搜档网
当前位置:搜档网 › 基于AR法的输电塔线体系风速时程模拟

基于AR法的输电塔线体系风速时程模拟

基于AR法的输电塔线体系风速时程模拟
基于AR法的输电塔线体系风速时程模拟

近海风机塔架风浪荷载及其响应分析_陈为飞

参考文献 [1] 李秋义,王志伟,李云霞,田砾.海泥陶粒制备高性能轻集料混 凝土的试验研究[J ].材料科学与工艺,2008,16(4):547-550. [2] 任洪涛,祖亚丽,任泽民,刘平.轻骨料混凝土剪力墙抗震性能 的试验研究[J ].河北工业大学学报,2007,36(3):94-98. [3] 王海龙,申向东.轻骨料混凝土早期力学性能的试验研究[J ]. 硅酸盐通报,2008,27(5):1018-1022. [4] J G J51-2002,轻骨料混凝土技术规程[S]. [5] J G J12-99,轻骨料混凝土结构设计规程[S]. [6] 张弘强,王书彬,魏拓,徐原庆.粉煤灰陶粒混凝土配合比的正 交实验研究[J ].森林工程,2008,24(6):72-73. [收稿日期] 2009-12-08 [作者简介] 张广成(1979-),男,河北人,工程师,现从事建筑 结构设计工作。 (编辑 王亚清) 近海风机塔架风浪荷载及其响应分析 陈为飞, 陈水福 (浙江大学建筑工程学院结构工程研究所, 杭州 310058) 【摘 要】 研究风暴潮环境下近海风机塔架所承受的风、浪、海流动力荷载的数值模拟与计算,探讨在这些 动力荷载作用下风机塔架的位移及基底内力响应的变化规律。联合运用了快速傅立叶变换(FFT )方法和谐波叠加法进行脉动风的模拟,再由M oris on 方程计算浪和流荷载。算例分析表明,在风暴潮环境下,风机塔架的塔底水平力与倾覆力矩较大,通过调整角度降低叶片的迎风面积,可在一定程度上减小叶片上的风荷载,降低塔底最大主应力;在风荷载和浪流荷载的作用中,塔底弯矩主要由前者引起,而后者对塔底水平力的贡献较大。 【关键词】 风机;风荷载;波浪荷载;风暴潮;动力响应 【中图分类号】 T U31113 【文献标识码】 B 【文章编号】 1001-6864(2010)03-0044-03 [基金项目] 国家高技术研究发展计划(863计划)资助项目(2007AA05Z 427) 我国近海风能资源十分丰富,据测算其储量约达 715亿kW [1],为陆上储量的3倍。近海风力发电具有风力持久稳定、风能产量更高、受环境影响小等特点,已成为我国风电发展的新趋势。目前我国已建成上海东海大桥海上风电场一期工程,正在或即将建设的项目还有很多[2]。 尽管近海风电场具有诸多优势,但是与陆上风电场相比,近海风电场所受的极端环境荷载更加恶劣和复杂,其中最为典型的极端荷载就是风暴潮荷载。当风暴潮恰与天文大潮相遇时,其破坏力将更大。因此,研究风暴潮等极端环境下近海风机承重构架的风、浪、潮流荷载及其响应,对保障风电机组的结构安全具有十分重大和现实的意义。1 荷载计算 风暴潮环境下作用在近海风机塔架上的荷载主要有风荷载、浪荷载和潮流荷载。首先运用风速谱及相关的模拟方法进行脉动风风速时程的模拟,然后根据流体力学方法,计算作用于风机塔架上的风荷载时程;而波浪力的计算则采用波浪模拟法并结合M orison 方程实现。1.1 风荷载的计算 在风的顺风向时程曲线中,风速包括平均风和脉 动风两部分。假设来流风中的脉动部分符合沿高度变化的S im iu 谱[6]: S v (z ,n )=200f 3v 23 n (1+50f 3) 5Π3 (1) 式中,f 3=nz Π v (z ),n 为脉动风频率(H z );z 为相对地面的高度; v (z )为z 高度处的平均风速;v 3为风 的流动剪切速度,v 23=K v 210,K 值取01002 [7] 。本文联合运用快速傅立叶变换(FFT )方法和谐波叠加法进行脉动风的模拟,获得脉动风时程的样本曲线。设ωn 和ωk 为截取频率的上限和下限,N 为正整数,设为充分大,则考虑一组m 处不同高度的风速时程v j (t )(j =1,2,…,m ),可用下式表示[8]: v j (p Δt )= 2ΔωR e G j (p Δt )exp i p πM (2) 式中,R e 为复数取实部函数,Δω=(ωn -ωk )Π N ,M =2πΠ(Δt Δ ω)为整数;p =1,2,…,M -1;j =1,2,…,m ;G j (p Δt )可用FFT 方法求得,参见文献[9]。得到总风速的时程曲线之后,可用下式计算作用 于风机塔架上的风荷载时程曲线: F (z ,t )= 12 ρC d v 2(z ,t )A (3) 式中,ρ为空气密度,取值为11225kg Πm 3;A 为有 4 4低 温 建 筑 技 术2010年第3期(总第141期)

(完整版)脉动风时程matlab程序

根据风的记录,脉动风可作为高斯平稳过程来考虑。观察n 个具有零均值的平稳高斯过程,其谱密度函数矩阵为: ????????????=)(...)()(............)(...)()()(...)()()(2122221 11211ωωωωωωωωωωnn n n n n s s s s s s s s s S (9) 将)(ωS 进行Cholesky 分解,得有效方法。 T H H S )()()(*ωωω?= (10) 其中, ????????????=)(...)()(............0...)()(0 ...0)()(212221 11ωωωωωωωnn n n H H H H H H H (11) T H )(*ω为)(ωH 的共轭转置。 根据文献[8],对于功率谱密度函数矩阵为)(ωS 的多维随机过程向量,模拟风速具有如下形式: [] ∑∑==++???=j m N l ml l jm l l jm j t H t v 11)(cos 2)()(θωψ ωωω n j ...,3,2,1= (12) 其中,风谱在频率范围内划分成N 个相同部分,N ωω=?为频率增量,)(l jm H ω为上述下三角矩阵的模,)(l jm ωψ为两个不同作用点之间的相位角,ml θ为介于0和π2之间均匀分布的随机数,ωω??=l l 是频域的递增变量。 文中模拟开孔处的来流风,因而只作单点模拟。即式(4)可简化为: []∑=+???=N l l l l t H t v 1 cos 2)()(θωωω (13) 本文采用Davenport 水平脉动风速谱: 3/422 210 )1(4)(x n kx v n S v += (14) 式中,--)(n S v 脉动风速功率谱; --n 脉动风频率(Hz); --k 地面粗糙度系数;

铁塔基础知识

第一章铁塔概述 第一节基本概念 1. 铁塔 为实现承受某一空中载荷或通讯功能而架设的独立式的钢结构物通称为铁塔。现在的铁塔一 般都采用角钢、钢板部件制做,用螺栓连接组合而成,只是局部采用少量的焊接件(如挂线 角钢加强板等),基础座板一般都采用电焊焊接。塔上部件一般都采用热浸镀锌防腐。 2. 输电线路 输电线路通常是由基础、杆塔(包括拉线)、绝缘子、金具、导线、地线(也称避雷线)和 接地装置等部分组成。 3. 铁塔的呼称高度 输电线路铁塔的呼称高度一般是指从地面到铁塔最低导线悬挂点的高度,500KV铁塔到最低导 线吊架挂线点处,一般铁塔也可以是到最低导线横担下弦杆的准线处。 4. 多接腿铁塔 受地形地物地段的影响,铁塔的四条腿的高度在标准塔腿高度上进行了全加长、全减短和部 分腿加长或部分腿减短。塔型中出现的这些长短级别不同的接腿称为多接腿铁塔。 5. 档距 两杆塔之间的距离称为两杆塔的档距。 第二节输电线路铁塔分类 1. 按铁塔在线路中的位置和作用分类(重要) 1.1 直线塔:用“Z”表示,直线塔位于线路直线段的中间部分,由于绝缘子串是悬垂式故称悬垂 式铁塔。在一条输电线路中,直线塔占了很大的比重,一般约占全线路铁塔总数的80%左右。 这种塔只有在安装、事故断线和大风工况下承受着不平衡较大张力。平时只承受导、地线、 覆冰、金具、绝缘子串、塔上操作人员(包括工具)和塔的自重等垂直载荷。直线塔的绝缘 子串有单联悬垂、双联悬垂和“V”形悬垂三种。直线塔总体要比同线路的承力塔较高,塔身 坡度较小,塔材较小,节点螺栓较少,塔体较轻。 典型的塔型有:ZGU51、ZGU52、ZGU53、ZGU54、SZ52、ZB15、ZB24、ZB34、ZB45等。 1.2 跨越塔:跨越塔用“K”表示,跨越塔也是直线塔的一种特殊型,这种塔一般都是成对地设立 在江、河的两岸或用来跨越较大的沟谷或跨越铁路、公路及其他级别的中小型电力线路。通 常用于线路出现较大档距或要求跨越段具有较高的安全度,这种塔比一般直线塔要高得多, 一般塔高都在50米~250米之间,构造也比较复杂。塔的重量都在50~200吨左右,这种塔的 挂线方式和荷载情况与一般直线塔类似,只是荷载量大了。 典型的塔型有:SKTY、JK712等。 1.3 耐张塔:耐张塔是承力塔的一种,该塔在线路中把整个较长的直线段分成若干个小的直线段, 起着锚固直线段中塔上导、地线的作用,可以限制线路在本塔前后区段安装和检修紧线的不 平衡张力和线路事故断线的影响范围。这种塔的塔身坡度较大,整体高度较矮,部件材料规 格较大,节点螺栓用量较多,单塔比直线塔重,绝缘子串呈下斜式,接近水平而不是水平, 这种塔在线路中用量较少。 典型的塔型有:JG系列、JT系列、YJ系列、JK系列是耐张塔的典型塔型。 1.4 转角塔:转角塔用“J”表示,转角塔也是承力塔的一种,转角塔设在线路的转角处。典型设 计中按转角的大小分0°~20°、20°~40°、40°~60°、60°~90°个角度系列。这种塔除具 有与耐张塔相同的特点和作用外,还比耐张塔多了一个侧向永久性张力。

1.输电线路基础知识

模块1 输电线路基础知识 【模块描述】本模块主要介绍输电线路的基础知识。通过概念描述和图例讲解,使学员能够认知导线、避雷线、绝缘子、金具、杆塔、基础、拉线、接地装置及附属设施等元件。 【正文】 一、输电线路的构成 输电的通路由电力线路、变配电设备构成。 输电线路从结构可分为架空线路和电缆线路两类。 构成架空输配电线路的主要部件有:导线、避雷线(简称避雷线)、金具、绝缘子、杆塔、拉线和基础、接地装置等,如图。 134 6 7258 9 -横担;2-横梁;3-避雷线;4-绝缘子;5-砼杆; 6-拉线;7-拉线盘;8-接地引下线;9-接地装置; 10-底盘;11-导线;12-防振锤; 9 8 11 12

二、各部件作用及分类 (一)、导线 导线是固定在杆塔上输送电流用的金属线,由于导线常年在大气中运行,经常承受拉力,并受风、冰、雨、雪和温度变化的影响,以及空气中所含化学杂质的侵蚀。因此,导线的材料除了应有良好的导电率外,还须具有足够的机械强度和防腐性能。目前在输电线路设计中,架空导线和避雷线通常用铝、铝合金、铜和钢材料做成,它们具有导电率高,耐热性能好,机械强度高,耐振、耐腐蚀性能强,重量轻等特点。 现在的输电线路多采用中心为机械强度高的钢线,周围是电导率较高的硬铝绞线的钢芯铝绞线,如图0-2所示。钢芯铝绞线比铜线电导率略小,但是具有机械强度高、重量轻、价格便宜等特点,特别适用于高压输电线。钢芯铝绞线由于其抗拉强度大,弧垂小,所以可以使档距放大。 钢芯铝绞线按其铝、钢截面比的不同,分为正常型(LGJ )、加强型(LGJJ )、轻型(LGJQ )三种。在高压输电线路中,采用正常型较多。在超高压线路中采用轻型较多。在机械强度高的地区,如大跨越、重冰区等,采用加强型的较多。 铝合金线比纯铝线有更高的机械强度,大致与钢芯铝绞线强度相当, 但重量 6 758 9 7 8 -避雷线;2-双分裂导线;3-塔头;4-绝缘子; 5-塔身;6-塔腿;7-接地引下线;8-接地装置; 9-基础;10-间隔棒;

风时程生成程序技术说明.

目录 1程序原理 (3) 1.1风荷载动力分析方法简介 (3) 1.2风速时程模拟的AR法 (4) 1.2.1AR模型 (4) 1.2.2AR模型模拟风速时程的基本过程 (5) 1.3风时程生成程序实现 (7) 1.4风时程生成程序特点 (9) 1.5风时程生成程序局限性说明 (10) 2参数说明 (11) 2.1顺向脉动风速功率谱密度函数() S n (11) v 2.2脉动风空间相干函数 r (13) ij 2.3地面粗糙系数k(紊流度) (14) 2.4平均风速v (14) F x y z t (16) 2.5风压力时程(,,,) w 2.6数值计算的参数 (17) 3操作说明 (18) 3.1制作空间点信息表格(*.csv) (18) 3.2导入表格及输入参数 (19) 3.3计算风时程 (20) 3.4显示计算结果 (20) 3.5输出时程结果及分析代码 (21) 3.6接力SAP2000进行时程分析 (21) 3.7接力ETABS进行时程分析 (22) 3.8SAP2000与ETABS的分析代码例子 (23) 3.8.1ETABS分析代码 (23)

3.8.2SAP02000分析代码: (24) 4计算实例 (25) 4.1操作步骤 (25) 4.224层框架风振分析结果分析 (29) 4.2.1风速时程结果 (29) 4.2.2风振分析计算结果与按现行《荷载规范》得出的结果对比 (31) 4.2.3风振分析的顶点加速度计算与按《高钢规》手算结果对比 (32) 5关于风振时程分析的若干建议 (34) 5.1分析参数设置 (34) 5.2输出结果处理 (34) 6参考文献 (36)

输电线路的基本知识线路

输电线路的基本知识线路 一、送电线路的主要设备: 送电线路是用绝缘子以及相应金具将导线及架空地线悬空架设在杆塔上,连接发电厂和变电站,以实现输送电能为目的的电力设施。主要由导线、架空地线、绝缘子、金具、杆塔、基础、接地装置等组成。 1.导线:其功能主要是输送电能。线路导线应具有良好的导电性能,足够的机械强度,耐振动疲劳和抵抗空气中化学杂质腐蚀的能力。线路导线目前常采用钢芯铝绞线或钢芯铝合金绞线。为了提高线路的输送能力,减少电晕、降低对无线电通信的干扰,常采用每相两根或四根导线组成的分裂导线型式。 2.架空地线:主要作用是防雷。由于架空地线对导线的屏蔽,及导线、架空地线间的藕合作用,从而可以减少雷电直接击于导线的机会。当雷击杆塔时,雷电流可以通过架空地线分流一部分,从而降低塔顶电位,提高耐雷水平。架空地线常采用镀锌钢绞线。目前常采用钢芯铝绞线,铝包钢绞线等良导体,可以降低不对称短路时的工频过电压,减少潜供电流。兼有通信功能的采用光缆复合架空地线。 3.绝缘子:是将导线绝缘地固定和悬吊在杆塔上的物件。送电线路常用绝缘子有:盘形瓷质绝缘子、盘形玻璃绝缘子、棒形悬式复合绝缘子。 (1)盘形瓷质绝缘子:国产瓷质绝缘子,存在劣化率很高,需检测零值,维护工作量大。遇到雷击及污闪容易发生掉串事故,目前已逐步被淘汰。 (2)盘形玻璃绝缘子:具有零值自爆,但自爆率很低(一般为万分之几)。维护不需检测,钢化玻璃件万一发生自爆后其残留机械强度仍达破坏拉力的80%以上,仍能确保线路的安全运行。遇到雷击及污闪不会发生掉串事故。在Ⅰ、Ⅱ级污区已普遍使用。 (3)棒形悬式复合绝缘子:具有防污闪性能好、重量轻、机械强度高、少维护等优点,在Ⅲ级及以上污区已普遍使用。 4.金具 送电线路金具,按其主要性能和用途可分为:线夹类、连接金具类、接续金具类、防护金具类、拉线金具类。 (1)线夹类: 悬式线夹:用于将导线固定在直线杆塔的悬垂绝缘子串上,或将架空地线悬挂在直线杆塔的架空地线支架上。 耐张线夹:是用来将导线或架空地线固定在耐张绝缘子串上,起锚固作用。耐张线夹有三大类,即:螺栓式耐张线夹;压缩型耐张线夹;楔型线夹。

输电线路基础知识总结

电力网、电力系统和动力系统的划分 动力网>电力系统>电力网 电力网包括变电设备和输电设备 电力系统发电+电力网+配电 动力网电力系统+动力系统 动力系统是指发电企业的动力设备组成的系统,是将其它能量转变成机械能的系统,也就是给发电机提供动力的系统; 电力系统是发电设备、输变配电设备和用电设备共同组成的系统,是发、供、用组成的系统;电力网是由联接各发电厂、变电站及电力用户的输、变、配电线路组成的系统; 动力系统是指发电企业的动力设备组成的系统,是将其它能量转变成机械能的系统,也就是给发电机提供动力的系统; 输电线路分类:架空线路和电缆线路。 架空线路 一、架空线路的结构 1、导线 1)分类:裸导线、绝缘导线;单股、多股;铜线、铝线、钢绞、钢芯铝绞。 2)型号:TJ、LJ、GJ、LGJ——铜绞线、铝绞线、钢绞线、钢芯铝绞线。 3)应用: 铝绞线:10kV及以下配电线路; 钢芯铝绞线:机械强度要求高和35kV及以上的输电。 2.电杆 分类:木杆、水泥杆、铁塔杆。 直线、耐张、转角、终端、分支、跨越、换位。 3.横担 1)作用:固定绝缘子、保持线距。 2)木、铁、瓷。 3)安装位置:电线杆,负荷一侧、耐张杆:电杆两侧、其他、电杆受力反方向。 4、绝缘子 1)作用:固定导线、绝缘。 5、金具 6、拉线 作用:稳固电杆。 二、架空线路的敷设 1.敷设路径的选择原则:P152 (1).选取线路短、转角小、交叉跨越少的路径(2).交通运输要方便,以利用于施工和维护(3).尽量避开河洼和雨水冲刷地带及有爆炸危险,化学腐蚀,工业污秽,易发生机械损伤的地区(4).应与建筑物保持一定的安全距离,禁止跨越易燃屋顶的建筑物,避开起重机频繁活动区(5).应与工矿企业厂(场)区和生活区的规划协调,在矿区尽量避开煤田,少压煤(6). 妥善处理与通信线路的平行接近问题,考虑其干扰和安全的影响 2.线路的敷设 1)挡距与弧垂2)导线在电杆上的排列顺序:零线位置、高、低压线同杆架设、排列。3)导

matlab计算风速时程命令流

% clear all; N=500; %采样点数 wu=4*2*pi; %截断频率 dm=wu/N; %频率步长 dt=3.2*pi/(2*wu); %时间步长0.2 k=0.00464; %地面粗糙度系数地面粗糙度等级A B C D:K= 0.00129 0.00215 0.00464 0.01291 d=0.001; f=d:d:10; %时间从0.001到10s,步进值为0.001 v10=28.2 %设计风速28.2m/s——50年一遇十分钟平均风速最大值 x=1200*f/v10; s=4*k*v10*v10.*x.^2./f./(1+x.^2).^(4/3); z1=10; %取第一点为10米高度 z2=52.8; %取第二点为52.08米高度 r=0.2; %考虑地表粗糙度影响的无量纲幂指数,按中国规范取0.22-c类v5=33.33 %计算n米高处的平均风速——52.8m处平均风速期望值 C=10; %指数衰减系数(取经验值) v1=zeros(2*N,1); %产生一个全零矩阵 v2=zeros(2*N,1); thta1=rand(N,1); thta2=rand(N,1); %随机矩阵 node=1; for K=1:node for j=1:2*N sum1=0; sum2=0; for l=1:N m1=l*dm-0.5*dm; m2=l*dm; x1=1200*m1/(2*pi*v10); s11=2*pi*4*k*v10*v10*x1*x1./m1./(1+x1*x1).^(4/3); x2=1200*m2/(2*pi*v10); s22=2*pi*4*k*v5*v5*x2*x2./m2./(1+x2*x2).^(4/3); s12=sqrt(s11*s22).*exp(-2*m2*C*abs(z1-z2)./(2*pi*(v10+v5))); s21=sqrt(s11*s22).*exp(-2*m1*C*abs(z1-z2)./(2*pi*(v10+v5))); S=[s11 s12;s21 s22]; H=chol(S); %丘拉斯基分解-因式分解 a1=abs(H(1,1)); H1=H'; a21=abs(H1(2,1)); a22=abs(H1(2,2)); b1=cos((m1*dt*(j-1))+2*pi*thta1(l,1)); b2=cos((m2*dt*(j-1))+2*pi*thta2(l,1)); c1=a1*b1;

输电线路基础(识图)

电力线路基础知识 电力系统中电厂大部分建在动力资源所在地,如水力发电厂建在水力资源点,即集中在江河流域水位落差大的地方,火力发电厂大都集中在煤炭、石油和其他能源的产地;而大电力负荷中心则多集中在工业区和大城市,因而发电厂和负荷中心往往相距很远,就出现了电能输送的问题,需要用输电线路进行电能的输送。因此,输电线路是电力系统的重要组成部分,它担负着输送和分配电能的任务。 输电线路有架空线路和电缆线路之分。按电能性质分类有交流输电线路和直流输电线路。按电压等级有输电线路和配电线路之分。输电线电压等级一般在35kV及以上。目前我国输电线路的电压等级主要有35、60、110、154、220、330kV、500kV、1000kV交流和±500kV 、±800kV直流。一般说,线路输送容量越大,输送距离越远,要求输电电压就越高。配电线路担负分配电能任务的线路,称为配电线路。我国配电线路的电压等级有380/220V、6kV、l0kV。 架空线路主要指架空明线,架设在地面之上,架设及维修比较方便,成本较低,但容易受到气象和环境(如大风、雷击、污秽、冰雪等)的影响而引起故障,同时整个输电走廊占用土地面积较多,易对周边环境造成电磁干扰。输电电缆则不受气象和环境的影响,主要通过电缆隧道或电缆沟架设,造价较高,发现故障及检修维护等不方便。电缆线路可分为架空电缆线路和地下电缆线路电缆线路不易受雷击、自然灾害及外力破坏,供电可靠性高,但电缆的制造、施工、事故检查和处理较困难,工程造价也较高,故远距离输电线路多采用架空输电线路。 输电线路的输送容量是在综合考虑技术、经济等各项因素后所确定的最大输送功率,输送容量大体与输电电压的平方成正比,提高输电电压,可以增大输送容量、降低损耗、减少金属材料消耗,提高输电线路走廊利用率。超高压输电是实现大容量或远距离输电的主要手段,也是目前输电技术发展的主要方向。 输电专业日常管理工作主要分为输电运行、输电检修、输电事故处理及抢修三类。输电专业管理有几个主要特点:一是,工作危险性高。输电线路检修一般需要进行高空作业,对工作人员的身体素质、年龄和高空作业能力要求很高,从安全角度考虑,一般40岁以上人员很难再胜任输电线路高空检修作业工作;输电带电作业需要在不停电的情况下,实行带电高空作业,对技术和人员素质要求更高,因此该工作危险性较高。一般说来,输电检修人员可以从事输电运行工作,但输电运行人员不一定能从事输电检修工作。二是,输电事故具有突发性。输电事故处理和抢修工作属于突发性事故抢修工作,不可能列入正常的输电检修工作计划,在输电事故抢修人员和业务管理上与输电检修差异较大。三是,施工环境大都比较恶劣。受输电成本和发电厂、水电站位置的影响,大多数输电线路架设在地广人稀的高山、密林、荒漠地区,施工环境恶劣,条件艰苦,很多施工设备和材料无法通过车辆运送,导致线路的建设和维护难度增大。 在事故抢修管理方面,对于一般事故抢修,可通过加强对抢修事故的统计分析,了解事故发生的规律,深入分析后确定需要配备的日常抢修工作人员数量;对于日常工作人员不能完成的抢修事故可通过外围力量的支持协作来完成,如破坏性较大的台风、地震、雪灾等严重自然灾害发生时,对输电网络影响较大,造成的电网事故比较集中,因此可以集中一个地市、全省甚至是全国电力系统的力量,开展事故抢修工作。 第一节电力线路的结构 架空输电线路的主要部件有: 导线和避雷线(架空地线)、杆塔、绝缘子、金具、杆塔基础、

风速时程模拟自回归法空间20个点-AR模型

%风速时程模拟自回归法空间20个点-AR模型 %自回归模型阶p=4,模拟空间20个点,时间步长ti=0.1,频率步长f=0.001, %空间相干系数采用与频率无关的shiotani相关系数,脉动风速谱为Davenport谱 clear tic k=0.005; v10=25; n=0.001:0.001:10; xn=1200*n./v10; s1=4*k*25^2*xn.^2./n./(1+xn.^2).^(4/3); %Davenport谱 %产生空间点坐标 for i=1:20 x(i)=5+i; z(i)=8+i; end %求R矩阵 syms f R0=zeros(20); for i=1:20 for j=i:20 H0=inline('(4*1200^2*f*k)./(1+(1200*f/v10).^2).^(4/3)','f','k','v10'); k=0.005; %地面粗糙度长度 v10=25; R0(i,j)=quadl(H0,0.001,10,0.001,0,k,v10); R0(j,i)=R0(i,j); end end R1=zeros(20); for i=1:20 for j=i:20 H1=inline('(4*1200^2*f*k).*exp(-sqrt(dx^2/50^2+dz^2/60^2)).*cos(2*pi*f* ti)./(1+(1200*f/v10).^2).^(4/3)','f','k','dx','dz','ti','v10'); k=0.005; ti=0.1; %时间步长 v10=25; dx=x(i)-x(j); dz=z(i)-z(j); R1(i,j)=quadl(H1,0.001,10,0.001,0,k,dx,dz,ti,v10); R1(j,i)=R1(i,j); end

基于AIC准则的脉动风速时程模拟

Techn ology &E conomy in Areas of Com munications 交通科技与经济 2008年第3期(总第47期) 基于AIC 准则的脉动风速时程模拟 姜 浩1 ,童申家1 ,李 纲1 ,张 磊 2 (1.西安建筑科技大学土木工程学院,陕西西安710055;2.大庆高新城建投资开发有限公司,黑龙江大庆163316)摘 要:阐述脉动风速时程模拟的方法和AI C 准则。采用线性滤波器中的A R 模型,结合A IC 准则进行模型阶数选择,用M AT LA B 编程模拟脉动风速时程,并与目标功率谱进行比较,模拟效果较好,可以满足工程精度的要求。关键词:脉动风速;数值模拟;A IC 准则;AR 模型 中图分类号:U 442.5+5 文献标识码:A 文章编号:1008 5696(2008)03 0010 02 The Simulation of Wind Speed Time Series by the AIC Rule JIANG H ao 1,T ONG Shen jia 1,LI Gang 1,ZH ANG Lei 2 (1.Civ il Engineer ing,X i an U niver sity of A rchitecture &T echno lo gy ,Xi an 710055,China;2.Daqing High U rban Construc t ion Investment Dev elo pment Co.,Lt d.,Daqing 163316,H eilongjiang,China) Abstract:In this paper,w ind speed time series simulation m ethods and AIC rule is elabor ate.With AIC criteria for selection order o f the m odel,W ind speed time series sim ulation is pr ogram ming w ith MA TLAB effectively by the AR m odel,and com pariso n w ith the objective of po wer spectral,the sim ulation effects meet the requirements of precision engineering. Key words:wind speed;numerical sim ulation;AIC rule;AR model 收稿日期:2008 01 23 作者简介:姜 浩(1980~),男,硕士研究生,研究方向:桥梁抗震抗风. 通常对于结构风振响应分析的方法主要有频域分析法和时域分析法[1]。频域分析法一般是由通用风速谱或风洞试验测得的风速时程通过傅里叶变换直接转化为风压谱,利用动力传递系数得到动力反应谱,由随机理论通过反应谱积分得到结构的动力响应。但频域分析认为系统时不变且结构是线性的,通常忽略自激力中和振型之间的耦合部分。桥梁结构的时程分析中,脉动风一般认为是零均值、各态历经的平稳随机过程。时域分析法可以直接运用风洞试验的风速时程或数值模拟的风速时程作用于桥梁结构进行风振响应分析,然后通过动力计算得到结构的动力响应。时域内对结构进行风激励动力时程分析就必须得到相应的风速曲线,如果仅仅依靠已有的记录和观测作为荷载输入,由于受到许多条件的限制,往往不能满足实际的需求。人工模拟的脉动风速时程具有广泛的适应性和一般性,可以满足某些统计特性的任意性,而且由于随机过程的模拟是从大量实际记录的统计特性出发,比单一实际记录更具有代表性和统计性,因而被广泛采用。时程样本模拟得是否有效,即所模拟的脉动风速时程是否考虑统计特性、时间相关性和空间相关性,对于时程分析的结果具有显著的影响,因此,模拟出比较理想的时程样本具有重要意义[2]。 1 脉动风的常用模拟方法及AIC 准则的应用 对于平稳随机过程,比较常用的方法有线性滤波法(A RM A Represent ation)与谐波叠加法(harmo ny super po si t ion metho d)。这些方法都是从模拟单一脉动风的风速时程 曲线发展到多个相关风速时程的模拟。在转化为离散时间信号处理时,随机数的生成算法、线性方程组的求解算法等方面将对模拟精度、模拟速度、模拟方法的稳定性产生较大影响。谐波叠加法的基本思想是采用以离散谱逼近目标随机过程的模型的一种离散化数值模拟方法,当所需模拟的维数较大时,要在每个频率上进行大量运算,随机频率的生成相当耗时,运算效率低。而线性滤波器法(A R 法)则具有计算量小、计算简洁、占用计算机内存少的优点,且模拟出来的风速时程与实际风速时程更吻合[3]。 自回归模型阶次p 的确定对自回归模型的应用效果有显著影响,如果p 选择得太小,那么白噪声余项就会明显地保留有相关项,将会出现偏差而达不到风荷载模拟的精度控制要求。如果p 选择得太大,根据自回归模型的特征可以知道,此时不会出现偏差,但在这种阶数过高拟和的情况下,对机时的浪费较为严重[4]。本文应用A IC 准则确定合适的模型阶数。AIC 准则即赤池信息量准则(Akaike s Info rma tion Criter ion,AIC),是日本著名统计学教授赤池弘次(H.Akaike)在研究信息论特别是解决时间序列定价问题中提出来的,A IC 的目的为逼近相应于真模型的拟合模型的K ull back L eibler 指标的无偏估计。A IC 值定义为[5 7] AI C=-2(极大似然函数)+2(模型参数个数),于是A IC 值最小的函数模型为最合适的函数模型。最初AIC 准则定义为 A IC (p )=N lg 2a +2(p +1). 等式右边的第一项被认为是对增加模型中参数个数或多项式阶数的一种惩罚。赤池教授建议,欲从一组可供选择的模型中选择一个最理想模型,比较模型的实用性和复杂性,AIC 准则为最小的模型是最理想的。当两个模型之间

输电线路杆塔基础形式及适用条件

输电线路工程杆塔基础 输电线路基础施工的任务就是按设计进行施工。普通土坑的开挖前都必须做好复测和分坑工作。 输电线路施工复测是指线路施工前,施工单位对设计部门已测定线路中心线上的各直线桩,杆塔位中心桩及转角塔位桩位置,档距和断面高程进行全面复核测量。若偏差超过允许范围时,必须查明原因并予以纠正。其后,根据定位的中心桩位,根据基础类型依照设计图纸规定的尺寸进行坑口放样工作,称次为分坑测量。通常把这两步工作统称为复测分坑。分坑,可用经纬仪及皮尺进行分坑。 基础形式可分为以下几种: 1.岩石嵌固基础 该基础型式适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。需要时,可将主柱的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。 2.岩石锚杆基础 该基型适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,充分利用了岩石的强度,从而大大降低了基础混凝土和钢材量。但岩

石锚杆基础需逐基鉴定岩石的完整性。 3.掏挖基础 该基型分全掏挖和半掏挖两种,适用无地下水的硬塑粘性土地基。在基坑施工可成型的情况下,开挖基坑时不扰动原状土,避免大开挖后再填土。基础承受上拔荷载时,原状土的内摩擦角和凝聚力得以充分发挥作用。这种基础型式也显示了较高的经济效益和环境效益,根据以往工程的统计,由于各线路地质条件的不同等原因,采用全掏挖基础比用阶梯型基础节约钢材和混凝土分别为3~7%和8~20%。掏挖基础有直柱式和斜插式两种型式。斜插式掏挖基础将主柱的坡度设置与塔腿主材坡度相同,减小了基础水平力产生的偏心弯矩,还可省去地脚螺栓 4.阶梯型基础 该基础是传统的基础型式,适用各类地质、各种塔型,其特点是大开挖,采用模板浇制,成型后再回填土,利用土体与混凝土重量抗拔,基础底板刚性抗压,不配钢筋。由于阶梯型基础混凝土量较大,埋置较深,易塌方及有流砂地区难以达到设计深度,因此在此类地区应尽量少用。 5.大板基础 大板基础的主要设计特点是:底板大、埋深浅、底板较薄,底板双向配筋承担由铁塔上拔、下压和水平力引起的弯矩和剪力,主柱计算与阶梯基础相同。与阶梯基础相比,埋深浅,易开挖成形,混凝土量能适当降低,但钢筋量增加较多。与灌注桩相比,在软弱地基中应

某景观烟囱顺风向风振响应分析与风振系数确定

第40卷第2期建 筑 结 构2010年2月 某景观烟囱顺风向风振响应分析与风振系数确定 张文元1 , 郑朝荣1 , 张耀春1 , 武 岳1 , 孙雨宋 2 (1哈尔滨工业大学土木工程学院,哈尔滨150090;2东北电力设计院,长春130021) [摘要] 采用S AP2000软件建立了某景观烟囱的结构分析模型,输入风荷载时程进行风振响应分析。考虑了烟囱 复杂外形和不规则质量分布,利用频域方法计算了烟囱第1阶振型的风振位移响应,并与时域方法的结果进行对比,二者吻合较好。分别采用阵风荷载因子法和惯性风荷载法计算了烟囱结构不同高度处的风振系数,并将基于该两种风振系数的等效静力风荷载分别作用在烟囱结构上,计算其顺风向位移响应并与精确值进行比较,结果表明其位移分布均符合真实响应。因此虽然上述两种方法得到的风振系数沿高度分布差别较大,但均能实现烟囱的风振位移等效,均是合理的。为工程应用方便,采用基于阵风荷载因子法的风振系数供结构设计使用。 [关键词] 风振系数;烟囱;时域;频域;阵风荷载因子法;惯性风荷载法 Analysis on along 2wind 2induced responses and determination of gust response factor on a landscape chimney Zhang Wenyuan 1 ,Zheng Chaorong 1 ,Zhang Y aochun 1 ,Wu Y ue 1 ,Sun Y us ong 2 (1School of Civil Engineering ,Harbin Institute of T echnology ,Harbin 150090,China ; 2N ortheast E lectric P ower Design Institute ,Changchun 130021,China ) Abstract :Based on the finite element m odel of a landscape chimney by S AP2000and wind load history ,the dynamic responses of the chimney were analyzed using time domain method.Als o ,wind 2induced displacements of chimney ’s first m ode were calculated using the frequency domain method ,in which the uneven distribution of width and mass was taken into account ,and the results are close to the responses from time domain analysis.Both the gust loading factor method and the inertial wind load method were selected to calculate the gust response factors along the height of chimney ,and distribution of wind 2induced displacements by the equivalent static wind loads based on the above methods agrees well with the exact displacements.S o the tw o methods can both acquire reas onable gust response factors and realize the displacements equivalence of chimney ,though distributions of the gust response factors have great https://www.sodocs.net/doc/198490114.html,stly ,the gust response factors calculated from the gust loading factor method are recommended for reference of practical design ,as for convenience of application. K eyw ords :gust response factor ;chimney ;time domain ;frequency domain ;gust loading factor ;inertial wind load 作者简介:张文元,博士,副教授,Email :hitzwy @1631com 。 0 前言 某发电厂景观烟囱是一高210m 的钢内筒烟囱。 钢筋混凝土外筒高205m ,筒顶外直径11m;高度195~185m 为一圆台,其下部直径为16m;185~165m 为一直径为16m 的圆柱体;165~155m 为一倒立的圆台,其下部直径为11m;155~60m 为圆柱体;高度60m 以下放坡8%至烟囱底部,底部外直径2016m 。由于外观装饰的要求,烟囱表面在高度60~195m 布置不同形状的装饰条(图1)。筒体壁厚由上至下从250mm 变化到700mm ,90m 以下采用C40混凝土,以上采用C30混凝 土。纵向配筋:0标高处外侧为⊥○28@150,内侧为⊥○ 22@150,以上逐级降低为⊥○12@150。 该烟囱为一具有独特外形且质量刚度分布不均匀的高耸结构,其风荷载的计算(包括风荷载体型系数和风振系数的确定)不能利用现有规范公式[1,2]直接得到。风荷载体型系数通过CFD (C om putational Fluid 图1 烟囱效果图  Dynam ic )方法获得[3],而风振 系数的确定则必须对其进行风振响应分析。 高耸结构的顺风向风振响应分析一般采用以振型分解法为基础的频域方法和以直接积分法为基础的时域方法[4,5]。时域方法根据风荷载的统计特性进行计算机随机模拟,人工生成具有特定频谱密度和空间相关函数的风速时程,并通过 准定常假定转化为风压时程作用在结构上,然后利用逐步积分法计算结构的动力响应。频域方法是将脉动风速谱密度转化为广义风荷载谱,利用传递函数建立

输电线路基本常识

输电线路的基本知识 一、送电线路的主要设备: 送电线路是用绝缘子以及相应金具将导线及架空地线悬空架设在杆塔上,连接发电厂和变 电站,以实现输送电能为目的的电力设施。主要由导线、架空地线、绝缘子、金具、杆塔、基 础、接地装置等组成。 1.导线:其功能主要是输送电能。线路导线应具有良好的导电性能,足够的机械强度,耐 振动疲劳和抵抗空气中化学杂质腐蚀的能力。线路导线目前常采用钢芯铝绞线或钢芯铝合金绞 线。为了提高线路的输送能力,减少电晕、降低对无线电通信的干扰,常采用每相两根或四根 导线组成的分裂导线型式。 2.架空地线:主要作用是防雷。由于架空地线对导线的屏蔽,及导线、架空地线间的藕合 作用,从而可以减少雷电直接击于导线的机会。当雷击杆塔时,雷电流可以通过架空地线分流 一部分,从而降低塔顶电位,提高耐雷水平。架空地线常采用镀锌钢绞线。目前常采用钢芯铝 绞线,铝包钢绞线等良导体,可以降低不对称短路时的工频过电压,减少潜供电流。兼有通信 功能的采用光缆复合架空地线。 3.绝缘子:是将导线绝缘地固定和悬吊在杆塔上的物件。送电线路常用绝缘子有:盘形瓷 质绝缘子、盘形玻璃绝缘子、棒形悬式复合绝缘子。 (1)盘形瓷质绝缘子:国产瓷质绝缘子,存在劣化率很高,需检测零值,维护工作量大。 遇到雷击及污闪容易发生掉串事故,目前已逐步被淘汰。 (2)盘形玻璃绝缘子:具有零值自爆,但自爆率很低(一般为万分之几)。维护不需检测, 钢化玻璃件万一发生自爆后其残留机械强度仍达破坏拉力的80%以上,仍能确保线路的安全运行。遇到雷击及污闪不会发生掉串事故。在Ⅰ、Ⅱ级污区已普遍使用。 (3)棒形悬式复合绝缘子:具有防污闪性能好、重量轻、机械强度高、少维护等优点,在Ⅲ级及 以上污区已普遍使用。 4.金具 送电线路金具,按其主要性能和用途可分为:线夹类、连接金具类、接续金具类、防护金 具类、拉线金具类。 (1)线夹类: 悬式线夹:用于将导线固定在直线杆塔的悬垂绝缘子串上,或将架空地线悬挂在直线杆塔 的架空地线支架上。 耐张线夹:是用来将导线或架空地线固定在耐张绝缘子串上,起锚固作用。耐张线夹有三大类,即:螺栓式耐张线夹;压缩型耐张线夹;楔型线夹。 螺栓式耐张线夹:是借U型螺丝的垂直压力与线夹的波浪形线槽所产生的摩擦效应来固定 导线。 压缩型耐张线夹:它是由铝管与钢锚组成。钢锚用来接续和锚固钢芯铝绞线的钢芯、然后 套上铝管本体,以压力使金属产生塑性变形,从而使线夹与导线结合为一整体,采用液压时, 应用相应规格的钢模以液压机进行压缩。采用爆压时,可采用一次爆压或二次爆压的方式,将 线夹和导线(架空地线)压成一个整体。

相关主题