搜档网
当前位置:搜档网 › 2020届高三数学专题练习含导函数的抽象函数的构造

2020届高三数学专题练习含导函数的抽象函数的构造

2020届高三数学专题练习含导函数的抽象函数的构造
2020届高三数学专题练习含导函数的抽象函数的构造

2019届高三数学专题练习含导函数的抽象函数的构造

1.对于()()'0f x a a >≠,可构造()()h x f x ax =-

例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则()24f x x >+的解集为( ) A .()1,1-

B .()1-+∞,

C .()1-∞-,

D .()-∞+∞,

2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造()()f x h x x

=

例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,

()0.20.222a f =,()log 3log 3b f ππ=,()33log 9log 9c f =,则a ,b ,c 的大小关系是( )

A .a b c >>

B .a c b >>

C .c b a >>

D .b a c >>

3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造

()

()e x

f x h x =

例3:已知()f x 为R 上的可导函数,且R x ?∈,均有()()f x f x '>,则有( )

A .2016e (2016)(0)f f -<,2016(2016)e (0)f f >

B .2016e (2016)(0)f f -<,2016(2016)e (0)f f <

C .2016e (2016)(0)f f ->,2016(2016)e (0)f f >

D .2016e (2016)(0)f f ->,2016(2016)e (0)f f <

4.()f x 与sin x ,cos x 构造

例4:已知函数()y f x =对任意的,22x ππ??

∈- ???

满足()()cos sin 0f x x f x x '+>,则( )

A .()04f π??

> ???

B .()03f f π??

<2- ???

C 34f ππ??

??<

? ????? D 34f ππ????

-<- ? ?????

一、选择题

1.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,对任意正数a 、b ,若a b <, 则必有( ) A .()()af b bf a <

B .()()bf a af b <

C .()()af a bf b <

D .()()bf b af a <

2.已知函数()()R f x x ∈满足()11f =,且()12f x '<,则()1

22

x f x <+的解集为( ) A .}{11x x |-<<

B .}{1x x |<-

C .}{

11x x x |<->或 D .}{1x x |>

3.已知函数()f x 的定义域为R ,()f x '为()f x 的导函数,且()()()10f x x f x '+->,则( ) A .()10f =

B .()0f x <

C .()0f x >

D .()()10x f x -<

4.设函数()f x '是函数()()R f x x ∈的导函数,已知()()f x f x '<,且()()4f x f x ''=-,()40f =,()21f =则使得()2e 0x f x -<成立的x 的取值范围是( ) A .()2-+∞,

B .()0+∞,

C .()1+∞,

D .()4+∞,

5.已知函数()1y f x =-的图象关于点()1,0对称,函数()y f x =对于任意的()0,πx ∈满足()()sin cos f x x f x x >'(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )

A .ππ36f ????-> ? ?????

B 3ππ42f

??

??<-- ? ?????

C ππ223f ????

> ? ?????

D 5π3π64f ??

??<

? ?????

6.定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x >',且()2018f x +为奇函数,则不等式()2018e 0x f x +<的解集为( )

A .(),0-∞

B .()0,+∞

C .1e ,?

?-∞ ???

D .1e ,??

+∞ ???

7.已知函数()2f x +是偶函数,且当2x >时满足()()()2xf x f x f x ''>+,则( )

A .()()214f f <

B .()3232f f ??

> ???

C .()5042f f ??

< ???

D .()()13f f <

8.已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时,()()0f x f x x

+

'>,

若1

13

3a f ??

=

???

,()33b f =--,11ln

ln 33c f ??

= ???

,则a ,b ,c 的大小关系正确的是( ) A .a b c <<

B .b c a <<

C .a c b <<

D .c a b <<

9.已知定义在R 上的函数()f x 的导函数为()f x ',()()222e x f x f x --=(e 为自然对数的底数),

且当1x ≠时,()()()10x f x f x -->????',则( ) A .()()10f f <

B .()()2e 0f f >

C .()()33e 0f f >

D .()()44e 0f f <

10.定义在R 上的函数()f x 的导函数为()'f x ,()00f =若对任意R x ∈,都有()()'1f x f x >+,则使得()e 1f x x +<成立的x 的取值范围为( )

A .(),1∞-

B .(),0∞-

C .()1,+∞-

D .0,+∞()

11.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( ) A .()()()1f a a f b >+ B .()()()1f b a f a >- C .()()af a bf b >

D .()()af b bf a >

12.定义在R 上的奇函数()y f x =满足()30f =,且当0x >时,不等式()()'f x xf x >-恒成立,则函数()()lg 1g x xf x x =++的零点的个数为( ) A .1 B .2

C .3

D .4

二、填空题

13.设()f x 是R 上的可导函数,且'()()f x f x ≥-,(0)1f =,21

(2)e

f =.则(1)f 的值为________.

14.已知,22x ??

∈- ??π?π,()1y f x =-为奇函数,()()'tan 0f x f x x +>,则不等式()cos f x x

>的解集为_________.

15.已知定义在实数集R 的函数()f x 满足()27f =,且()f x 导函数()3f x '<,则不等式()ln 3ln 1f x x >+的解集为__________.

16.已知函数()f x 是定义在()(),00,-∞+∞上的奇函数,且()10f =.若0x <时,

()()'0xf x f x ->,

则不等式()0f x >的解集为__________. 1.对于()()'0f x a a >≠,可构造()()h x f x ax =-

例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则()24f x x >+的解集为( ) A .()1,1- B .()1-+∞, C .()1-∞-, D .()-∞+∞,

【答案】B

【解析】构造函数()()24G x f x x =--,所以()()2G x f x ''=-,由于对任意R x ∈,()2f x '>, 所以()()20G x f x ''->=恒成立,所以()()24G x f x x =--是R 上的增函数, 又由于()()()112140G f -=----?=,所以()()240G x f x x -->=, 即()24f x x >+的解集为()1-+∞,.故选B .

2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造()()f x h x x

=

例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,

()0.20.222a f =,()log 3log 3b f ππ=,()33log 9log 9c f =,则a ,b ,c 的大小关系是( )

A .a b c >>

B .a c b >>

C .c b a >>

D .b a c >>

【答案】D

【解析】因为函数()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.

因为()()()xf x f x xf x ''=+????,所以当(),0x ∈-∞时,()()()0xf x f x xf x ''=+

()y xf x =单调递减,当()0,x ∈+∞时,函数()y xf x =单调递减.

因为0.2122<<,0log 31π<<,3log 92=,所以0.230log 32log 9π<<<,所以b a c >>.故选D .

3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造

()

()e

x f x h x =

例3:已知()f x 为R 上的可导函数,且R x ?∈,均有()()f x f x '>,则有( )

A .2016e (2016)(0)f f -<,2016(2016)e (0)f f >

B .2016e (2016)(0)f f -<,2016(2016)e (0)f f <

C .2016e (2016)(0)f f ->,2016(2016)e (0)f f >

D .2016e (2016)(0)f f ->,2016(2016)e (0)f f < 【答案】D

【解析】构造函数()()e x

f x

g x =

,则()()()()

()

()()

2

e e e e x x x

x f x f x f x f x g x ''-'-'=

=

因为R x ?∈均有()()f x f x '>并且e 0x >,所以()0g x '<,故函数()()e x

f x

g x =在R 上单调

递减,

所以(2016)(0)g g ->,(2016)(0)g g <,即

2016

(2016)

(0)

e f f -->,2016(2016)(0)e f f <, 也就是2016e (2016)(0)f f ->,2016(2016)e (0)f f <.

4.()f x 与sin x ,cos x 构造

例4:已知函数()y f x =对任意的,22x ππ??

∈- ???

满足()()cos sin 0f x x f x x '+>,则( )

A .()04f π??

> ???

B .()03f f π??

<2- ???

C 34f ππ??

??<

? ????? D 34f ππ????

-<- ? ?????

【答案】D

【解析】提示:构造函数()

()cos f x g x x

=. 一、选择题

1.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,对任意正数a 、b ,若a b <, 则必有( ) A .()()af b bf a < B .()()bf a af b <

C .()()af a bf b <

D .()()bf b af a <

【答案】C

【解析】由已知()()0xf x f x '+>∴构造函数()()F x xf x =, 则()()()0F x xf x f x ''=+>,从而()F x 在R 上为增函数。

∵a b <,∴()()F a F b <,即()()af a bf b <,故选C .

2.已知函数()()R f x x ∈满足()11f =,且()12f x '<,则()1

22

x f x <+的解集为( ) A .}{11x x |-<< B .}{1x x |<-

C .}{

11x x x |<->或 D .}{1x x |>

【答案】D

【解析】构造新函数1()()22x F x f x ??=-+ ???,则11(1)(1)11022F f ??

=-+=-= ???

1'()'()2F x f x =-

,对任意R x ∈,有1

'()'()02

F x f x =-<,即函数()F x 在R 上单调递减, 所以()0F x <的解集为(1,)+∞,即()1

22

x f x <

+的解集为(1,)+∞,故选D . 3.已知函数()f x 的定义域为R ,()f x '为()f x 的导函数,且()()()10f x x f x '+->,则( ) A .()10f = B .()0f x < C .()0f x > D .()()10x f x -<

【答案】C

【解析】由题得()()'[1]0x f x ->,设()()()1g x x f x =-,所以函数()g x 在R 上单调递增, 因为()10g =,所以当1x <时,()0g x <;当1x >时,()0g x >. 当1x <时,()0g x <,()()10x f x -<,所以()0f x >. 当1x >时,()0g x >,()()10x f x ->,所以()0f x >. 当1x =时,()()()11110f f +-'>,所以()10f >. 综上所述,故答案为C .

4.设函数()f x '是函数()()R f x x ∈的导函数,已知()()f x f x '<,且()()4f x f x ''=-,()40f =,()21f =则使得()2e 0x f x -<成立的x 的取值范围是( ) A .()2-+∞,

B .()0+∞,

C .()1+∞,

D .()4+∞,

【答案】B 【解析】设()()e x

f x F x =

,则()()()

''e 0x

f x f x F x -=

<,即函数()F x 在R 上单调递减,

因为()()''4f x f x =-,即导函数()'y f x =关于直线2x =对称,

所以函数()y f x =是中心对称图形,且对称中心2,1(), 由于()40f =,即函数()y f x =过点4,0(), 其关于点2,1()的对称点0,2()也在函数()y f x =上, 所以有02f =(),所以()()0

02e 0f F ==,

而不等式()2e 0f x x -<,即

()e 2x

f x <,即()()0F x F <,所以0x >,

故使得不等式()2e 0f x x -<成立的x 的取值范围是0+∞(,)

.故选B . 5.已知函数()1y f x =-的图象关于点()1,0对称,函数()y f x =对于任意的()0,πx ∈满足()()sin cos f x x f x x >'(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )

A

.ππ36f ????-> ? ?????

B

3ππ42f

??

??<-- ? ?????

C

ππ223f ????

> ? ?????

D

5π3π64f ??

??<

? ?????

【答案】C

【解析】由已知,()f x 为奇函数,函数()y f x =对于任意的()0,x ∈π满足()()sin cos f x x f x x >',

得()()sin cos 0f x x f x x '->,即()0sin f x x '

??> ???

所以()sin f x y x

=

在()0,π上单调递增;又因为()sin f x y x

=

为偶函数,

所以()sin f x y x =在(),0-π上单调递减.所以32sin sin 32

f f ???? ? ?

????<ππππ

223f ????

> ? ????π?π.

故选C .

6.定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x >',且()2018f x +为奇函数,则不等式()2018e 0x f x +<的解集为( )

A .(),0-∞

B .()0,+∞

C .1e ,?

?-∞ ???

D .1e ,??

+∞ ???

【答案】B

【解析】构造函数()()e

x

f x

g x =

,则()()()

0e

x

f x f x

g x -''=

<,所以()g x 在R 上单独递减,

因为()2018f x +为奇函数,所以()020180f +=,∴()02018f =-,()02018g =-. 因此不等式()2018e 0x f x +<等价于()()0g x g <,即0x >,故选B .

7.已知函数()2f x +是偶函数,且当2x >时满足()()()2xf x f x f x ''>+,则( )

A .()()214f f <

B .()3232f f ??

> ???

C .()5042f f ??

< ???

D .()()13f f <

【答案】A

【解析】()2f x +是偶函数,则()f x 的对称轴为2x =, 构造函数()()2

f x

g x x =

-,则()g x 关于()2,0对称,

当2x >时,由()()()2xf x f x f x ''>+,得()()()()

()

2

2''02x f x f x g x x --=

>-, 则()g x 在()2,+∞上单调递增,()g x 在(),2-∞上也单调递增, 故

()()()13412

32

42

f f f =->-

---,∴()()214f f <.本题选择A 选项.

8.已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时,()()0f x f x x

+

'>,

若1

13

3a f ??

=

???

,()33b f =--,11ln

ln 33c f ??

= ???

,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .b c a <<

C .a c b <<

D .c a b <<

【答案】C

【解析】定义域为R 的奇函数()y f x =,

设()()F x xf x =,∴()F x 为R 上的偶函数,∴()()()F x f x xf x '=+', ∵当0x ≠时,()()0f x f x x

'+

>,∴当0x >时,()()0x f x f x ?'+>.

当0x <时,()()0x f x f x ?'+<,即()F x 在0,+∞()

单调递增,在(),0∞-单调递减. (

111333F a f F ??

??

==

= ? ?????

,()()()3333F b f F -==--=,()111ln ln ln ln 3333F c f F ??????

=== ? ? ???????

, ∵

ln33<,∴(()()ln33F F F <<.即a c b <<,故选C .

9.已知定义在R 上的函数()f x 的导函数为()f x ',()()222e x f x f x --=(e 为自然对数的底数),

且当1x ≠时,()()()10x f x f x -->????',则( ) A .()()10f f < B .()()2e 0f f > C .()()33e 0f f > D .()()44e 0f f <

【答案】C

【解析】令()()e x F x f x -=,∴()()()'e 'x F x f x f x -=-????,

∵()()()1'0x f x f x -->????,∴1x <时,10x -<,则()()'0f x f x -<, ∴()0F x '<,()F x 在(),1-∞上单调递减,∴()()()210F F F ->->, 即()()()22e 1e 0f f f ->->,

∵()()222e x f x f x --=,∴()()642e f f =-,()()431e f f =- ∴()()440e f f >,()()330e f f >,故选C .

10.定义在R 上的函数()f x 的导函数为()'f x ,()00f =若对任意R x ∈,都有()()'1f x f x >+,则使得()e 1f x x +<成立的x 的取值范围为( )

A .(),1∞-

B .(),0∞-

C .()1,+∞-

D .0,+∞()

【答案】D

【解析】构造函数:()()1e x

f x

g x -=

,()()0

01e 01f g -=

=-,

∵对任意R x ∈,都有()()'1f x f x >+,

∴()()()()

()()2e 1e 10e e x x x x f x f x f x f x g x '--??'+-??'==<, ∴函数()g x 在R 单调递减,由()e 1x f x +<化为:()()()110e x

f x

g x g -=

<-=,

∴0x >.∴使得()e 1x f x +<成立的x 的取值范围为0,+∞()

.故选D . 11.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( ) A .()()()1f a a f b >+ B .()()()1f b a f a >- C .()()af a bf b >

D .()()af b bf a >

【答案】C

【解析】构造函数()()()e 0x F x f x x =>,,()()()e 0x F x f x f x ''=+

令01x <<,则1x x <,由已知()1F x F x ??> ???

,可得()11e x x

f x f x -??> ???,下面证明1

2e 1x x x ->,

即证明

1

2ln 0x x x

-+>, 令()1

2ln g x x x x

=-+,则()()2

2

10x g x x -'=-<,即()g x 在()0,1上递减,()()1g x g >,即1

2

e

1x x

x ->

, 所以()11xf x f x

x ??

>

???

,若01a b <<<,1ab =,则()()af a bf b >.故选C . 12.定义在R 上的奇函数()y f x =满足()30f =,且当0x >时,不等式()()'f x xf x >-恒成立,则函数()()lg 1g x xf x x =++的零点的个数为( ) A .1 B .2

C .3

D .4

【答案】C

【解析】定义在R 上的奇函数()f x 满足:

()()()0033f f f ===-,且()()f x f x -=-,

又0x >时,()()'f x xf x >-,即()()'0f x xf x +>,

∴()0xf x '>,函数()()h x xf x =在0x >时是增函数, 又()()()h x xf x xf x -=--=,∴()()h x xf x =是偶函数;

∴0x <时,()h x 是减函数,结合函数的定义域为R ,且()()()0330f f f ==-=, 可得函数()1y xf x =与2lg 1y x =-+的大致图象如图所示,

∴由图象知,函数()()lg 1g x xf x x =++的零点的个数为3个.故选C . 二、填空题

13.设()f x 是R 上的可导函数,且'()()f x f x ≥-,(0)1f =,2

1

(2)e f =.则(1)f 的值为________.

【答案】1

e

【解析】由'()()f x f x ≥-得'()()0f x f x +≥,所以e '()e ()0x x f x f x +≥,即[e ()]'0x f x ≥,

设函数()e ()x F x f x =,则此时有1(2)(0)1F F =≥=,故()e ()1x F x f x ==,1(1)e

f =

. 14.已知,22x ??

∈- ??π?π,()1y f x =-为奇函数,()()'tan 0f x f x x +>,则不等式()cos f x x

>的解集为_________.

【答案】0,2??

???

π

【解析】∵()1y f x =-为奇函数,∴()010f -=,即()01f =,

令()()

cos f x g x x =

,,22x ??

∈- ??π?π,则()()()2

'cos sin 0cos f x x f x x g x x +'=>, 故()g x 在,22x ??

∈- ??π?

π递增,()cos f x x >,得()()()10cos f x g x g x =>=,

故0x >,故不等式的解集是0,2π?? ???,故答案为0,2π??

???

15.已知定义在实数集R 的函数()f x 满足()27f =,且()f x 导函数()3f x '<,则不等式()ln 3ln 1f x x >+的解集为__________.

【答案】()

20,e

【解析】设ln t x =,则不等式()ln 3ln 1f x x >+等价为()31f t t >+, 设()()31g x f x x =--,则()()''3g x f x =-,

∵()f x 的导函数()'3f x <,∴()()''30g x f x =-<,函数()()31g x f x x =--单调递减, ∵()27f =,∴()()223210g f =-?-=,则此时()()()3102g t f t t g =-->=,解得2t <, 即()31f t t >+的解为2t <,所以ln 2x <,解得20e x <<, 即不等式()ln 3ln 1f x x >+的解集为()

20,e ,故答案为()

20,e .

16.已知函数()f x 是定义在()(),00,-∞+∞上的奇函数,且()10f =.若0x <时,

()()'0xf x f x ->,

则不等式()0f x >的解集为__________. 【答案】()

(),10,1-∞-

【解析】设()()f x g x x

=,则()()()

2

''xf x f x g x x -=

,当0x <时,由已知得()'0g x >,()

g x 为增函数,

由()f x 为奇函数得()()110f f -=-=,即()10g -=, ∴当1x <-时()()0f x g x x

=

<,()0f x >,

当10x -<<时,()()0f x g x x

=

>,()0f x <,又()f x 是奇函数,

∴当01x <<时,()0f x >,1x >时,()0f x <. ∴不等式()0f x >的解集为()

(),10,1-∞-.故答案为()(),10,1-∞-.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示 一、选择题 1.判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 3.已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且* ,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 4.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

高考文科数学函数专题讲解及高考真题精选含答案

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是

高一数学之抽象函数专题集锦-含详细解析

高一数学之抽象函数专题集锦 一、选择题(本大题共14小题,共70.0分) 1. 设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(?2),f(?π),f(3)的大小顺序是( ) A. B. C. D. 2. 函数f(x)在(0,+∞)上单调递增,且f(x +2)关于x =?2对称,若f(?2)=1,则f(x ?2)≤1的x 的取值范围 是( ) A. [?2,2] B. (?∞,?2]∪[2,+∞) C. (?∞,0]∪[4,+∞) D. [0,4] 3. 已知函数y =f(x)定义域是[?2,3],则y =f(2x ?1)的定义域是( ) A. [0,5 2] B. [?1,4] C. [?1 2,2] D. [?5,5] 4. 函数f(x)在(?∞,+∞)上单调递减,且为奇函数.若f(1)=?1,则满足?1≤f(x ?2)≤1的x 的取值范围是 ( ) A. B. C. [0,4] D. [1,3] 5. 若定义在R 上的奇函数f(x)在(?∞,0)单调递减,且f(2)=0,则满足xf(x ?1)?0的x 的取值范围是( ) A. [?1,1]∪[3,+∞) B. [?3,?1]∪[0,1] C. [?1,0]∪[1,+∞) D. [?1,0]∪[1,3] 6. 已知f(x)={ x 2+4x x ≥0 , 4x ?x 2 , x <0 若f(2?a 2)>f(a),则实数a 的取值范围是( ) A. (?2 , 1) B. (?1 , 2) C. (?∞ , ?1)?(2 , +∞) D. (?∞ , ?2)?(1 , +∞) 7. 已知定义在R 上的函数f(x)满足f(2?x)=f(x),且在[1,+∞)上为增函数,则下列关系式正确的是 A. f(?1)0,则f (x 1)+ f (x 2)的值( ) A. 恒为负值 B. 恒等于零 C. 恒为正值 D. 无法确定正负

【精品】高中数学函数专题(理科)

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映. 这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。 因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。复习函数图像要注意以下方面。 1.掌握描绘函数图象的两种基本方法——描点法和图象变换法. 2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题. 3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题. 4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力. 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点. 例1设a>0,求函数 ) ln( ) (a x x x f+ - =(x∈(0,+∞))的单调区间. 分析:欲求函数的单调区间,则须解不等式 ()0 f x '≥ (递增)及 ()0 f x '< (递减)。

高三文科数学三角函数专题测试题(后附答案)

高三文科数学三角函数专题测试题 1.在△ABC 中,已知a b =sin A cos B ,则B 的大小为( ) A .30° B .45° C .60° D .90° 2.在△ABC 中,已知A =75°,B =45°,b =4,则c =( ) A . 6 B .2 6 C .4 3 D .2 3.在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C . 3 D . 32 在△ABC 中, AC sin B =BC sin A ,∴AC =BC ·sin B sin A =32× 22 3 2 =2 3. 4.在△ABC 中,若∠A=30°,∠B =60°,则a∶b∶c=( ) A .1∶3∶2 B .1∶2∶4 C .2∶3∶4 D .1∶2∶2 5.在△ABC 中,若sin A>sin B ,则A 与B 的大小关系为( ) A .A> B B .A

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

(新)高一数学函数专题训练(一)

函数专题训练(一) 一、选择题 1.(文)若函数f(x)的定义域是[0,4],则函数g(x)=f (2x )x 的定义域是( ) A .[0,2] B .(0,2) C .(0,2] D .[0,2) (理)(2013·湖北荆门期末)函数f(x)=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( ) A .(-∞,-4]∪(2,+∞) B .(-4,0)∪(0,1) C .[-4,0)∪(0,1] D .[-4,0)∪(0,1) 2.(文)(2012·江西文,3)设函数f(x)=????? x 2+1,x ≤1,2x ,x>1.则f(f(3))=( ) A.15 B .3 C.23 D.139 (理)已知函数f(x)=??? 2x +1,x ≤0,f (x -3),x>0, 则f(2014)等于( ) A .-1 B .1 C .-3 D .3 3.已知函数f(x)=??? 2x +1,x<1,x 2+ax ,x ≥1, 若f[f(0)]=4a ,则实数a 等于( ) A.12 B.45 C .2 D .9 4.(2013·银川模拟)设函数f(x)=??? x 2-4x +6,x ≥0,x +6,x<0, 则不等式f(x)>f(1)的解集是( A .(-3,1)∪(3,+∞) B .(-3,1)∪(2,+∞) C .(-1,1)∪(3,+∞) D .(-∞,-3)∪(1,3) 5.(文)函数f(x)=22x -2 的值域是( ) A .(-∞,-1) B .(-1,0)∪(0,+∞)C .(-1,+∞) D .(-∞,-1)∪(0,+∞) (理)若函数y =f(x)的值域是[12,3],则函数F(x)=f(x)+1f (x ) 的值域是( ) A .[12,3] B .[2,103] C .[52,103] D .[3,103] 6.a 、b 为实数,集合M ={b a ,1},N ={a,0},f 是M 到N 的映射,f(x)=x ,则a +b

高三文科数学知识点总结

高中数学 必修1知识点 第一章 集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 名称 记号 意义 性质 示意图 子集 B A ? (或 )A B ? A 中的任一元素都属 于B A ?(1)A A ?? (2) A C ?,则B C ?且B A ?若(3) A B =,则B A ?且B A ?若(4) A(B) 或 B A 真子集 A ≠?B (或B ≠ ?A ) B A ?中至少 B ,且有一元素不属于A 为非空子集) A (A ≠ ??)1( A C ≠ ?,则 B C ≠ ?且A B ≠ ?若(2) B A 集合 相等 A B = A 中的任一元素都属 于B ,B 中的任一元素 都属于A B ?(1)A A ?(2)B A(B) (7)已知集合A 有(1)n n ≥个元素,则它有2个子集,它有21-个真子集,它有21-个非空子集,它有22-非空真 子集. 【1.1.3】集合的基本运算 名称 记号 意义 性质 示意图 交集 A B I {|,x x A ∈且 }x B ∈ (1) A A A =I (2)A ?=?I (3)A B A ?I A B B ?I B A 并集 A B U {|,x x A ∈或 }x B ∈ (1)A A A =U (2)A A ?=U (3)A B A ?U A B B ?U B A 补集 U A e {|,}x x U x A ∈?且 ()U A A U =U e2 ()U A A =? I e1 (1不等式 解集 ||(0)x a a <> {|}x a x a -<< ||(0)x a a >> |x x a <-或}x a > ||,||(0)ax b c ax b c c +<+>> , ||x a <看成一个整体,化成 ax b +把 型不等式来求解 ||(0)x a a >> (2()()()U U U A B A B =I U 痧 ?()()() U U U A B A B =U I 痧?

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

高考文科数学函数专题讲解及高考真题精选(含答案)

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度

2017高中数学抽象函数专题

三、值域问题 例4.设函数f(x)定义于实数集上,对于任意实数x 、y ,f(x+y)=f(x)f(y)总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数f(x)的值域。 解:令x=y=0,有f(0)=0或f(0)=1。若 f(0)=0,则 f(x)=f(0+x)=f(x)f(0)=0恒成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故 f(0)≠0,必有 f(0)=1。由于f(x+y)=f(x)f(y)对任意实数x 、y 均成立,因此,0 )2()(2 ≥? ? ? ? ? =x f x f , 又因为若f(x)=0,则f(0)=f(x-x)=f(x)f(-x)=0与f(0)≠0矛盾,所以f(x)>0. 四、求解析式问题(换元法,解方程组,待定系数法,递推法,区间转移法, 例6、设对满足x ≠0,x ≠1的所有实数x ,函数f(x)满足,()x x x f x f +=?? ? ??-+11 ,求f(x)的解析式。 解:(1)1),x 0(x x 1)x 1x (f )x (f ≠≠+=-+且Θ---- ,1 2)11()1(:x 1-x x x x f x x f x -=-+-得代换用 (2) :)1(x -11 得中的代换再以x .12)()x -11f(x x x f --=+---(3)1)x 0(x x 2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 例8.是否存在这样的函数f(x),使下列三个条件: ①f(n)>0,n ∈N;②f(n 1+n 2)=f(n 1)f(n 2),n 1,n 2∈N*;③f(2)=4同时成立? 若存在,求出函数f(x)的解析式;若不存在,说明理由. 解:假设存在这样的函数f(x),满足条件,得f(2)=f(1+1)=4,解得f(1)=2.又f(2)=4=22,f(3)=23,…,由此猜想:f(x)=2x (x ∈N*) 小结:对于定义在正整数集N*上的抽象函数,用数列中的递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解. 练习:1、.23 2|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:0 2)x (x f 3 x ,x 1)x (f 2)x 1(f ,x x 12 =++=-与已知得得代换用,. 23 2 |)x (f |,024)x (9f 02 ≥ ∴≥?-≥?得由 3、函数f (x )对一切实数x ,y 均有f (x +y)-f (y)=(x +2y+1)x 成立,且f (1)=0, (1)求(0)f 的值; (2)对任意的11 (0,)2 x ∈,21(0,)2 x ∈,都有f (x 1)+2

高中数学函数专题经典.doc

高中数学函数专题 1.已知在实数域R 上可导的函数)(x f y =对任意实数21,x x 都有 ),()()(2121x f x f x x f ?=+若存在实数b a ,,使0)(0)(>'≠b f a f 且, 求证:(1)0)(>x f ;(2)),()(+∞-∞=在x f y 上是单调函数 证明:(1)2 )]2 ([)2()2()22()(x f x f x f x x f x f =?=+= 又()[()]()()0,()022222x x x x x f a f a f f a f =+-=?-≠∴≠,0)(0)]2 ([2 >>∴x f x f 即 (2)x x f b f x b f x f b f x b f x b f b f x x x ?-?=?-?=?-?+='→?→?→?1 )(lim )()()()(lim )()(lim )(000 即)() ()(]1)()[(lim )()()(1)(lim 00b f b f x f x x f x f x f b f b f x x f x x '?=?-?='∴'=?-?→?→? 0)(0)(,0)(,0)(>'∴>>'>∴x f b f b f x f )(x f ∴在R 上是单调递增函数. 2.已知抛物线C 的方程为F x y ,42 =为焦点,直线()00:1>=+-k k y kx l 与C 交于A 、 B 两点,P 为AB 的中点,直线2l 过P 、F 点。 (1)求直线2l 的斜率关于k 的解析式)(k f ,并指出定义域; (2)求函数)(k f 的反函数)(1 k f -;(3)求1l 与2l 的夹角θ的取值范围。 (4)解不等式()()1,0121log 1 ≠>>????? ?+-a a x xf a 。 解:(1)()???+==142x k y x y ???>>-=??=+-?0 0161604422 k k k y ky 10<-+= -k k k k f (3)?? ? ??∈∴<<∴<<=+-=4,0,10,10,)(1)(3πθθθtg k k k kf k k f tg Θ (4)4124121)(221 +=+=+-x x x xf ,∴原不等式为 ()0241log 2>>??? ? ? +x x a 当1>a 时,41,41222->∴->a x a x ;当10<

相关主题