搜档网
当前位置:搜档网 › 高中函数值域求法小结

高中函数值域求法小结

高中函数值域求法小结
高中函数值域求法小结

函数值域求法小结

一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域。

由绝对值函数知识及二次函数值域的求法易得:

)[)[∞+-∈∞+∈-+-=,2,,024)(2y x x g 所以

2、求函数1

11

y x =

++的值域。

分析:首先由1x +≥0,得1x ++1≥1,然后在求其倒数即得答案。 解:

1x +≥0∴1x ++1≥1,∴0<

1

11

x ++≤1,∴函数的值域为(0,1].

二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域。

设:)0)((4)(2

≥+-=x f x x x f 配方得:][)4,0(4)2()(2

∈+--=x x x f 利用二次函数的

相关知识得][4,0)(∈x f ,从而得出:][2,2-∈y 。

说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。 2、求函数3

42-+-=x x e

y 的值域。

解答:此题可以看作是u

e y =和342-+-=x x u 两个函数复合而成的函数,对u 配方可得:

1)2(2+--=x u ,得到函数u 的最大值1=u ,再根据u e y =得到y 为增函数且0>y 故

函数3

42-+-=x x e

y 的值域为:],0(e y ∈。

3、若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。

本题可看成一象限动点),(y x p 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。利用两点(4,0),(0,2)确定一条直线,作出图象易得:

2

)1(2lg[)]24(lg[lg lg lg ),2,0(),4,0(2+--=-==+∈∈y y y xy y x y x 而,y=1时,y x lg lg +取最大值2lg 。

三、反函数法(分子、分母只含有一次项的函数,也可用于其它易

反解出自变量的函数类型)

对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。 1、求函数1

2+=

x x

y 的值域。 由于本题中分子、分母均只含有自变量的一次型,易反解出x ,从而便于求出反函数。

12+=

x x y 反解得y y x -=2即x

x

y -=2

故函数的值域为:),2()2,(+∞-∞∈ y 。(反函数的定义域即是原函数的值域)

2、求函数1

1

+-=x x e e y 的值域。

解答:先证明11

x x e e y -+=

有反函数,为此,设21x x <且R x x ∈21,,

0)

1)(1(211112

12

1221121<++-=+--+-=-x x x x x x x x e e e e e e e e y y 。 所以y 为减函数,存在反函数。可以求得其反函数为:x x

y

-+-=111

ln 。此函数的定义域为

)1,1(-∈x ,故原函数的值域为)1,1(-∈y 。

四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为

0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断)

1、求函数3

27

4222++-+=x x x x y 的值域。

由于本题的分子、分母均为关于x 的二次形式,因此可以考虑使用判别式法,将原函数变形为:742322

2

-+=++x x y xy y x 整理得:073)2(2)2(2

=++-+-y x y x y 当2≠y 时,上式可以看成关于x 的二次方程,该方程的x 范围应该满足032)(2

≠++=x x x f 即

R x ∈此时方程有实根即△0≥,△[].2,2

9

[0)73)(2(4)]2(22-∈?≥+---=y y y y

注意:判别式法解出值域后一定要将端点值(本题是2

9

,2-==y y )代回方程检验。

将29,2-==y y 分别代入检验得2=y 不符合方程,所以)2,2

9

[-∈y 。

2、求函数2

212

+++=

x x x y 的值域。

解答:先将此函数化成隐函数的形式得:012)12(2

=-+-+y x y yx ,(1)

这是一个关于x 的一元二次方程,原函数有定义,等价于此方程有解,即方程(1)的判别式

0)12(4)12(2≥---=?y y y ,

解得:212

1≤≤-

y 。

故原函数的值域为:],[21

21-∈y 。

五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用三角代换)等)

1、求函数x x y 41332-+-=的值域。

由于题中含有x 413-不便于计算,但如果令:x t 413-=注意0≥t 从而得:

)0(32

1341322≥+--=∴-=t t t y t x 变形得)0(8)1(22≥++-=t t y 即:]4,(-∞∈y

注意:在使用换元法换元时一定要注意新变量的范围,否则将会发生错误。 2、已知),(y x p 是圆42

2

=+y x 上的点,试求xy y x t 32

2

-+=的值域。 在三角函数章节中我们学过:1cos sin 22=?+?注意到42

2

=+y x 可变形为:

1)2()2(22=+y x 令,0[,sin 2

,cos 2∈??=?=y

x 2π)则?-=????-=2sin 64sin 2cos 234t 4,0[2∈?又π)即]1,1[2sin -∈?故]10,2[-∈t

3、试求函数x x x x y cos sin cos sin ++=的值域。

题中出现x x sin cos +,而x x x x x x cos sin 21)cos (sin ,1cos sin 2

2

2

+=+=+由此联想到将x x sin cos 视为一整体,令]2,2[cos sin -∈+=x x t 由上面的关系式易得

2

1cos sin cos sin 2122

-=?+=t x x x x t 故原函数可变形为:

]2,2[1)1(21,2)1(2])2,2[(21222-∈-+=-+=-∈-+=t t y t y t t t y 即

]22

1

,1[+-∈∴y

六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域) 1、求函数x

x

y cos 2sin 3--=

的值域。

分析与解:看到该函数的形式,我们可联想到直线中已知两点求直线的斜率的公式

1

21

2x x y y k --=

,将原函数视为定点(2,3)到动点)sin ,(cos x x 的斜

率,又知动点)sin ,(cos x x 满足单位圆的方程,从而问题就转化为求点(2,3)到单位圆连线的斜率问题,作出图形观察易得的最值在直线和圆上点的连线和圆相切时取得,从而解得:

]3

3

26,3326[

+-∈y 2、求函数13y x x =-+-的值域。

分析:此题首先是如何去掉绝对值,将其做成一个分段函数。

24,(,1],2,(1,3),24,[3,),x x y x x x -+∈-∞??=∈??-∈+∞?

在对应的区间内,画出此函数的图像,如图1所示,易得出函数的值域为),2[+∞。

七、不等式法(能利用几个重要不等式及推论来求得最值。(如:

ab b a ab b a 2,222≥+≥+),利用此法求函数的值域,要合理地添项和拆项,添项和拆

项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取""=成立的条件。)

1、当0>x 时,求函数2

4

8)(x x x f +

=的最值,并指出)(x f 取最值时x 的值。 因为224

4448)(x

x x x x x f ++=+=可利用不等式33abc c b a ≥++即:

324443)(x x x x f ?

??≥所以12)(≥x f 当且仅当2

44x x =即1=x 时取“=”当1=x 时)(x f 取得最小值12。

2、双曲线12222=-b y a x 的离心率为1e ,双曲线122

22=-a

x b y 的离心率为2e ,则21e e +的最

小值是()。

A 22 B4 C2 D 2

根据双曲线的离心率公式易得:b

b a a b a e e 2

22221++

+=+,我们知道xy y x 2≥+图1

y=-2x+4

y=2x-4

Y

X

4

O

2

3

1

所以ab b a e e 2

2212+≥+(当且仅当b

b a a b a 2222+=

+时取“=”)而ab b a 222≥+故2221≥+e e (当且仅当b a =时取“=”)22)(m i

n 21=+e e 所以。 说明:利用均值不等式解题时一定要注意“一正,二定,三等”三个条件缺一不可。 3、求函数1

2++=x x y 的值域。

解答:211

11

2≥++==

+++x x x x y ,当且仅当1=x 时""=成立。故函数的值域为

),2[+∞∈y 。

此法可以灵活运用,对于分母为一次多项式的二次分式,当然可以运用判别式法求得其值域,但是若能变通地运用此法,可以省去判别式法中介二次不等式的过程。 4、求函数1

222+++=

x x x y 的值域。

解答:此题可以利用判别式法求解,这里考虑运用基本不等式法求解此题,此时关键是在分子中分解出)"1("+x 项来,可以一般的运用待定系数法完成这一工作,办法是设:

22))(1(2++=+++x x c b x x ,

将上面等式的左边展开,有:)()1(2

c b x b x ++++, 故而21=+b ,2=+c b 。 解得1=b ,1=c 。 从而原函数1

11

1

)1)(1()1(++++++

+==

x x x x x y ;

ⅰ)当1->x 时,01>+x ,01

1>+x ,此时2≥y ,等号成立,当且仅当0=x 。

ⅱ)当1-+-x ,01

1>-+x ,此时有

211)1(11)1(11)1)(1(-≤??

????

+-+--=+++=++++=

x x x x x x x y , 等号成立,当且仅当2-=x 。

综上,原函数的值域为:),2[]2,(+∞?--∞∈y 。

八、部分分式法(分离常数法)(分式且分子、分母中有相似的项,通过该方法可将原函数转化为为)(x f k y ±=(为k 常数)的形式)

1、求函数1

22+--=x x x

x y 的值域。

观察分子、分母中均含有x x -2项,可利用部分分式法;则有

4

3)21(1

11

11122

222+

--=+--+-=+--=x x x x x x x x x y 不妨令:

)0)(()(1)(,43)21()(2≠=+-=x f x f x g x x f 从而)∞+???∈,4

3

)(x f

注意:在本题中应排除0)(=x f ,因为)(x f 作为分母。所以 ?

????∈43,0)(x g 故)1,31

??

?-∈y

2、如对于函数2

31

--=x x y ,利用恒等变形,得到:)

23(31312331)23(31--=--

-=x x x y , 容易观察得出此函数的值域为),(),(31

31+∞?-∞∈y 。

注意到分时的分子、分母的结构特点,分离出一个常数后,再通过观察或配方等其他方法易得函数值域。

九、单调性法(利用函数在给定的区间上的单调递增或单调递减求值域) 1、求函数)4(log 2

2

1x x y -=的值域。

由于函数本身是由一个对数函数(外层函数)和二次函数(内层函数)复合而成,故可令:

)0)((4)(2≥+-=x f x x x f 配方得:)4,0)(4)2()(2(所以∈+--=x f x x f 由复合函数的

单调性(同增异减)知:),2[+∞-∈y 。

当函数f 在),(b a 上单调,譬如f 在),(b a 上递增时,自然有函数f 在),(b a 上的值域为

))0(),0((-+b f a f (其中)(lim )0(),(lim )0(x f b f x f a f b

x a

x -+→→=-=+,当+→a x 时,

±∞→)(x f 也称其存在,记为)0(+a f );若f 在),(b a 上递减,函数f 在),(b a 上的值域

为))0(),0((+-a f b f 。在闭区间],[b a 上也有相应的结论。 2、求函数x x y --+=

863的值域。

此题可以看作v u y +=和63+=x u ,x v --=8的复合函数,显然函数6

3+=x u 为单调递增函数,易验证x v --=8亦是单调递增函数,故函数x x y --+=863也

是单调递增函数。而此函数的定义域为]8,2[-。

当2-=x 时,y 取得最小值10-。当8=x 时,y 取得最大值30。

故而原函数的值域为]30,10[-。

十、利用导数求函数的值域(若函数f 在(a 、b )内可导,可以利用导数求得f 在(a 、b )内的极值,然后再计算f 在a ,b 点的极限值。从而求得f 的值域) 求函数x x x f 3)(3

-=在)1,5(-内的值域。

分析:显然f 在)3,5(-可导,且33)(2

-='x x f 。由0)(='x f 得f 的极值点为

1,1-==x x 。 ,

2)1(=-f 2)01(-=-f 。140)05(=+-f 。

所以,函数f 的值域为)140,2(-。

十一、最值法(对于闭区间[a ,b]上的连续函数y=f(x),可求出y=f(x)在区间[a ,b]内的极值,并与边界值f(a)、f(b)作比较,求出函数的最值,可得到函数y 的值域) 已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x 的值域。 点拨:根据已知条件求出自变量x 的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x ≤3/2,又x+y=1,将y=1-x 代入z=xy+3x 中,得z=-x2+4x(-1≤x ≤3/2),

∴z=-(x-2)2+4且x ∈[-1,3/2],函数z 在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。 ∴函数z 的值域为{z ∣-5≤z ≤15/4}。

点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。

十二、构造法(根据函数的结构特征,赋予几何图形,数形结合) 求函数y=√x2+4x+5+√x2-4x+8的值域。

点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。 解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22

作一个长为4、宽为3的矩形ABCD ,再切割成12个单位

正方形。设HK=x ,则ek=2-x ,KF=2+x ,AK=√(2-x)2+22,KC=√(x+2)2+1。 由三角形三边关系知,AK+KC ≥AC=5。当A 、K 、C 三点共线时取等号。 ∴原函数的知域为{y|y ≥5}。

点评:对于形如函数y=√x2+a ±√(c-x)2+b(a ,b ,c 均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。

十三、比例法(对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域)

已知x ,y ∈R ,且3x-4y-5=0,求函数z=x2+y2的值域。

点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。 解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k 为参数) ∴x=3+4k ,y=1+3k ,

∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。

当k=-3/5时,x=3/5,y=-4/5时,zmin=1。

函数的值域为{z|z≥1}。

点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。

函数定义域、值域求法总结

函数定义域、值域求法总结 1、函数的定义域是指自变量“x”的取值集合。 2、在同一对应法则作用下,括号整体的取值围相同。 一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x和g(x)受同一个对应法则的作用,从而围相同。因此f[g(x)]的定义域即为满足条件 a≤g(x)≤b的x的取值围。 一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x 和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a≤x≤b 时,g(x)的取值围。 定义域是X的取值围,g(x)和h(x)受同一个对应法则的影响,所以它们的围相同。 ():f(x),f[g(x)] 题型一已知的定义域求的定义域 () ():f g x,f(x) ?? ?? 题型二已知的定义域求的定义域 ()[] ():f g x,f h(x) ?? ?? 题型三已知的定义域求的定义域 () []()[])x(h f x f x g f→ →

()的定义域 求的定义域已知练习)2(],9,3[log :313-x f x f 一、定义域是函数y=f(x)中的自变量x 的围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高中数学必修一函数的值域求法

最新精题高一数学必修一函数的值域 2配方法]?3,5x??x2x?(求函数y?3例1. 的值域; 2的表达式,f(a),记∈[0,1]f(a)为其最小值,求-练习已知函数y=-3x+2ax1,x 的最大值并求f(a) 2?6x?5x函数y??求2. 的值域;例 ,的函数为常数d?且a0)、、、(????yaxbcxdabc 换元法:形如;常用换元法求值域x?y214x?? 3. 例的值域求函数 利用函数的单调性求函数的值域2?y6] 上的最大值和最小值.在区间例4求函数[2,1x?

2)的取值范围是(在R上单调递增,且f(m )>f(-m),则实数m1练习函数y=f(x) ) ∞,-1 )∪( 0,+C.(-1,0 ) D. (-∞A. (-∞,-1 ) B. ( 0,+∞) 2x+2-1-x 的最大值为,最小值为y= 。[0,1]2.已知x∈,则函数3.若函数y=f(x)的值域是[-2,3],则函数y=∣f(x)∣的值域是() A.[-2,3] B.[2,3] C.[0,2] D.[0,3] 2ax?bx?c;判别式法:形如111域y)的函数用判别式法求值不同时为零(a?,a 212ax?bx?c2221的值域;求函数例4 ?y?x x cx?d(a?0)y?分离常数法:形如的函数也可用此法求值域;bax?13x??y 例5求函数的值域;2x? 数形结合法。的值域?4|x?1|?|x|y? 6求函数(方法一可用到图象法)例

2xxxy( ) ,3],的最大值、最小值分别为1.函数∈=4[0-当堂检测3 0 (D)4,0 (B)2,0 (C)3,(A)4,1( ) .函数的最小值为2?y2xx?1(D)4 (B)1 (A)(C)2 232)(xy??)〕上的最大值、最小值分别是( 3、函数在区间〔0,52?x33333,,0,0 B.,无最小值。 D. A. C. 最大值72727)(ff(x)的值域为[a,b],则(x+a)的值域为.定义域为4R的函数y = ] ba+[-a,a[0,b-a] C.[,b] D.[2A.a,a+b] B.) (-.函数5y=x+2x1的值域是11 0} |y≤.y.{y|y≤} C.{|y≥0} D{yB|A.{yy≥} 22252]?[?4,,则m,值域为的定义域为[0,m]的取值范围是()6.若函数y=x-3x-44333),??[,4]],[3(]0(,4 D A B C 222 2xxyx (27.函数=4--1 ∈-.______3)2,的值域为2.______8.函数的值域为x?x2?y ???2。的值域是9、函数0,3??5(?xx?4xy x4?13??y2x?3。、函数的值域是10 2?(x)?4xf?4x?8.函数11 .的值域为 x?3?x3?y?y)0x?(。;.函数的值域是12.函数的值域是 5x?2x?52x2?y?x?4 13函数的值域————————————312?xy?x?的值。.若函数14的定义域和值域都是[1,b](b>1),求b22 15.求下列函数的值域:2x?x?y x?2?x?1y)(2)1 (21x?x? 2222? +x+3k+5=0(k的最大值。R)的两个实根,求.已知16x、x是方程x-(k-2)x+kx2211

高中数学求函数值域的7类题型和16种方法

求函数值域的7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞???? ,当0a <时的值域为 24,4ac b a ?? --∞ ??? ., 3.反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R. 6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠ 当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值)

高中函数值域求法小结

函数值域求法小结 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域。 由绝对值函数知识及二次函数值域的求法易得: )[)[∞+-∈∞+∈-+-=,2,,024)(2y x x g 所以 2、求函数1 11 y x = ++的值域。 分析:首先由1x +≥0,得1x ++1≥1,然后在求其倒数即得答案。 解: 1x +≥0∴1x ++1≥1,∴0< 1 11 x ++≤1,∴函数的值域为(0,1]. 二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域。 设:)0)((4)(2 ≥+-=x f x x x f 配方得:][)4,0(4)2()(2 ∈+--=x x x f 利用二次函数的 相关知识得][4,0)(∈x f ,从而得出:][2,2-∈y 。 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。 2、求函数3 42-+-=x x e y 的值域。 解答:此题可以看作是u e y =和342-+-=x x u 两个函数复合而成的函数,对u 配方可得: 1)2(2+--=x u ,得到函数u 的最大值1=u ,再根据u e y =得到y 为增函数且0>y 故 函数3 42-+-=x x e y 的值域为:],0(e y ∈。 3、若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。 本题可看成一象限动点),(y x p 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。利用两点(4,0),(0,2)确定一条直线,作出图象易得: 2 )1(2lg[)]24(lg[lg lg lg ),2,0(),4,0(2+--=-==+∈∈y y y xy y x y x 而,y=1时,y x lg lg +取最大值2lg 。 三、反函数法(分子、分母只含有一次项的函数,也可用于其它易

高一数学求函数的定义域与值域的常用方法教案

一. 教学内容: 求函数的定义域与值域的常用方法 求函数的解析式,求函数的定义域,求函数的值域,求函数的最值 二. 学习目标 1、进一步理解函数的定义域与值域的概念; 2、会应用代换、方程思想求简单的函数解析式; 3、会求基本初等函数、简单的复合函数及含参变量函数的定义域、值域和最值; 4、会将求函数值域问题化归为求函数的最值问题,重视函数单调性在确定函数最值中的作用; 5、会求实际问题中的函数解析式、定义域、值域和最值问题; 6、会用集合、区间或不等式表示函数的定义域和值域。 三. 知识要点 (一)求函数的解析式 1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0; 2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形; 3、求函数解析式的一般方法有: (1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。 (2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g (x),以换元法解之; (4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式; (5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。 (二)求函数定义域 1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示; 2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题; 3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;

函数定义域值域求法总结

、函数定义域、值域求法总结

————————————————————————————————作者:————————————————————————————————日期:

函数定义域、值域求法总结 1、函数的定义域是指自变量“x ”的取值集合。 2、在同一对应法则作用下,括号内整体的取值范围相同。 一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。 一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x 和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。 定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。 ()的定义域 求的定义域已知练习)2(],9,3[log :313-x f x f 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 ():f (x),f[g(x)]题型一已知的定义域求的定义域 ()():f g x ,f (x)????题型二已知的定义域求的定义域 ()[]():f g x ,f h(x)????题型三已知的定义域求的定义域()[]()[] )x (h f x f x g f →→

(2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式2 1 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ???≠-≥+0201x x ? ???≠-≥2 1 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②214 3)(2-+--=x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-= x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3- ]

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

求函数值域的常见方法大全教师版

第 1 页 共 6 页 求函数值域的几种常用方法 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就求函数值域的方法归纳如下,供参考。 一、直接观察法 这是最基本的方法,通过对函数的定义域及其对应关系的观察分析,求函数的值域。 例1 求函数y = x 1 的值域。 解: x ≠0 ,∴ x 1 ≠0 显然函数的值域是:( -∞,0 )∪(0 ,+∞). 例2 求函数y = 3 -x 的值域。 解: x ≥0 ∴- x ≤0 3 -x ≤3 故函数的值域是:(,3]-∞ . 二、反函数法 当一个函数存在反函数又便于求其反函数时,可以通过求原函数的定义域来确定反函数的值域。 例3 求函数y = 6 54 3++x x 值域。 解:由原函数式可得:x = 3 564--y y , 则其反函数为:4653x y x -= - 其定义域为:x ≠5 3 , 故所求函数的值域为:33 (,)(,)55 -∞?+∞. 注:本题还可以用分离系数法,把原函数式变形为:3252530 y x = ++同样达到目的。 例4 求函数11()211()2 x x y -= +值域。 解:由原函数式可得:1 21log 1y x y -=+, 则其反函数为:1 2 1log 1x y x -=+ 由 101x x ->+,知11x -<<, 故所求函数的值域为:(1,1)-. 注:本题还可以利用函数的有界性法,把原函数式变形为:11()02 1x y y -= >+同样达到目的 三、配方法 配方法是求二次函数(即形如2 ()()()f x ag x bg x c =++的函数)值域最基本的方法之一。 例5 求函数y =2 x -2x + 5,x ∈[-1,2]的值域。 解:将函数配方得:y =(x -1)2 + 4, x ∈[-1,2], 由二次函数的性质可知: 当x = 1时,min y = 4 , 当x = - 1,时max y = 8 , 故函数的值域是:[ 4 ,8 ]. 例6 求函数y = 的值域。 解: 将函数变形为:y =故函数的值域是:[ 0 , 3 2 ].

2017最新函数解析式求法和值域求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b =+=++=++ 函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴???=+=342b ab a , ∴??????=-===3 212b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式 容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原 复合函数的定义域,而是()g x 的值域. 例2 已知221)1 (x x x x f +=+ )0(>x ,求 ()f x 的解析式.

解:2)1()1(2-+=+x x x x f Θ, 21≥+x x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.与配 凑法一样,要注意所换元的定义域的变化. 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x . Q x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2 x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , Θ点),(y x M '''在)(x g y =上 , x x y '+'='∴2. 把???-='--='y y x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g . 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造 方程组,通过解方程组求得函数解析式. 例5 设,)1(2)()(x x f x f x f =-满足求)(x f . 解 Θx x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得:x x f x f 1)(2)1(=- ② 解① ②联立的方程组,得:x x x f 323)(--=. 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性” 的变量进行赋值,使问题具体化、简单化,从而求得解析式. 例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立, 求)(x f .

高中函数值域的12种解法(含练习题)

高中函数值域的12种求法 一、观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为[3,+∞]。 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二、反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y >1}) 三、配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4], ∴0≤√(-x2+x+2)≤3/2,函数的值域是[0,3/2]。 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√(15-4x)的值域。(答案:值域为{y∣y≤3}) 四、判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*) 当y≠2时,由Δ=(y-2)2-4(y-2)(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可

求函数值域 、 周期的方法总结(适合高一)

求函数值域 、 周期的方法总结(适合高一) 求值域 一、直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)例1.求函数2+=x y 的值域。 二、配方法(是求二次函数值域的基本方法,如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法)例2.求函数242y x x =-++([1,1]x ∈-)的值域。 三、分离常数法(分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法)例3.求函数125 x y x -=+的值域。 四、换元法(运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函 数的值域,如y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法 求解。例4.求函数2y x = 五、函数的单调性法(确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域,形如求函数()0>+=k x k x y 的值域(k x <<0时为减函数;k x >时为 增函数))例5.求函数y x = 六、利用有界性(利用某些函数有界性求得原函数的值域)例6求函数2211 x y x -=+的值域。 七、数型结合法(函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法)例7.求函数11-++=x x y 的值域。 除此之外,还有反函数法(即利用函数和它的反函数的定义域与值域的关系,通过求反函数的定义域而得到原函数的值域)和判别式法(即把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,0≥?,从而求得原函数的值域,需熟练掌握一元二次不等式的解法),在今后的学习中,会具体讲述。 周期 一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立 则f (x )叫做周期函数,T 叫做这个函数的一个周期。 二.重要结论 1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; 2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。 3、 若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数

人教版必修一求函数值域的几种常见方法

人教版必修一求函数值域的几种常见方法 1.直接法:利用常见函数的值域来求 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b a c y y 4)4(|2 -≤}. 例1.求下列函数的值域 ① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1 += x x y ④x x y 1 + = 解:①∵-1≤x ≤1,∴-3≤3x ≤3, ∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②∵),0[4+∞∈-x ∴),2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2} ③1 111 111 +- =+-+= +=x x x x x y ∵ 01 1≠+x ∴1≠y 即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1+ ==2)1(2 +- x x 2≥, 当x<0时,)1(x x y -+ --==-2)1(2 --- -x x 2-≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法) 函数x x y 1+ =的图像为: 2.二次函数比区间上的值域(最值): 例2 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142∈+-=x x x y ;③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ; 4 3 21 -1-2-3 -4 -6 -4 -2 2 4 6 y=x o -2 -112 f x () = x+ 1x

函数定义域、值域求法的总结

函数定义域、值域求法总结 一、定义域是函数()y f x =中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数()y f x =中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式2 1 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+020 1x x ? ???≠-≥21x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f

(完整word版)【高中数学讲义】函数求值域的十种方法.docx

前言: 总有人求助如何学好数学,这个问题很宽泛,并非寥寥数语能够厘清。有一点很明确,学好数学的必要条件是了解数学。 高中数学可以归结为两个“三位一体” :教学体系的三位一体和知识结构的三位一体。 知识结构的三位一体:数学思想,数学方法,典型习题。 三要素之间的关系:典型习题归纳数学思想,数学思想指导数学方法,数学方法解决典型习题。 数学思想举例:数形结合的思想等。 数学方法举例:配方法、反证法、倍差法等。 典型习题举例:恒成立问题、是否存在问题等。 教学体系的三位一体:教、学、练。 老师教什么:数学思想和数学方法。熟练掌握各种方法的是优秀学生,深入理解各种思想的是顶尖学生。 学生怎么学:课堂紧跟老师,课下善于提问。 如何做练习: 01,选题:中学数学最大的误区就是题海战术,有的老师不学无术只 会告诉你多做题。多做题没用,多做类型才有用。典型习题,做一顶

百。 02,做题:一题多解。对于选定的习题,运用尽量多的方法去解决,然后比较各个方法的优劣,归纳出某类型题对应的最佳方法。 03,总结:针对错题。大量统计表明,我们在考试中所犯的错误大多是重复性的。通过总结,避免两次踏入同一条水沟。 由上可知,我讲数学的特点是方法论、重总结。 工欲善其事,必先利其器:各种数学方法就是我们解决难题的利器。总喊看题就没思路的童鞋,回忆一下高中阶段你能说出多少种方法。说不出?有思路才怪! 言归正传,今天我们就来总结一下“函数求值域的十种方法” (高中数学最重要就是函数,函数之于高中数学好比力学之于高中物理。 高中数学函数的要点无非:三要素,四变换,五常见,六性质。 三要素中的求值域就是本讲的主题) 方法一:配方法 用于解决二次函数值域问题,考试中几乎不会单独考察配方法(太简单),但常与其他方法综合使用。

高中数学求函数值域的类题型和种方法

高中数学求函数值域的类 题型和种方法 Last updated on the afternoon of January 3, 2021

求函数值域的 7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ???., 3.反比例函数()0k y k x = ≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R.

6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值) 1、二次函数)0()(2≠++=a c bx ax x f ,当其定义域为R 时,其值域为 ()()22 4 044 04ac b y a a ac b y a a ?-≥>???-?≤时,()2b f a -是函数的最小值,最大值为(),()f m f n 中 较大者;当0a <时,()2b f a -是函数的最大值,最大值为 (),()f m f n 中较小者。 (2)若[],2b m n a - ?,只需比较(),()f m f n 的大小即可决定函数的最大(小)值。 特别提醒: ①若给定区间不是闭区间,则可能得不到最大(小)值; ②若给定的区间形式是[)(]()(),,,,,,,a b a b +∞-∞+∞-∞等时,要结合图像来确函数的值域; ③当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。 例1:已知()22f x x --的定义域为[)3,-+∞,则()f x 的定义域为(],1-∞。 例2:已知()211f x x -=+,且()3,4x ∈-,则()f x 的值域为()1,17。 题型三:一次分式函数的值域 1、反比例函数)0(≠= k x k y 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx d y ax b +=+的值域:

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

函数值域求法总结及练习题

函 数 值 域 求 法 1.重难点归纳. (1)求函数的值域. 此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图像法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域. (2)函数的综合性题目. 此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强. (3)运用函数的值域解决实际问题. 2.值域的概念和常见函数的值域. 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域: 一次函数()0y kx b k =+≠的值域为R . 二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞???? , 当0a <时的值域为24,4ac b a ?? --∞ ?? ?. 反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R . 正,余弦函数的值域为[]1,1-,正,余切函数的值域为R . 3.求函数值域(最值)的常用方法. 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域. 2、求函数 y =的值域.

二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域. 2、若,42=+y x 0,0>>y x ,试求xy 的最大值。 三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型) 对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。 1、求函数1 2+= x x y 的值域. 2、求函数224 1 x y x +=-的值域. 四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为 0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断) 1、求函数3 27 4222++-+=x x x x y 的值域. 解:由于本题的分子、分母均为关于x 的二次形式,因此可以考虑使用判别式法,将原 函数变形为:7423222-+=++x x y xy y x 整理得:073)2(2)2(2=++-+-y x y x y 当2≠y 时,上式可以看成关于x 的二次方程,该方程的x 范围应该满足 032)(2≠++=x x x f ,即R x ∈此时方程有实根即△0≥, △[2 92(2)]4(2)(37)0[,2]2 y y y y =---+≥?∈-. 注意:判别式法解出值域后一定要将端点值(本题是2 9 ,2- ==y y )代回方程检验. 将29,2-==y y 分别代入检验得2=y 不符合方程,所以)2,2 9 [-∈y .

相关主题