搜档网
当前位置:搜档网 › Lust变桨系统调试相关事项说明_更新

Lust变桨系统调试相关事项说明_更新

Lust变桨系统调试相关事项说明_更新
Lust变桨系统调试相关事项说明_更新

Lust变桨系统调试说明

1、操作说明:

为确保系统调试安全,必须预先进行以下措施:

①现场调试人员必须佩戴好安全帽;

②400V电源的三相线、零线和地线必须可靠连接,避免缺相或漏接;

③上电前确认主控箱和轴控箱的开关处于断开状态;

④所有连接电缆连接正确(电机后面的编码器电缆号是S1、S2和S3;冗

余编码器的电缆号是T1、T2和T3,若反接,会出现飞车故障);

⑤上电前将电机的轴键拆除或利用扎带将其捆扎牢固;

⑥上电前确认电机与底座是否可靠固定;

⑦电池箱箱盖闭合(完成检查);

2、系统紧急顺桨:

①Profibus通信故障(或者不正常);

②Pitch Master故障;

③电机侧编码器故障;

④安全链信号输入无+24V(硬输入点);

⑤未提供+24COM(硬输入点);

⑥Emergency mode位为1;

3、手动模式

手动模式用于机械调零和现场安装调整用,转动速度为2.5度/秒。

手动模式前提条件:

①手动模式信号为1(硬输入点),并观察主控箱的9A1的第8通道的灯是

否点亮;

②Profibus通信正常,或者短接17K7的13、14引脚;

③Normal Operation Mode设置为0;

④Emergency Mode位为0;

⑤转动任一个桨叶时,另外两个桨叶为91度位置(或者通过关闭轴箱的电

源模拟);

⑥轴箱电池开关处于断开状态;

⑦手动旋钮的通道选择的0、1、2和3分别对应空档、轴控箱1、轴控箱2

和轴控箱3;转动方向旋钮控制的是电机的正传和反转;

4、自动模式

自动模式必须满足以下条件:

①先闭合主控箱的400V电源;

②Profibus通信正常;

③将Fault Reset置位1,然后置0;

④闭合轴箱的电池开关和电源开关前确保通信的Emerge Mode(读)为0

和Normal Operation Mode(写)为0;硬接点的Safety Signal(为高电平)、+24V和0V有正常连接,Manual Operation为0。否则会出现飞车现象;

⑤轴控箱上电顺序:先闭合电池开关(5Q1),然后闭合电源开关(6S1)。

正常状态下电机会由于内部的电路的控制不会出现转动;

⑥自动控制是通过通信软件控制,先设置好控制桨叶的目标角度、转速(建

议为3度/秒以下)和加速度(建议0.5~2度/秒2),然后将Normal Operation Mode置1,启动自动模式;若要中途停止,只能通过以下任一方式:将Normal Operation Mode置0、将对应的91度限位开关触发和关闭轴控箱电源(6S1);

5、限位开关

91度限位开关用于控制Pitch Master(主控变频器)的输出控制,当触发了该限位开关后,7K6复位,然后电机会停止,相对而言动作比较缓慢;

96度限位开关用于控制电机和Ptich Master的ENPO信号,当触发了该限位开关后,6K2和6K3复位,然后电机立即停止,相对而言动作比较迅速。

6、Bypass

Bypass信号是用于旁通2个限位开关触发了以后继续启动电机转动,有硬信号和软信号之分。

Bypass软信号是对应91度限位开关。当91度触发了以后,利用通信将对应桨叶的Bypass信号置1,然后电机才可以往96度方向转动;而需要往0度方向转动不需要将对应桨叶的Bypass信号置1(实际上该Bypass信号用途不大);

Bypass硬信号是对应96度限位开关,当96度触发了以后,利用硬结点的Bypass信号置1,然后电机只可以往0度方向转动;

7、温度预处理说明

根据通信中的所有温度值,需要在控制当中进行预处理,其温度的预处理值建议如下(根据Lust技术人员的建议):

①Pitch Master停机温度值为80度;

②电机停机温度值为110度;

③电池极限温度值为60度;

④Heat Sink AX(X为1、2、3)极限温度值为90度;

8、参数比率说明

所有通信中读取参数的比率如下:

角度实际值=读取值/100.0

速度实际值=读取值/100.0

驱动电流实际值=读取值/100.0

所有温度实际值=读取值/100.0

所有通信中写入参数的比率如下:

角度写入值=角度实际值×100.0

速度写入值=速度实际值×100.0

加速度写入值=加速度实际值×100.0

9、通信说明

主控系统与Lust变桨系统是基于Profibus总线进行通信。由于Lust的通信模块是EL6731-0010,属于倍福的标准Profibus从站模块,所以建议主站采用倍福的EL6731主站模块。

通信参数:站号11或者30;波特率建议在1.5Mbps以下;GSD配置直接引用倍福的标准Beckhoff Automation GmbH下的EL6731-0010;读取96字节;写入28字节。

通信过程中需要注意的问题:

①Lust变桨系统的主控箱上电通信成功后的初始20秒读取的值存在大量的

错误情况,建议先屏蔽这些值;

②部分参数,例如电机角度、驱动电流和温度等参数出现“零飘”现象非常

严重,必须进行阀值设置,建议是小于0xFDE8(65000);

③通信中建议在写入帧的18.0位(HeartBeat)进行方波输出(周期为0.5

秒,占空比为50%),然后对读取帧中的58.0位(HeartBeat)进行判断,以确认通信是否正常(正常时返回的方波与输出一致);

④通信的写入帧的18.6位(Reset Charger)不能写入,置为低电平;

⑤通信的写入帧的26.0、26.1和26.2位(分别为3组编码器的角度设置位)

不能长时间置高电平,建议持续时间短于0.5秒;

⑥若断电前任何一个轴控箱的2个编码器的角度值差值大于2度,那么重

新上电后将写入帧的18.5(Fault Reset)置高电平后复位,其2个编码

器同时置0度;

⑦2个限位开关与通信读取帧当中的信号不一定对应;

⑧每个轴控箱的2个编码器读取的值以电机后端的编码器为主。

10、其它情况说明

正常通信后,会出现电机内的温度稍高,属于正常现象。

Lust变桨系统没有照明控制电路,需要在主控柜内添加空气开关,提供230VAC连接至滑环供电。然后引到变桨的主控箱内,添加6位接线端子,分别供三组230V的L、N线。

目前(截至2008-8-21)的Lust提供的电气原理图与实际的硬件存在相异之处,据说是版本未更新所致。

目前的Lust提供的4套变桨系统,当中的Pitch Master软件版本过高,与主控箱的CX9000通信过程中会出现若干问题,所以在安装和调试前必须要更改该软件版本和设置减速箱的比率(2级:191:1和139:15,所以设置为26549:15)

SSB变桨系统试验常见故障

1.SSB变桨系统地面出厂试验时,在调整95°限位开关及挡块位置时操作人员不慎将60947-5-1#95°限位开关直动头冲断。 2.G8-064315变桨控制柜,实验时变桨速度过快,执行速度远大于设定速度。初步判 断电机驱动器损坏,造成无法正常使用。 3. 473399-60#旋编编码器做变桨功能试验时,编码器存在角度无变化故障 4、466631-04#旋编编码器做变桨功能试验时,编码器存在角度跳变故障 5. 叶轮功能试验时,由于操作人不慎误将G8-070588变桨控制柜内的1F1防雷模块的火线与零线接反,导致1F1防雷模块烧坏。 6.变桨控制柜实验时系统报电机过温PTC故障,经更换柜内9A1模块后此故障消除。 7、变桨控制柜实验时系统报电机过温PTC故障,经更换柜内9A1模块后此故障消除。 8、G8-070093#变桨控制柜实验时柜内12A1模块指示灯不亮,经更换此故障消除。 9. 旋编编码器做变桨功能试验时,编码器角度始终保持在0°无变化,无法正常使用。 10、旋编编码器旋转时有卡阻现象,并且内部有异响。无法正常使用 11. 95°限位开关压下直动头不能正常复位,造成该95°限位开关无法正常使用。 12. 变桨系统中有2个限位开关触头有卡阻现象,活动不自如,无法正常使用。 13. 叶轮组在调试时发现,闭合电容开关时,9U1不动作,面板上显示9U1故障,无法正常使用 14. LED显示H.N,面板显示:变流器故障,散热片温度故障,无法正常使用。 15. 变桨柜G8-065677打开电容开关后面板显示电容电压9U1为故障状态,9U1不动作,无法正常使用。 16. SSB控制柜配套带来的旋转编码器形状不同, 一套三个旋编信号线接头位置不同,装后性能不受影响。

变桨系统维护培训资料

变桨系统维护

华锐风电科技有限公司 风力发电机组培训教材 变桨部分 1.变桨控制系统简介

变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。 变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。在90度迎角时是叶片的工作位置。在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。一般变桨角度范围为0~86度。采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的

动、静载荷小。变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。 变桨控制系统有四个主要任务: 1. 通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。 2. 当安全链被打开时,使用转子作为空气动力制动装置把叶子转回到羽状位置(安全运行)。 3. 调整叶片角以规定的最低风速从风中获得适当的电力。 4. 通过衰减风转交互作用引起的震动使风机上的机械载荷极小化。 2.变桨轴承

2.1安装位置 变桨轴承安装在轮毂上,通过外圈螺栓把紧。其内齿圈与变桨驱动装置啮合运动,并与叶片联接 2.2工作原理 当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改变叶片对风向地迎角,使叶片保持最佳的迎风状态,由此控制叶片的升力,以达到控制作用在叶片上的扭矩和功率的目的。

Lust变桨系统调试相关事项说明_更新

Lust变桨系统调试说明 1、操作说明: 为确保系统调试安全,必须预先进行以下措施: ①现场调试人员必须佩戴好安全帽; ②400V电源的三相线、零线和地线必须可靠连接,避免缺相或漏接; ③上电前确认主控箱和轴控箱的开关处于断开状态; ④所有连接电缆连接正确(电机后面的编码器电缆号是S1、S2和S3;冗 余编码器的电缆号是T1、T2和T3,若反接,会出现飞车故障); ⑤上电前将电机的轴键拆除或利用扎带将其捆扎牢固; ⑥上电前确认电机与底座是否可靠固定; ⑦电池箱箱盖闭合(完成检查); 2、系统紧急顺桨: ①Profibus通信故障(或者不正常); ②Pitch Master故障; ③电机侧编码器故障; ④安全链信号输入无+24V(硬输入点); ⑤未提供+24COM(硬输入点); ⑥Emergency mode位为1; 3、手动模式 手动模式用于机械调零和现场安装调整用,转动速度为2.5度/秒。 手动模式前提条件: ①手动模式信号为1(硬输入点),并观察主控箱的9A1的第8通道的灯是 否点亮; ②Profibus通信正常,或者短接17K7的13、14引脚; ③Normal Operation Mode设置为0; ④Emergency Mode位为0; ⑤转动任一个桨叶时,另外两个桨叶为91度位置(或者通过关闭轴箱的电 源模拟); ⑥轴箱电池开关处于断开状态; ⑦手动旋钮的通道选择的0、1、2和3分别对应空档、轴控箱1、轴控箱2 和轴控箱3;转动方向旋钮控制的是电机的正传和反转; 4、自动模式

自动模式必须满足以下条件: ①先闭合主控箱的400V电源; ②Profibus通信正常; ③将Fault Reset置位1,然后置0; ④闭合轴箱的电池开关和电源开关前确保通信的Emerge Mode(读)为0 和Normal Operation Mode(写)为0;硬接点的Safety Signal(为高电平)、+24V和0V有正常连接,Manual Operation为0。否则会出现飞车现象; ⑤轴控箱上电顺序:先闭合电池开关(5Q1),然后闭合电源开关(6S1)。 正常状态下电机会由于内部的电路的控制不会出现转动; ⑥自动控制是通过通信软件控制,先设置好控制桨叶的目标角度、转速(建 议为3度/秒以下)和加速度(建议0.5~2度/秒2),然后将Normal Operation Mode置1,启动自动模式;若要中途停止,只能通过以下任一方式:将Normal Operation Mode置0、将对应的91度限位开关触发和关闭轴控箱电源(6S1); 5、限位开关 91度限位开关用于控制Pitch Master(主控变频器)的输出控制,当触发了该限位开关后,7K6复位,然后电机会停止,相对而言动作比较缓慢; 96度限位开关用于控制电机和Ptich Master的ENPO信号,当触发了该限位开关后,6K2和6K3复位,然后电机立即停止,相对而言动作比较迅速。 6、Bypass Bypass信号是用于旁通2个限位开关触发了以后继续启动电机转动,有硬信号和软信号之分。 Bypass软信号是对应91度限位开关。当91度触发了以后,利用通信将对应桨叶的Bypass信号置1,然后电机才可以往96度方向转动;而需要往0度方向转动不需要将对应桨叶的Bypass信号置1(实际上该Bypass信号用途不大); Bypass硬信号是对应96度限位开关,当96度触发了以后,利用硬结点的Bypass信号置1,然后电机只可以往0度方向转动; 7、温度预处理说明 根据通信中的所有温度值,需要在控制当中进行预处理,其温度的预处理值建议如下(根据Lust技术人员的建议): ①Pitch Master停机温度值为80度;

变桨系统带载测试平台要求

变桨系统带载测试平台试验大纲 1 前言 本部分规定了各种型号的电动变桨驱动系统工作性能的测试要求和测试方法。适用于各种电动 变桨驱动系统出厂性能验收和新产品性能测试。 2 测试内容 电机负载测试内容主要分成三个部分: 1)变桨系统带载功能性测试 2)变桨系统带载故障模拟测试 3)变桨系统带载连续运行测试 测试的主要部件为:变桨电机、刹车系统、伺服驱动器、蓄电池、编码器。 3 测试依据 2MW 风机根据《变桨驱动系统采购规范》SB-030.02.05-A 3.6MW 风机根据《变桨驱动系统采购规范》V-69.2-BV.MR.00.00-A-D GB/T 1311-2008《直流电机试验方法》 GB/T 1029-2005《三相同步电机试验方法》 4 变桨系统带载功能测试 4.1 变桨电机额定负载测试 需测试电机在额定负载下的变桨位置、电机转速、转矩响应特性。位置给定范围为(0°~30°), 测试变桨速度为2°/S。 测试需要得到如下响应曲线图:电机运动位置给定曲线、电机位置响应曲线、电机速度响应曲 线、电机转矩响应曲线、电机电流变化曲线、电机温升曲线。 Y520000064-2 变桨系统带载测试平台试验大纲共3 页第 2 页 FDJL-JS-027 4.2 变桨电机变化负载测试 需测试电机在变化负载下的变桨位置、电机转速、转矩响应特性。位置给定范围为(0°~30°), 变化负载范围为额定负载的±50%,测试变桨速度为2°/S。 测试需要得到如下响应曲线图:电机运动位置给定曲线、电机位置响应曲线、电机速度响应曲 线、电机转矩响应曲线、电机电流变化曲线、电机温升曲线。 4.3 变桨电机最大负载测试 需测试电机在最大负载下(3s 内)的变桨位置、电机转速、转矩响应特性。位置给定范围为(0°~ 30°),测试变桨速度为2°/S。 测试需要得到如下响应曲线图:电机运动位置给定曲线、电机位置响应曲线、电机速度响应曲

风力发电机变桨控制系统培训教材

变桨控制系统培训教材 1. 变桨控制系统概述 变桨轴承 限位开关装 图1 变桨系统 变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变 桨轴承。从额定功率起,通过控制系统将叶片以精细的变桨角度向顺

桨方向转动,实现风机的功率控制。如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。 变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。在90度迎角时是叶片的工作位置。在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。一般变桨角度范围为0~86度。采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。 变桨控制系统有四个主要任务: 1.通过调整叶片角把风机的电力速度控制在规定风速之上的一 个恒定速度。 2.当安全链被打开时,使用转子作为空气动力制动装置把叶子转 回到羽状位置(安全运行)。 3.调整叶片角以规定的最低风速从风中获得适当的电力。 4.通过衰减风转交互作用引起的震动使风机上的机械载荷极小

化。 2.变桨轴承 变桨驱动装 变桨轴承 图2 变桨轴承和驱动装置 安装位置 变桨轴承安装在轮毂上,通过外圈螺栓把紧。其内齿圈与变桨驱 动装置啮合运动,并与叶片联接。 工作原理 当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改

风机变桨控制系统简介

风力发电机组变桨系统介绍

一.概述 双馈风机

风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。风轮是风力机最关键的部件,是它把空气动力能转变成机械能。大多数风力机的风轮由三个叶片组成。叶片材料有木质、铝合金、玻璃钢等。风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。组装风轮时要注意叶片的旋转方向,一般都是顺时针。固定扭矩要符合说明书的要求。 风轮的工作原理:风轮产生的功率与空气的密度成正比。风轮产生的功率与风轮直径的平方成正比;风轮产生的功率与风速的立方成正比;风轮产生的功率与风轮的效率成正比。风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。贝兹(Betz)极限 风机四种不同的控制方式: 1.定速定浆距控制(Fixed speed stall regulated) 发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制 2.定速变浆距控制(Fixed speed pitch regulated) 发电机直接连到恒定频率的电网,在大风时浆距控制用于调节功率 3.变速定浆距控制(Variable speed stall regulated) 变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平. 4.变速变浆距控制(Variable speed pitch regulated) 变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,保持力矩, 浆距控制用于调节功率.

风力发电机变桨系统

风力发电机变桨系统 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

国电 变桨 调试

PROJECT GUP CCV风场变桨调试TO GUP Customer ENGINEER MOOG Service Remark GUP CCV风场变桨调试 1、变桨柜内无电检查 1.1 查验系统元器件包括电缆有无缺陷。 a、检查柜体在运输过程中是否存在由于震动造成的一些元器件损伤,主要是看元器件有无硬件损伤。 b、检查所要连接的重载电缆有无绝缘破损情况,Harting有无损坏。 c、查看柜内有无铁屑、铜丝等金属危险品 确保上电后设备及人身的安全。 1.2 校线检查 1.2.1 24V控制滑环线缆检查 使用万用表对从滑环进轮毂的线缆进行校线检查,确保接线没有错误。 注意:防雷模块的区别 6R1:接Profibus通讯线为5V防雷模块 16R1、17R1为24V防雷模块 注:此项接线必须校线检查,不然24V如果接线短路,就会造成防雷模块的损坏。 1.2.2 400V线缆检查 使用万用表对从机舱进轮毂的线缆进行校线检查。 注:400V的线缆校线检查必须提高警惕,严禁出现零线与火线或者地线与火线接反的情况!!! 目前在已经调试的风场中 1)尚义风场发现400V的防雷模块损坏较多,查出原因为机舱出火线与地/零线接反导致防雷模块的损坏2)在武川风场出现有,机舱零线未接紧,上电之后,系统缺零导致烧坏AC400充电器以及24V开关电源。 1.2.3 测量Canbus终端电阻60±5? 可测量BVL E线harting上,白棕两线间阻值 1.2.4 激活profibus终端电阻 DP插头上拨动开关处于ON状态 1)未接主控通讯线时,可测得6R1:1-2间阻值为220±10? 2)若连接主控通讯线之后阻值在110±5? 注:此阻值测量是在主控与变桨均未上电情况下测量的 1.2.5 线路测量 连接外部电源线之后(外部给变桨供电400V电源开关必须保持断开),闭合变桨柜体内所有开关(电池柜5Q1,axis1,axis2,axis3开关保持断开),做上电之前的线路测量 1)检测L1、L2、L3、N、PE线间的短路测量。 2)24+与L1、L2、L3、N、PE线间的短路测量。 3)24-与L1、L2、L3、N、PE线间的短路测量。 4)测量柜内各个端子排N线与N线以及PE线间的导通性。 注意:各个电压等级之间不能有回路电压串入 5)检测PITCHmaster进线进出线的对地的短路测量 确保上电之前线路无短路情况,保护设备及人身安全 1.2.6 电池电压测量 查看连接电池的短接线,保证电池短接线完全连接好,不能有虚接现象。 依次测量每个电池柜的电压,查看电池柜电压是否平衡,一般在230V左右,若出现电池柜电压偏低情况,上电后优先闭合这个电池柜开关,优先充电。

南瑞变桨系统日常维护手册

风力发电机电气变桨系统日常维护手册 国电南瑞科技股份有限公司 2014年1月

目录 一总则 (3) 二变桨驱动器故障代码及其解决方法 (3) 三后备电源充电器常见故障及其维护 (9) 四变桨电机常见故障及其维护 (10) 五PLC常见故障及其维护 (12)

一、总则 本手册主要针对南瑞变桨控制系统,汇总了变桨控制系统在日常运行及维护过程中可能出现的一些常见故障及相对应的解决方法,驱动器及PLC故障代码的相应信息等内容。 二、变桨驱动器故障代码及其解决方法 2.1、驱动器报“RF”故障 故障原因:主控板控制芯片(主要是 AD采样芯片)受干扰引起。 处理方法:如果有两次及以上记录则更换驱动器。 2.2、驱动器报“NH”故障(超速故障) 故障原因: (1)故障阀值设置过低; (2)电机空载; (3)测速发电机故障。 相对应处理方法: (1)重新设置超速故障阀值; (2)给电机加上负载; (3)检测测速发电机输出是否线性。 2.3、驱动器报“9L”或“9R”。 故障原因: (1)驱动功率模块坏; (2)驱动器受干扰。 处理方法: (1)首先确认驱动器功率模块是否损坏,若模块已损坏,需更换驱动器。(2)若模块没有损坏且复位后能正常运行,则更换改制后的浪涌吸收后再运行观察。功率模块( IGBT)测量方法(动力线端子):①、驱动器输入400V 断电10分钟后,用万用表二级管档测量驱动器的动力线端子红表笔对 2脚,黑表笔分别对 9和14;黑表笔对 3,红表笔分别对9和14,值都为350左右。 ②、驱动器输入400V不断电,用万用表直流档(1000V)测量驱动器的动

风力发电机组变桨控制系统的研究

风力发电机组变桨控制系统的研究 发表时间:2019-04-01T17:26:18.570Z 来源:《基层建设》2019年第1期作者:吴者 [导读] 摘要:在风力发电机组中,叶轮机组已更换了固定的叶轮机组,它已成为风轮机工业发展主流的双叶轮系统。 中广核新能源华南分公司德庆风电场广东省肇庆市 摘要:在风力发电机组中,叶轮机组已更换了固定的叶轮机组,它已成为风轮机工业发展主流的双叶轮系统。它是风力发电机功率控制的一个重要组成部分,运行平稳,本文主要论述了风力发电的控制方法,本文讨论了基于进流角预报的模糊PlD统一变距功率控制系统和独立变距功率控制策略。同时对两者进行了比较,它提供了一些设计理念和理论方法来定位大型风力涡轮机的可变螺距控制系统。 关键词:变桨机构;独立变桨;优化设计;建模仿真 前言 风力发电机组主要包括两个主要部件:主控制系统和变桨控制系统。主要控制系统是控制整个风机的运行,可变叶片控制系统是专门针对不同工况下叶片的精确控制,为了实现叶片和应急桨的正常运动。一个完整的变距控制系统包括驱动和控制器的主要组成部分(一些变距控制系统只有驱动,没有控制器),变距电机,备用电源等。每一个变螺距控制系统在其结构上都有其独特的特点,为了更好地理解变螺距控制系统,我们必须对其结构有一个全面的了解。 1、课题的背景及研究目的 变叶轮机组已经取代固定叶轮机组成为风力发电机组商业化发展的主流。变量螺旋桨系统是风力发电机功率控制和执行平稳运行的重要组成部分和一个丰富的指导作用,其操作,通常情况下,可变螺旋桨系统在冯风力涡轮机控制器发出指令驱动叶片旋转,使叶片达到指定的节距角位置,不影响互联的快速实现过程,保证风电机组在不同工况下按最优参数运行;在紧急情况下,自动调节螺旋桨螺距角,使叶片跟随螺旋桨,实现气动制动,确保风力机的安全。 2、变桨系统工作原理 螺旋桨更换系统的工作原理如图1所示。机房的主处理器监控风速、转子转速和发电机驱动叶片的旋转角度。发电机能量模块计算了伺服驱动的顺序通过逻辑,驱动叶片转动。不同的叶片都有不同的可变叶轮驱动电机。驱动电机尾部装有一个编码器,编码器用以检测驱动电机的方向、转速、叶片转到的角度,反馈至变桨系统的处理器。发生系统掉电或紧急安全链触发时,备用电源(超级电容或蓄电池)进行紧急收桨,将叶片转动90°的安全位置。在急停顺桨状态下,变桨系统是在风力发电机组的主控系统之外独立工作的,这样可以避免因风力发电机组的主控系统停止工作或是错误工作而不能急停顺桨Nordex、Vestas和其他世界知名制造商都有可变间距的风力涡轮机。目前,可变螺距机制采用可变螺距风扇市场主要包括液压可变螺距机制和电动可变螺距机制,其中电动可变螺距机制分为直流电动可变螺距机制和交流电动可变螺距机制根据电动机电源的形式。 3、定桨距和变桨距风力发电机组 目前,风力发电机组的控制主要以调速为主。在功率调节,风力涡轮机可以分为固定螺距风力涡轮机和变距风力涡轮机。具有固定间距的风轮机的特点是叶片和轮套之间的连接是固定的。当风速发生变化时,叶片的迎风角不会改变,即叶片的俯仰角度无法调整。因此,定螺距风力机通常被称为失速型风力机。这种方法限制了输入功率叫做失速控制。这种情况下的失速调整基本上是相同的速度,但承受的载荷大,场出现功率与风速不匹配的情况。早期的小机组多为此结构,国内的以金风750机组占主导地位。 现在的机组都为变螺距结构,其特点为:变桨系统接收风力发电机组主控系统的指令,调节、转动风机的叶片到指定角度来实现:额定风速以下,桨叶位置保持在0度附近,最大限度捕获风能,保证空气动力效率;达到及超过额定风速时,根据主控系统的指令调节叶片角度,保证机组的输出功率。变螺距的结构输出功率稳定,可调节性能强,便于起动,机械结构受力小以及易控制变桨等安全等优点;但控制结构较复杂,容易发生变桨及其附属故障,维修工作量大。 显然,变螺距风力机具有更大的发展优势,因此,可变间距调节已成为大型风力涡轮机的最佳选择。由于变螺距控制提供了更好的输出电能质量,每个叶片调节器的独立刀片控制技术可以被视为独立的刹车系统,可以独立调整。经过调节发电机的转速,风力涡轮机的叶尖速度比可以接近最优值,为了最大程度地利用风能,提高发电机的运行效率,和操作在不同的风,风向和风速,从而增加了“网间友善”。 4、电变桨距机构 电动变螺距机构分为直流变螺距机构和交流变螺距机构。直流电机驱动装置的命名是在改变转子的时候马达驱动的动力供应模式。同样,驱动叶片旋转的电机也是由交流驱动的。Desire和SSB目前在直流电源转换机制市场上占有很大的份额。直流电动变叶轮最大的优势是在紧急情况下,电池不需要马达的伺服驱动系统直接驱动发动机,把叶片旋转至安全的地方。交流转子为电机的伺服驱动系统提供动力,伺服驱动系统控制叶片旋转至一个安全的地方。 电动变量螺旋桨系统的硬件结构如图2所示:换螺旋桨系统主要由7个机柜组成3个轴机柜,对应于换螺旋桨主机柜的3个叶片。

REE-OAT变桨系统现场调试手册

版本:V1.0 REE-OAT变桨系统现场调试手册 发布日期:2009年9月9日

REE-OAT变桨系统现场调试手册 本文件用于指导1.5MW(低温型)风机用变桨系统的现场调试,变桨系统的调试要严格按照调试步骤进行,做好调试记录。 一、调试工具 ●调试软件Windbench; ●笔记本电脑一台; ●万用表一个; ●工具箱一个:配有一字型、十字型螺丝刀、一套内六角扳手和尖嘴钳等 工具; ●REE-OAT变桨系统原理图一份; 二、上电前的常规检查 ●确认变桨系统各部件间的电缆连接正确,且各航空插头连接牢靠; ●检查各控制箱内及箱外的元器件是否完好无损; ●确认各控制箱和电池箱的电源开关均处于断开状态,箱内的电路保护开 关均处于断开状态; ●电池电压在满电状态应为246V,如低于241V,电池已处于充电状态, 此时充电激活以及充电电流项的指示灯应为绿色,电池电流值为负值。

充电器激活 注意:系统上电前一定要确保三相400V电压正常和相序正确,N线和PE接地线连接正确且固定牢靠,电源不能缺项,否则容易造成模块烧毁。 三、单独调试步骤 1.首先一定要先合上三个电池箱的开关1Q2,2Q2,3Q2; 2.PC调试步骤(按照以下示意图分步完成): ●检查Q1(400V AC)进线端电压是否正常,出线端是否对地短路,正常 则合上Q1; ●检查S1(230V AC)进线端电压是否正常,出线端是否对地短路,正常 则合上S1,检查照明灯是否正常; ●检查Q11,Q21,Q31(400V AC)进线端是否正常,出线端是否对地短 路,正常则合上Q11,Q21,Q31; ●检查F11,F21,F31(230V AC)进线端是否正常,出线端是否对地短路, 正常则合上F11,F21,F31;

风机调试

风力发电机组调试 一.概述 风力发电机组调试的任务是将机组的各系统有机的结合在一起,协调一致。保证机组安全、长期、稳定、高效率地运行。调试分为厂内调试和现场调试两部分。 调试必须遵守各系统的安全要求,特别是关于高压电气的安全要求及整机的安全要求,必须遵守风机运行手册中关于安全的所有要求,否则会有人身安全危险及风机的安全危险。调试者必须对风机各系统的功能有相当的了解,知道在危险的情况下必须采取的安全措施。总之调试必须由通过培训合格的人员进行,尤其是现场调试,因为各个系统已经完全连接,叶片在风力作用下旋转运动,必须仔细完全按照调试规程的要求逐步进行。 二.厂内调试 厂内调试是尽可能的模拟现场的情况,将系统内的所有问题在厂内调试中发现、处理,并将各系统的工作状态按照设计要求协调一致。由于厂内条件的限制,厂内调试分为两个部分:轮毂系统调试和机舱部分调试。 2.1轮毂调试 轮毂是指整个轮毂加上变桨系统、变桨轴承、中心润滑系统组成一个独立的系统。在调试时用模拟器模拟机组主控系统。调试的目的是检查轴承、中心润滑系统、变桨齿轮箱、变桨电机、变桨控制系统、各传感器的功能是否正常。

2.1.1调试准备 调试前必须确认系统已经按照要求装配完整,系统在地面固定牢固,系统干燥清洁,变桨齿轮箱与轴承的配合符合要求。 连接调试试验柜与轮毂系统,进行通电前的电气检查,确认系统接地及各部分的绝缘达到要求,检查进线端子处的电压值、相序正确,只有符合要求后才能向系统送电。 送电采用逐级送电,按照电路图逐个合闸各个手动开关,并检查系统的状态正常。 2.1.2轮毂调试 用计算机连接轮毂控制系统,按照调试文件进行必要的参数修改。 按照调试规程逐项进行调试作业,并作完整的记录。 主要工作有: 用手动及程序控制逐个活动三个变桨轴承,检查各部分是否活动灵活,有无卡涩,齿轮箱、发电机、轴承是否润滑良好,有无漏油现象。 检查变桨控制系统的状态是否正常,充电回路、过电流保护、转速测定等是否正常,并测试蓄电池充电回路的功能。 逐个活动三个变桨轴,检查各轴的角度传感器,92度及95度限位开关,各电机的电流,温度传感器等的工作是否正常,并进行角度校准。 用主控系统模拟器模拟各状态信号、指令信号等,检查变桨控

风电变桨控制系统调查

风电变桨控制系统调查 变桨风力发电机组是通过叶片沿其纵向轴心转动来调节功率。其主要调节方法分为三个阶段:第一阶段为开机阶段,当风力机达到运行条件时,计算给定桨叶节距角,第一步节距角调节到45度左右;当转速达到一定的转速(如1/2 额定 转速)时,再调节到开平桨的角度,直到风力机达到额定转速并网发电。第二阶段为:当输出功率小于额定功率时,桨叶节距角保持在开平桨位置不变。第三阶段是:当功率达到额定转速后,调节系统投入运行。调节的关键是额定功率,当输出功率大于额定功率时即调小桨叶节距角。从当前世界风力机发展趋势来看,容量小于750KW的风电机组尚可使用定桨失速调节技术,容量大于750KW的风电机组大多采用变桨调节技术。 先来看看内资风电机组制造商的发展状况,目前可以分成四个梯队,第一梯队是在2007年已具备批量生产能力的企业;第二梯队是在2007年已推出样机,2008 年进入内资与合资企业新增装机容量前十位的制造商;第三梯队则是2008 年内资与合资企业新增装机容量前十位以外,机组已安装到现场的制造商;其余还有许多企业正在准备从事风电机组的整机制造,即第四梯队,这部份约有50 个。 中国内资与合资企业产品占75.57%。华锐风电的份额最大,占新增总装机的 22.45%,内资与合资企业产品的29.71%。外资企业产品占24.43%,丹麦Vestas 的份额最大,占新增总装机的9.6%,外资企业产品的39.3%。 表:2008 年新增中国内资与合资制造商的市场份额 品牌(制造商)容量(kW)占当年内资与占当年新 合资制造商比例增总装机比例 华锐1402500 29.71% 22.45% 金风1131750 23.98% 18.12% 东汽1053000 22.31% 16.86% 运达233250 4.94% 3.73% 上海电气178750 3.79% 2.86% 明阳174000 3.69% 2.79% 航天- 安迅能150000 3.18% 2.40% 湘电120000 2.54% 1.92% 新誉New Unite 73500 1.56% 1.18% 北重60000 1.27% 0.96% 其他143680 3.04% 2.30% 合计4720430 100.00% 75.57% 变桨控制系统是最大程度利用并保护价值百万美元风力发电机的关键。因此我们进行了变桨系统和零部件制造商的摸底调查,通过对304份问卷的统计,可

变桨系统

风力发电机组
变桨系统介绍

一.风机变桨系统概述
风力发电机组控制系统硬件分别安装在三个不同部分: 1. 机舱控制,安装在机舱内 2. 地面控制,安装在塔架底部 3. 变桨控制,安装在轮毂内部 人机界面 触摸屏显示风机的运行状况和参数,或者启动或停止风机.

风力发电机组四种控制方式:
1. 定速定浆距控制(Fixed speed stall regulated) 发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制 2. 定速变浆距控制(Fixed speed pitch regulated) 发电机直接连到恒定频率的电网,在大风时浆距控制用于调节功率 3. 变速定浆距控制(Variable speed stall regulated) 变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反 力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平. 4. 变速变浆距控制(Variable speed pitch regulated) 变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改 变转子速度.在大风时,浆距控制用于调节功率.

二. 变桨系统的工作原理
定浆距风机通过叶片的失速,即改变叶片横断面周围流动的气流,导致 效率的损失,从而控制风机的最大输出功率; 变浆距风机是通过叶片沿其纵向轴转动,改变气流对叶片的攻角,从而 改变风力发电机组获得的空气动力转矩,使发电机功率输出保持稳定. 变桨伺服控制系统作为风力发电控制系统的外环,在风力发电机组的 控制中起着十分重要的作用.它控制风力发电机组的叶片节距角可以随 风速的大小进行自动调节.在低风速起动时,桨叶节距可以转到合适的角 度,使风轮具有最大的起动力矩;当风速过高时,通过调整桨叶节距,改变 气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使发电 机功率输出保持稳定.
三. 变桨系统和定桨系统的比较
定桨距失速调节型风力发电机组 定奖距是指桨叶与轮载的连接是固定 的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化, 桨叶翼型本身所具有的失速特性.当风速高于额定风速时,气流的攻角增 大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功 率输出. 为了提高风电机组在低风速时的效率, 通常采用双速发电机 (即 大/小发电机).在低风速段运行的,采用小电机使桨叶县有较高的气动 效率, 提高发电机的运行效率. 失速调节型的优点是失速调节简单可靠, 当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系 统不作任何控制,使控制系统大为减化.其缺点是叶片重量大(与变桨

REE-OAT变桨系统现场调试手册

REE-OAT变桨系统现场调试手册 版本:V1.0 REE-OAT变桨系统现场调试手册 发布日期:2009年9月9日 版本:1.0 MY1.5Se 日期:2009-9 REE-OAT变桨系统现场调试手册 资料提供部门: 级别: 客户中心工程调试部 编写校核审批状态 REE-OAT变桨系统现场调试手册 本文件用于指导1.5MW(低温型)风机用变桨系统的现场调试,变桨系统的调试要严格按照调试步骤进行,做好调试记录。 一、调试工具 , 调试软件Windbench; , 笔记本电脑一台; , 万用表一个; , 工具箱一个:配有一字型、十字型螺丝刀、一套内六角扳手和尖嘴钳等 工具; , REE-OAT变桨系统原理图一份; 二、上电前的常规检查 , 确认变桨系统各部件间的电缆连接正确,且各航空插头连接牢靠;

, 检查各控制箱内及箱外的元器件是否完好无损; , 确认各控制箱和电池箱的电源开关均处于断开状态,箱内的电路保护开 关均处于断开状态; , 电池电压在满电状态应为246V,如低于241V,电池已处于充电状态, 此时充电激活以及充电电流项的指示灯应为绿色,电池电流值为负值。 - 1 - 广东明阳风电技术有限公司 广东省中山市火炬开发区建业路 528437 版本:1.0 MY1.5Se 日期:2009-9 REE-OAT变桨系统现场调试手册 资料提供部门: 级别: 客户中心工程调试部 编写校核审批状态 充电器激活 注意:系统上电前一定要确保三相400V电压正常和相序正确,N线和PE接地线连接正确且固定牢靠,电源不能缺项,否则容易造成模块烧毁。 三、单独调试步骤 1. 首先一定要先合上三个电池箱的开关1Q2,2Q2,3Q2;

风力发电机变桨系统DOC

风力发电机变桨系统 1、综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2、变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 SSB变桨系统为寒冷环境设计。环境温度定义如下 工作温度为 -30 ~ +40 ℃ 静态温度为 -40 ~ +50 ℃ 在主电源失电后,单独的加热系统会开始工作来保持柜体温度,只有必要的设备被通电。在每个柜体的温度到达 5 ℃一段时间后,系统被启动,这个默认的时间是60分钟。 在这段可调整的时间过后,这个系统被释放和通电。 3、主要部件 电控柜(一个主控柜、三个轴柜)4套 变桨电机(配有变桨系统主编码器:A编码器)3套 备用电池3套 直流电机3个 机械式限位开关3套(6个) 冗余编码器(B编码器)3套

风电变桨控制器用充电器用户手册(中文)

风电变桨专用充电器产品说明书 KCG3-1.1A/216V(264V/288V/300V/360V) 一. 产品功能介绍 本充电器采用PWM高频脉宽调制技术及微处理器控 制技术,专为满足风电变桨控制系统中电瓶的充放电要求, 各种性能和技术指标均参照同类国外产品,而设计开发的。 可替代进口产品。其原理框图如图所示, 原理框图 1. 电源:AC 220V±20%。 2. 输出: 本充电器的负载是18节(216V)/22节(264V)/ 24节(288V)/ 25节(300V)/30节(360V)LCP127R2P电瓶串联。须按浮充电方式对其电压进行温度补偿。每节电瓶补偿值为20mV/℃。每节12V电瓶浮充电压为13.67V,20℃时充电值为247.5V /300V/328V/342V/410V。 充电电流限定值为1.1A。 根据要求本机采用脉冲式充放电方式进行充电,两充电脉冲(脉冲宽5s)之间加放电去极化脉冲10ms。 3. 保护:由2只常闭继电器给出故障信号 3.1电瓶电压过高(高于273V/330V/360V/370V/440VDC);电瓶电压过低(低于 161V/197V/215V/223V/268VDC)故障报警。由1#常闭继电器给出信号。电瓶电压正常时继电器吸合,电压过高或者过低继电器释放。 过电压保护的复位须关掉电源,电瓶放电到267V/322V/352V/362V/432VDC以下;低压保护的复位须设法提高电压到167V/205V/224V/230V/278VDC以上。

电源电压过高或者过低同样也会推动1#继电器动作。电源电压正常时继电器吸合,故障时释放。 3.2电瓶测试。由2#常闭继电器给出信号。利用其脉冲式充放电方式每放电10ms检 测1次电瓶,在此10ms内以3A电流放电。如果电压降低到191V/233V/265V318V 以下,并连续出现2次,则确认为电瓶故障(电瓶老化或断线)。2#继电器释放。连 续2次检测到电压高于210V/257V/292V/350V,确认为正常,2#继电器吸合。 阈值ON(18/22/24/25/30节) OFF(18/22/24/25/30节) 电瓶正常 210V/257V/280V/292V/350V191V/233V/250V/265V318V 电瓶电压过低 167V/205V/224V/230V/278V161V/197V/215V/223V/268V 电瓶电压过高 267V/322V/352V/362V/432V273V/330V/360V/370V/440V 3.3过热保护:以热敏电阻做传感器,散热器温度高于90℃降低限流值为0.5A。 3.4充电器过载及短路保护:本机采用电流型PWM集成控制器,自带过流保护功能。 故障时能有效关闭脉冲,阻断开关电路工作。 4. 电瓶充电电压温度补偿 采用LM335或者MF52-303J热敏电阻做传感器,监测电瓶温度。下表列出充电电压与温度的关系。传感器若断线,按20℃充电电压247.5V/300V/342V/410V运行。 环境温度℃充电电压V(18节)22节24节 25节30节 NA 432 360 346 -20 261.5 317 427 356 341 -10 258.0 313 351 421 337 308 0 254.5 347 416 332 10 251.0 305 410 342 20 247.5 300 328 338 405 324 30 244.0 297 399 333 319 40 240.5 293 394 328 315 50 237.0 289 323 388 311 60 233.5 285 410 342 328 NA 247.5 300 5. 恒压精度:≤0.5%;恒流精度:≤1%;电压纹波VPP≯±2V; 6. 外型尺寸:250×140×103mm; 7. 重量:2.5Kg。 8. 效率:不低于 85%; 9. 环境温度:-30℃~50℃; 10. 冷却方式:18节(216V)充电器为自冷,22节(264V)及以上为风冷; 11. 防护等级:IP20;

SSB变桨系统调试方案设计

变桨系统试验方案设计 编制: 校对: 审核:

目录 一、变桨系统内部试验 (1) 1.1正常变桨试验 (1) 1.2紧急停机试验 (2) 1.3变桨速度和方向的试验 (3) 1.3.1信号点检测 (3) 1.3.2故障信号灯 (4) 二、变桨系统与主控联调 (4) 2.1启动状态 (4) 2.2自我测试 (5) 2.3正常操作状态 (6) 2.4正常停机状态 (7) 2.5紧急停机状态 (8) 三、变桨系统通信协议 (8) 3.1通信数据格式 (8) 3.2功能列表 (9) 3.2.1读取当前数据(01h) (9) 3.2.2发送操作数据(02h) (10) 3.2.3读取参数(30h) (11) 3.2.4发送参数(31h、32h) (11) 3.2.5读取故障(50h) (12) 3.2.6发送设定位置值(96h) (12)

变桨系统试验方案设计 变速恒频风力发电机组风轮转速随着风速的变化而变化,可以更有效地利用风能,并且通过变速恒频技术可得到恒定频率的电能。风力机组因为在额定风速以上工况,风力机有可能受到很大的静态或动态冲击。变桨距机构的主要功能就是在额定风速附近(以上),依据风速的变化随时调节桨叶的节距角,控制吸收的机械能,一方面保证获取最大的能量同时减少风力对风力机的冲击。在并网过程中,变桨距控制还可实现快速无冲击并网,最终提高了整个风力发电系统的发电效率和电能质量。 本系统采用SSB公司生产的电动式变桨系统,此系统的调试主要分成两个部分进行,第一部分主要测试变桨系统本身运行的正确性,第二部分通过主控与变桨系统进行系统联调。 一、变桨系统内部试验 针对变桨系统的调试采用的是调试软件和硬件调试相结合的方式,从而保证变桨系统本身运行正常。 1.1正常变桨试验 正常变桨的试验是通过调试软件调节变桨速度和节距角来观察电机的运转情况。下面分别介绍调试软件以及调试步骤。 调试界面主要分成七个部分,下面对其每个部分作简要介绍: 1)、界面第一行左侧的模块中,A1…B3显示的是实际的变桨节距角,A-B 的功能是使能A或B的编码器。右侧是Cal是校对变桨角度,其左右两侧有快捷键高速和低速分别变桨至零度和90度; 2)、界面第一行右侧是显示Profibus是否正常的状态信号; 3)、界面第二行左侧显示的是数字输入E2、E3、E4,每个9个IO,从低位到高位分别对应的信号是:地、变换器准备就绪、电机保护、温控、蓄电箱充电完成、限位开关信号(91和95)、充电模块过压信号;

相关主题