16、若sin cos 2,则sin cos 1

2

17、已知函数f(x)是周期为6的奇函数,且f( 1) 1,则f( 5)

18、在平面直角坐标系xOy中,已知△ ABC顶点A—4,0)和C(4,0),顶点B在椭圆

x2 y2sin A+ sin C

+ —= 1 上则------------- =

25+9 1上,人」sin B -------------------- .

19、函数y J1 2cosx lg(2sinx V3)的定义域___________________

20、已知f(x) sin — (n N*),则f (1) f (2) f(3) f ⑷…f (100) ___________________

4

n

21、关于函数f(x)=4sin(2x+3 ) (x € R),其中正确的命题序号是____________ .

n

(1)y=f(x )的表达式可改写为y=4cos(2x-§ );

(2)y=f(x )是以2 n为最小正周期的周期函数;

n

(3)y=f(x )的图象关于点(-6 ,0)对称;

、, n

(4)y=f(x )的图象关于直线x=-6对称;

22、__________________________________________________________ 给出下列四个命题,则其中正确命题的序号为___________________________________

(1)存在一个厶ABC,使得sinA+cosA=1

(2)在厶ABC 中,A>B sinA>sinB

(3)终边在y轴上的角的集合是{ | k ,k Z}

2

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

2009届高考数学快速提升成绩题型训练——抽象函数

2009届高考数学快速提升成绩题型训练——抽象函数 D

7. 已知定义在R 上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间? 8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有b a b f a f ++)()(>0 (1).若a >b ,试比较f (a )与f (b )的大小; (2).若f (k )293()3--+?x x x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。 9.已知函数()f x 是定义在(-∞,3]上的减函数,已知 22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。 10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数; (2)若(3),(24)f a a f -=试用表示. 11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:

()()()f a b af b bf a ?=+. (1)求(0),(1)f f 的值; (2)判断()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,*(2) ()n n f u n N n -=∈,求数列{n u }的前n 项和n s . 12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求 (2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式. 13.已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明. 14.函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

高一数学之抽象函数专题集锦-含详细解析

高一数学之抽象函数专题集锦 一、选择题(本大题共14小题,共70.0分) 1. 设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(?2),f(?π),f(3)的大小顺序是( ) A. B. C. D. 2. 函数f(x)在(0,+∞)上单调递增,且f(x +2)关于x =?2对称,若f(?2)=1,则f(x ?2)≤1的x 的取值范围 是( ) A. [?2,2] B. (?∞,?2]∪[2,+∞) C. (?∞,0]∪[4,+∞) D. [0,4] 3. 已知函数y =f(x)定义域是[?2,3],则y =f(2x ?1)的定义域是( ) A. [0,5 2] B. [?1,4] C. [?1 2,2] D. [?5,5] 4. 函数f(x)在(?∞,+∞)上单调递减,且为奇函数.若f(1)=?1,则满足?1≤f(x ?2)≤1的x 的取值范围是 ( ) A. B. C. [0,4] D. [1,3] 5. 若定义在R 上的奇函数f(x)在(?∞,0)单调递减,且f(2)=0,则满足xf(x ?1)?0的x 的取值范围是( ) A. [?1,1]∪[3,+∞) B. [?3,?1]∪[0,1] C. [?1,0]∪[1,+∞) D. [?1,0]∪[1,3] 6. 已知f(x)={ x 2+4x x ≥0 , 4x ?x 2 , x <0 若f(2?a 2)>f(a),则实数a 的取值范围是( ) A. (?2 , 1) B. (?1 , 2) C. (?∞ , ?1)?(2 , +∞) D. (?∞ , ?2)?(1 , +∞) 7. 已知定义在R 上的函数f(x)满足f(2?x)=f(x),且在[1,+∞)上为增函数,则下列关系式正确的是 A. f(?1)0,则f (x 1)+ f (x 2)的值( ) A. 恒为负值 B. 恒等于零 C. 恒为正值 D. 无法确定正负

北师大版数学高一必修1练习 二次函数的性质

[A 基础达标] 1.函数f (x )=-x 2+4x +5(0≤x <5)的值域为( ) A . (0,5] B .[0,5] C .[5,9] D .(0,9] 解析:选D.f (x )=-x 2+4x +5=-(x -2)2+9(0≤x <5),当x =2时,f (x )最大=9;当x >0且x 接近5时,f (x )接近0,故f (x )的值域为(0,9]. 2.已知函数y =x 2-6x +8在[1,a )上为减函数,则a 的取值范围是( ) A .a ≤3 B .0≤a ≤3 C .a ≥3 D .10时,f (x )的对称轴为x =12a ,在????-∞,12a 上是递减的,由题意(-∞,2)?? ???-∞,12a , 所以2≤12a ,即a ≤14 ,综上,a 的取值范围是????0,14. 4.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (2)<f (0)<f (-2) D .f (0)<f (2)<f (-2) 解析:选D.函数f (x )=x 2+bx +c 对任意的实数x 都有f (1+x )=f (-x ).可知函数f (x )图像的对称轴为x =12 ,又函数图像开口向上,自变量离对称轴越远函数值越大,故选D. 5.设二次函数f (x )=-x 2+x +a (a <0),若f (m )>0,则f (m +1)的值为( )

高中数学 多项式函数的导数素材

多项式函数的导数 教学目的:会用导数的运算法则求简单多项式函数的导数 教学重点:导数运算法则的应用 教学难点:多项式函数的求导 一、复习引入 1、已知函数2)(x x f =,由定义求)4()(/ /f x f ,并求 2、根据导数的定义求下列函数的导数: (1)常数函数C y = (2)函数)(*N n x y n ∈= 二、新课讲授 1、两个常用函数的导数: 2、导数的运算法则: 如果函数)()(x g x f 、有导数,那么 也就是说,两个函数的和或差的导数,等于这两个函数的导数的和或差;常数与函数的积的导数,等于常数乘函数的导数. 例1:求下列函数的导数: (1)37x y = (2)43x y -= (3)3 534x x y += (4))2)(1(2-+=x x y (5)b a b ax x f 、()()(2+=为常数 )

例2:已知曲线331x y =上一点)3 82(,P ,求: (1)过点P 的切线的斜率; (2)过点P 的切线方程. 三、课堂小结:多项式函数求导法则的应用 四、课堂练习:1、求下列函数的导数: (1)28x y = (2)12-=x y (3)x x y +=2 2 (4)x x y 433-= (5))23)(12(+-=x x y (6))4(32-=x x y 2、已知曲线24x x y -=上有两点A (4,0),B (2,4),求: (1)割线AB 的斜率AB k ;(2)过点A 处的切线的斜率AT k ;(3)点A 处的切线的方程. 3、求曲线2432+-=x x y 在点M (2,6)处的切线方程. 五、课堂作业 1、求下列函数的导数: (1)1452+-=x x y (2)7352++-=x x y (3)101372-+=x x y (4)333x x y -+= (5)453223-+-=x x x y (6))3)(2()(x x x f -+= (7)1040233)(34-+-=x x x x f (8)x x x f +-=2)2()( (9))3)(12()(23x x x x f +-= (10)x x y 4)12(32-+= 2、求曲线32x x y -=在1-=x 处的切线的斜率。 3、求抛物线241x y = 在2=x 处及2-=x 处的切线的方程。 4、求曲线1323+-=x x y 在点P (2,-3)处的切线的方程。

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

高中数学总结归纳 抽象函数的对称性

抽象函数的对称性 关于抽象函数图象的对称问题,下面给出四种常见类型及其证明。 一、设y f x =()是定义在R 上的函数,若f a x f b x ()()+=-,则函数y f x =()的图象关于直线x a b =+2 对称。 证明:设点A (m ,n )是y f x =()图象上任一点,即f m n ()=,点A 关于直线x a b = +2的对称点为()A a b m n '+-,。 []∵f a b m f b b m f m n ()()()+-=--== ∴点A'也在y f x =()的图象上,故y f x =()的图象关于直线x a b =+2 对称。 二、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于直线x b a =-2 的对称点为()A b a m n '--,。 ∵f b b a m f a m n [()]()---=+= ∴点A'在y f b x =-()的图象上 反过来,同样可以证明,函数y f b x =-()图象上任一点关于直线x b a =-2 的对称点也在函数y f a x =+()的图象上,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 说明:可以从图象变换的角度去理解此命题。

易知,函数y f x a b =++? ? ???2与y f x a b =-++?? ?? ?2的图象关于直线x =0对称,由y f x a b =++?? ???2的图象平移得到y f x b a a b f a x =--?? ???++?? ????=+22()的图象,由y f x a b =-++?? ???2的图象平移得到y f x b a a b f b x =---?? ???++????? ?=-22()的图象,它们的平移方向和长度是相同的,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 三、设y f x =()是定义在R 上的函数,若f a x c f b x ()()+=--2,则函数y f x =()的图象关于点a b c +?? ?? ?2,对称。 证明:设点() A m n ,是y f x =()图象上任一点,则f m n ()=,点A 关于点a b c +?? ?? ?2,的对称点为()A a b m c n '+--,2。 []∵f a b m c f b b m c f m c n ()()()+-=---=-=-222 ∴点A'也在y f x =()的图象上,故y f x =()的图象关于点a b c +?? ?? ?2,对称 说明:(1)当a b c ===0时,奇函数图象关于点(0,0)对称。(2)易知此命题的逆命题也成立。 四、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y c f b x =--2()的图象关于点b a c -?? ?? ?2,对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于点b a c -?? ?? ?2,的对称点为()A b a m c n '---,2

高中数学-二次函数的性质与图象练习

高中数学-二次函数的性质与图象练习课时过关·能力提升 1函数y=x2-2x+m的单调递增区间为() A.(-∞,+∞) B.[1,+∞) C.(-∞,1] D.[-2,+∞) 解析因为二次函数的图象开口向上,且对称轴为x=1, 所以单调递增区间为[1,+∞). 答案B 2函数f(x)=x2-mx+4(m>0)在(-∞,0]上的最小值是() A.4 B.-4 C.与m的取值有关 D.不存在 解析因为函数f(x)的图象开口向上,且对称轴x=>0, 所以f(x)在(-∞,0]上为减函数, 所以f(x)min=f(0)=4. 答案A 3二次函数y=4x2-mx+5的对称轴为x=-2,则当x=1时,y的值为() A.-7 B.1 C.17 D.25 解析由已知得-=-2,解得m=-16, 故y=4x2+16x+5.当x=1时,y=4×12+16×1+5=25. 答案D 4已知二次函数f(x)=x2-ax+7,若f(x-2)是偶函数,则a的值为()

A.4 B.-4 C.2 D.-2 解析由已知得f(x-2)=(x-2)2-a(x-2)+7=x2-(a+4)x+2a+11. 因为f(x-2)是偶函数, 所以其图象关于y轴对称, 即=0,所以a=-4. 答案B 5已知一次函数y=ax+c与二次函数y=ax2+bx+c(a≠0),它们在同一坐标系中的大致图象是() 答案D 6已知函数y=x2-2x+3在区间[0,m]上有最大值3,最小值2,则实数m的取值范围是() A.[1,+∞) B.[1,2) C.[1,2] D.(-∞,2] 解析由于y=x2-2x+3=(x-1)2+2,其图象如图所示,且f(0)=3,f(1)=2,f(2)=3.结合图象可知m的取值 范围是[1,2]. 答案C 7已知二次函数f(x)=ax2+bx-1(a≠0).若f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于() A.- B.- C.-1 D.0 解析由f(x1)=f(x2)可得f(x)图象的对称轴为x=, 故=-,即x1+x2=-,

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

抽象函数、图像、函数零点

函数基本知识 抽象函数: 1. 已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立. 证明:(1)函数()y f x =是R 上的减函数;(2)函数()y f x =是奇函数. 2. 已知)(x f 在(-1,1)上有定义,且满足),1( )()()1,1(,xy y x f y f x f y x --=--∈有 证明:)(x f 在(-1,1)上为奇函数; 3. 设)(x f 是R 上的函数,且满足1)0(=f ,并且对于任意的实数x ,y 都有 )12()()(+--=-y x y x f y x f 成立,则=)(x f _____________. 4. 已知定义在R + 上的函数()f x 同时满足下列三个条件:① (3)1f =-; ② 对任意x y R +∈、 都有()()()f xy f x f y =+;③0)(,1<>x f x 时. (1)求)9(f 、)3(f 的值; (2)证明:函数()f x 在R + 上为减函数; (3)解关于x 的不等式2)1()6(--

高一数学二次函数在闭区间上的最值练习题

第1课 二次函数在闭区间上的最值 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。 一般分为:对称轴在区间的左边,中间,右边三种情况. 设)0()(2 ≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。 分析:将)(x f 配方,得顶点为???? ? ?--a b ac a b 4422,、对称轴为a b x 2-= 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值: (1)当[]n m a b ,∈-2时,)(x f 的最小值是 a b ac a b f 4422 -= ?? ? ??-, )(x f 的最大值是)()(n f m f 、中的较大者。 (2)当),(2m a b -∞∈- 时,)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f (3)当),(2+∞∈-n a b 时,)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f 当0

高中数学二次函数教案人教版必修一

二次函数 一、考纲要求 1、掌握二次函数的概念、图像特征 2、掌握二次函数的对称性和单调性,会求二次函数在给定区间上 的最值 3、掌握二次函数、二次方程、二次不等式(三个二次)之间的紧 密关系,提高解综合问题的能力。 二、高考趋势 由于二次函数与二次方程、二次不等式之间有着紧密的联系,加上三次函数的导数是二次函数,因此二次函数在高中数学中应用十分广泛,一直是高考的热点,特别是借助二次函数模型考查考生的代数推理问题是高考的热点和难点,另外二次函数的应用问题也是2010年高考的热点。 三、知识回顾 1、二次函数的解析式 (1)一般式: (2)顶点式: (3)双根式: 求二次函数解析式的方法: ○1已知时,宜用一般式○2已知时,常使用顶点式○3已知时,用双根式更方便

2、 二次函数的图像和性质 二次函数())0(2≠++=a c bx ax x f 的图像是一条抛物线,对称轴的方程为 顶点坐标是( ) 。 (1)当0>a 时,抛物线的开口 ,函数在 上递减,在 上递增,当a b x 2- =时,函数有最 值为 (2)当0x f , 当 时,恒有 ()0.-=?ac b 时,图像与 x 轴有两个交点,.),0,(),0,(21212211a x x M M x M x M ?=-= 四、基础训练 1、已知二次函数())0(2≠++=a c bx ax x f 的对称轴方程为x=2,则在f(1),f(2),f(3),f(4),f(5)中,相等的两个值为 ,最大值为 。 2函数()322+-=mx x x f ,当]1,(-∝-∈x 时,是减函数,则实数m 的取值范围是 。 3函数()a ax x x f --=22的定义域为R ,则实数a 的取值范围是

高中数学题型归纳大全函数与导数题专题练习二

高中数学题型归纳大全函数与导数题专题练习二 9.已知函数f(x)=x(e2x﹣a). (1)若y=2x是曲线y=f(x)的切线,求a的值; (2)若f(x)≥1+x+lnx,求a的取值范围. 10.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2. (Ⅰ)求a,b,c,d的值; (Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围. 11.已知函数f(x)=alnx x+1 +b x,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3 =0. (Ⅰ)求a、b的值; (Ⅱ)证明:当x>0,且x≠1时,f(x)>lnx x?1.

12.已知函数f(x)=(a ?1 x )lnx (a ∈R ). (1)若曲线y =f (x )在点(1,f (1))处的切线方程为x +y ﹣1=0,求a 的值; (2)若f (x )的导函数f '(x )存在两个不相等的零点,求实数a 的取值范围; (3)当a =2时,是否存在整数λ,使得关于x 的不等式f (x )≥λ恒成立?若存在,求出λ的最大值;若不存在,说明理由. 13.已知函数f (x )=4lnx ﹣ax +a+3 x (a ≥0) (Ⅰ)讨论f (x )的单调性; (Ⅱ)当a ≥1时,设g (x )=2e x ﹣4x +2a ,若存在x 1,x 2∈[1 2,2],使f (x 1)>g (x 2), 求实数a 的取值范围.(e 为自然对数的底数,e =2.71828…) 14.已知函数f (x )=a x +x 2﹣xlna (a >0且a ≠1) (1)求函数f (x )在点(0,f (0))处的切线方程;

2017高中数学抽象函数专题

三、值域问题 例4.设函数f(x)定义于实数集上,对于任意实数x 、y ,f(x+y)=f(x)f(y)总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数f(x)的值域。 解:令x=y=0,有f(0)=0或f(0)=1。若 f(0)=0,则 f(x)=f(0+x)=f(x)f(0)=0恒成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故 f(0)≠0,必有 f(0)=1。由于f(x+y)=f(x)f(y)对任意实数x 、y 均成立,因此,0 )2()(2 ≥? ? ? ? ? =x f x f , 又因为若f(x)=0,则f(0)=f(x-x)=f(x)f(-x)=0与f(0)≠0矛盾,所以f(x)>0. 四、求解析式问题(换元法,解方程组,待定系数法,递推法,区间转移法, 例6、设对满足x ≠0,x ≠1的所有实数x ,函数f(x)满足,()x x x f x f +=?? ? ??-+11 ,求f(x)的解析式。 解:(1)1),x 0(x x 1)x 1x (f )x (f ≠≠+=-+且Θ---- ,1 2)11()1(:x 1-x x x x f x x f x -=-+-得代换用 (2) :)1(x -11 得中的代换再以x .12)()x -11f(x x x f --=+---(3)1)x 0(x x 2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 例8.是否存在这样的函数f(x),使下列三个条件: ①f(n)>0,n ∈N;②f(n 1+n 2)=f(n 1)f(n 2),n 1,n 2∈N*;③f(2)=4同时成立? 若存在,求出函数f(x)的解析式;若不存在,说明理由. 解:假设存在这样的函数f(x),满足条件,得f(2)=f(1+1)=4,解得f(1)=2.又f(2)=4=22,f(3)=23,…,由此猜想:f(x)=2x (x ∈N*) 小结:对于定义在正整数集N*上的抽象函数,用数列中的递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解. 练习:1、.23 2|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:0 2)x (x f 3 x ,x 1)x (f 2)x 1(f ,x x 12 =++=-与已知得得代换用,. 23 2 |)x (f |,024)x (9f 02 ≥ ∴≥?-≥?得由 3、函数f (x )对一切实数x ,y 均有f (x +y)-f (y)=(x +2y+1)x 成立,且f (1)=0, (1)求(0)f 的值; (2)对任意的11 (0,)2 x ∈,21(0,)2 x ∈,都有f (x 1)+2

最新2018高中数学二次函数试题(含答案)

二、二次函数(命题人:华师附中 郭键) 1.(人教A 版第27页A 组第6题)解析式、待定系数法 若()2 f x x bx c =++,且()10f =,()30f =,求()1f -的值. 变式1:若二次函数()2 f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为(0,11),则 A .1,4,11a b c ==-=- B .3,12,11a b c === C .3,6,11a b c ==-= D .3,12,11a b c ==-= 变式2:若()()2 23,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______. 变式3:若二次函数()2 f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、()2,0B x ,且2212269 x x +=,试问该二次函数的图像由()()231f x x =--的图像向上平移几个单位得到? 2.(北师大版第52页例2)图像特征 将函数()2 361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像. 变式1:已知二次函数()2 f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则122x x f +??= ??? A .2b a - B .b a - C . c D .244ac b a - 变式2:函数()2 f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、()1f 的大小关系是 A .()()()110f f f <-< B .()()()011f f f <-< C .()()()101f f f <<- D .()()()101f f f -<< 变式3:已知函数()2f x ax bx c =++的图像如右图所示, 请至少写出三个与系数a 、b 、c 有关的正确命题_________. 3.(人教A 版第43页B 组第1题)单调性 x y O

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

有关高中数学抽象函数问题专题

抽象函数问题专题 抽象函数是相对于具体函数而言的,它是指没有给出具体函数的解析式,仅仅给出函数的部分性质,如函数f (x )满足f (x +y )=f (x )+f (y )等,解题时依据题设所给的条件解决相关问题的一类函数。通过抽象函数设置的考题,主要考查函数的基本性质(单调性、奇偶性和周期性),考查学生的抽象思维、理性思维和严谨细腻的逻辑推理能力,因而它具有抽象性、综合性和技巧性等特点。因此对抽象函数的考查是历年高考的热点、焦点和难点。 由于抽象函数没有给出具体的函数解析式,具有一定的隐藏性和抽象性,不少学生在解决这类问题时不能透彻理解题设条件,缺乏严谨的推理和全面的思考,容易忽视某些隐藏的函数性质。对于抽象函数的考查,主要以选择题、填空题为主,有时也会在大题出现。 一、抽象函数与函数的函数值、定义域、值域、解析式以及复合函数 【例1】⑴(04全国IV )设函数f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)= ········································································································································· ( ) A .0 B .1 C .52 D .5 ⑵(2010陕西)下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满足 f (x +y )=f (x )f (y )”的是 ······························································································· ( C ) A. 幂函数 B. 对数函数 C. 指数函数 D. 余弦函数 ⑶(2011广东文10)设f (x ),g (x ),h (x )是R 上的任意实值函数.如下定义两个函数(f g )(x )和(f ?g )(x );对任意x ∈R ,(f g )(x )=f (g (x ));(f ?g )(x )=f (x )g (x ).则下列等式恒成立的是( ) A. ((f g ) ?h ) (x )=((f ?h )(g ?h ))(x ) B. ((f ?g ) h ) (x )=((f h )?(g h ))(x ) C. ((f g ) h ) (x )=((f h )(g h ))(x ) D. ((f ?g ) ?h ) (x )=((f ? h )?(g ?h ))(x ) 【例2】⑴已知函数f (x )的定义域是[1,4],则f (x +2)的定义域是 ; ⑵已知函数f (x )的定义域是[1,4],则f (x 2)的定义域是 ; ⑶已知函数f (x +2)的定义域是[1,4],则f (x )的定义域是 ; ⑷已知函数f (x 2)的定义域是[1,4],则f (x )的定义域是 ; ⑸已知函数f (x )的值域是[1,4],则函数g (x)=f (x )+4f (x )的值域是 . 【例3】已知f (x )是二次函数,且f (x +1)+f (x -1)=2x 2-4x ,求f (x ).

相关主题