搜档网
当前位置:搜档网 › 输电塔-线体系舞动仿真及控制研究

输电塔-线体系舞动仿真及控制研究

输电塔-线体系舞动仿真及控制研究
输电塔-线体系舞动仿真及控制研究

精馏塔提馏段的温度控制系统

南华大学 过程控制仪表课程设计 设计题目精馏塔提馏段的温度控制系统学生XXX 专业班级自动化X X X 学号XXXXXXXXXX 指导老师XXX 2012年6月25日

目录 1.系统简介与设计目的 (2) 2.控制系统工艺流程及控制要求 (3) 3.设计方案及仪表选型 (4) 3.1控制方案的确定 (4) 3.2控制系统图、方框图 (5) 4.各个环节仪表的选型,仪表的工作原理以及性能指标 (7) 4.1检测元件 (7) 4.1.1铠装热电偶特点 (7) 4.1.2铠装热电偶主要技术参数 (7) 4.2变送器 (7) 4.2.1变送器主要技术指标 (7) 4.3调节器 (8) 4.4执行器 (8) 4.4.1电/气阀门定位器作用 (8) 5.绘制仪表盘电气接线图,端子接线图 (10)

6.仪表型号清单 (11) 7.设计总结 (12) 参考文献 (13) 1.系统简介与设计目的 精馏操作是炼油、化工生产过程中的一个十分重要的环节。精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以 来一直受到人们的高度重视。精馏塔是一个多输入多输出的对象,它由很多级塔 板组成,在机理复杂,对控制要求又大多较高。这些都给自动控制带来一定的困难。同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的 特点,进行自动控制方案设计和研究。精馏塔的控制最终目标是,在保证产品质 量的前提下,使回收率最高,能耗最小,或使总收益最大。在这个情况为了更好 实现精馏的目标就有了提馏段温度控制系统的产生。

按提馏段指标的控制方案,当塔釜液为主要产品时,常常按提馏段指标控制。 如果是液相进料,也常采用这类方案。这是因为在液位相进料时,进料量的变化, 首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变 化,所以采用提馏段控制温度比较及时。另外如果对釜底出料的成分要求高于塔 顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几 倍最小回流比时,可采用提馏段控制。提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。 精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。

过程控制作业答案

第一章 概述 1.1 过程控制系统由哪些基本单元构成?画出其基本框图。 控制器、执行机构、被控过程、检测与传动装置、报警,保护,连锁等部件 1.2 按设定值的不同情况,自动控制系统有哪三类? 定值控制系统、随机控制系统、程序控制系统 1.3 简述控制系统的过渡过程单项品质指标,它们分别表征过程控制系统的什么性能? a.衰减比和衰减率:稳定性指标; b.最大动态偏差和超调量:动态准确性指标; c.余差:稳态准确性指标; d.调节时间和振荡频率:反应控制快速性指标。 第二章 过程控制系统建模方法 习题2.10 某水槽如图所示。其中F 为槽的截面积,R1,R2和R3均为线性水阻,Q1为流入量,Q2和Q3为流出量。要求: (1) 写出以水位H 为输出量,Q1为输入量的对象动态方程; (2) 写出对象的传递函数G(s),并指出其增益K 和时间常数T 的数值。 (1)物料平衡方程为123d ()d H Q Q Q F t -+= 增量关系式为 123d d H Q Q Q F t ??-?-?= 而22h Q R ??= , 33 h Q R ??=, 代入增量关系式,则有23123 ()d d R R h h F Q t R R +??+=? (2)两边拉氏变换有: 23 123 ()()()R R FsH s H s Q s R R ++ =

故传函为: 23232 3123 ()()()11R R R R H s K G s R R Q s Ts F s R R +=== +++ K=2323 R R R R +, T=23 23R R F R R + 第三章 过程控制系统设计 1. 有一蒸汽加热设备利用蒸汽将物料加热,并用搅拌器不停地搅拌物料,到物料达到所需温度后排出。试问: (1) 影响物料出口温度的主要因素有哪些? (2) 如果要设计一温度控制系统,你认为被控变量与操纵变量应选谁?为什么? (3) 如果物料在温度过低时会凝结,据此情况应如何选择控制阀的开、闭形式及控制器 的正反作用? 解:(1)物料进料量,搅拌器的搅拌速度,蒸汽流量 (2)被控变量:物料出口温度。因为其直观易控制,是加热系统的控制目标。 操作变量:蒸汽流量。因为其容易通过控制阀开闭进行调整,变化范围较大且对被 控变量有主要影响。 (3)由于温度低物料凝结所以要保持控制阀的常开状态,所以控制阀选择气关式。控制 器选择正作用。 2. 如下图所示为一锅炉锅筒液位控制系统,要求锅炉不能烧干。试画出该系统的框图,判断控制阀的气开、气关型式,确定控制器的正、反作用,并简述当加热室温度升高导致蒸汽蒸发量增加时,该控制系统是如何克服干扰的? 解:系统框图如下:

精馏塔温度控制系统设计.doc

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 090302074 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。所以仅用前馈并不能达到良好的控制品质。这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。解决前馈不能控制的不可测干扰。 前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度 关键词:提馏段温度前馈-反馈串级控制

分析架空输电线路铁塔结构与基础设计

分析架空输电线路铁塔结构与基础设计 发表时间:2016-12-26T13:50:27.263Z 来源:《电力设备》2016年第21期作者:买生玉解媛媛 [导读] 对铁塔结构与基础结构进行科学的设计,才能保证输电线路的稳定性。 (国网宁夏电力设计有限公司宁夏银川 750002) 摘要:架空输电线路是电力系统的重要组成部分,由于架空线路的特殊性,铁塔结构设计的合理性和稳定性决定了线路结构的安全性,因此要根据架空线路的运行要求,对铁塔结构与基础结构进行科学的设计,才能保证输电线路的稳定性。 关键词:架空;输电线路;铁塔;结构;基础设计 作为我国当前电力供应的基础保障性设施,架空输电线路在电力供应系统中所发挥的作用是非常重要的。但结合我国电力行业实际情况来看,企业目前仍然是电力供应的主要对象,因此,在电力供应经济改善方面的需求仍然是非常明确的。在对架空输电线路铁塔的设计中,除需保障铁塔结构的安全、稳定以外,还需综合考虑设计的经济效益。在目前已发生的各类输电线路安全事故中,因铁塔结构设计不合理所致事故的比例是非常高的。因此,为提高架空输电线路运行安全性和稳定性,做好对铁塔结构与基础的设计、优化工作有着非常重要的意义与价值。 1 架空输电线路铁塔塔型设计 在有关架空输电线路铁塔内力的分析中,可将铁塔杆系节点作为铰接点。考虑到架空输电线路铁塔结构多在相对复杂的自然环境中运行,因此对铁塔塔型的规划必须兼顾技术和经济层面的合理性。根据架空输电线路工程导线型号、基本环境条件以及敷设路径情况选择基础塔型形式,基于铁塔所承受机械外负荷条件进行设计和计算,以确保铁塔结构稳定性、刚度、强度满足设计要求。除此以外,在架空输电线路铁塔塔型的选择设计上还应当考虑施工条件、施工技术以及运行便捷性等因素的影响。 根据底部宽度,可以将架空输电线路铁塔设置为窄基铁塔和宽基铁塔两种类型。其中,窄基铁塔底部宽度与塔体高度的比值在 1/14~1/12 的范围内,宽基铁塔底部宽度与塔体高度的比值则在 1/6 ~1/4 的范围内。对于窄基铁塔而言,由于铁塔底部宽度较小,因此主材所受作用力较大,适用于小挡距(使用挡距不足 100 m)铁塔的设计选型;对于宽基铁塔而言,由于铁塔底部宽度较大,因此主材所受力作用力较小,适用于大挡距(使用挡距在 100 m 及以上)铁塔的设计选型。 2 架空输电线路铁塔结构设计 对于宽基铁塔而言,根据导线回数的不同可以采取不同的结构布置方案。比如对于采用单导线回路的铁塔而言,结构布置上具有“上”字型特点;对于采用双导线回路的铁塔而言,结构布置上则具有鼓型特点。 对于窄基铁塔而言,根据横担以及支架的通用情况可以采取以下两种不同的结构布置方案:①将塔头区域布置为垂直段,口宽固定,塔身开始起坡,铁塔整体高度与底部宽度参数一致,不考虑回路数划分影响;横担具有通用性特点,可根据架空输电线路实际回路数选择相应的横担数量。②铁塔塔身与塔头均设置通用坡度,铁塔总高度与上口宽度和底部宽度完全一致;横担固定不通用,可划分为单导线回路和双导线回路两种形式。 3 架空输电线路铁塔基础优化 在对架空输电线路铁塔结构基础进行优化设计的过程中,必须遵循以下三点基本原则:①优化设计前期,应当对沿线工程水文条件、地质条件和气象条件进行详尽的调查。②制订科学的铁塔杆塔位置排定原则,即在线路敷设经过各类作物林区时不砍伐通道。如果垂直距离受到影响,则对个别部位进行剪枝或削顶处理。③做好对架空输电线路沿线主力杆塔造影的优化设计工作。具体而言,结构基础设计中可采取的优化措施有以下几点。 3.1 强化架空输电线路铁塔基础 输电线路杆塔基础常见类型包括钢管杆、水泥杆和直立式铁塔系列基础三类。其中,钢管杆基础可见非原状混凝土、非原状土台阶式和非原状土直柱式柔性这三类;水泥杆基础则可见非原状土无拉线盘和非原状土有拉线盘这两类;直立式铁塔系列基础在基础类型方面划分更细,共有 16 种类型。 在杆塔基础的选型中,如果混凝土浇筑难度较大,则可以优先选择金属式基础或预制装配式基础。如果涉及到电杆及拉线,则建议选择预制装配式基础。在基础设计过程中,以安全为前提,对架空输电线路铁塔基础受力性能进行分析。新基础计算的基本前提是铁塔基础所处区域地基基础承载力符合设计要求。但是,如果地基基础为淤泥质土或淤泥,则应当重新设计。在对架空输电线路铁塔基础进行优化设计的过程中,必须充分评价工程实践中的施工条件、杆塔形式以及沿线地质条件对铁塔结构稳定性的影响,在最大程度上确保架空输电线路铁塔结构的基础稳定性和位移允许性。 3.2 适当降低架空输电线路铁塔接地电阻 高压输电线路接地电阻的大小与线路耐雷水平呈反相关,因此,为有效提高高压输电线路整体耐雷水平,应在基础设计环节中结合各基杆塔土壤电阻率取值情况,有效控制杆塔接地电阻的大小。在基础设计的优化中,可采取的措施包括以下几种:①若架空输电线路铁塔杆塔所处区域周边允许水平放设,则应当采取水平外延接地的处理措施。这样,一方面能够使冲击性接地电阻得到控制,另一方面能够有效降低工频接地电阻。②可结合架空输电线路铁塔结构的基本情况,适当增加埋设深度接地极,遵循就地原则增加垂直接地极。③若杆塔所处区域地下地质条件特殊,影响土壤电阻率水平,则可在基础设计中适当增加木炭及酸、碱性物质,以改善土壤电阻率水平。④可合理敷设降阻剂,以起到合理控制杆塔接地电阻大小的效果。 3.3 优化输电线路基础路径和塔型搭配 城市紧凑型多回路钢管杆走廊或钢管塔走廊在技术上能满足输电线路的实际要求,且钢管杆造型美观,安装快捷,占地面积小,还与城市地势较为平坦、走廊宽度小、线路施工方便等特点相适应,因此得以迅速发展。对于架空输电线路而言,线路走廊宽度主要会受到风偏、安全距离和塔头尺寸三方面参数的影响。其中,安全距离的波动范围小,因此,控制架空输电线路走廊宽度的关键在于合理控制风偏和塔头参数。结合实践经验来看,为有效限制导线风偏,对塔头尺寸进行控制,可采取固定挂点的直线式杆塔和固定跳线的耐杆塔。同时,考虑到城市地区架空输电线路有大截面和多回路发展的趋势,因此在基础设计环节中,可适当增大绝缘子部件、避雷线、接地和金具

输电塔结构模型设计方案

“大鹏展翅”输电塔结构模型设计 理论方案 浙江省大学生结构设计竞赛组委会 二OO七年十月

目录序 (2) 1. 设计说明书 (4) 1.1 研究背景和意义 (4) 1.2 结构的构思和结构的选型 (4) 2. 方案图 (7) 2.1 模型三维图 (7) 2.2 模型三视图 (8) 2.3 主要构件图 (9) 2.4 支座与连接详图 (10) 3. 计算书 (11) 3.1 计算模型 (11) 3.2 荷载分析 (11) 3.3 内力分析 (12) 3.4 整体结构水平方向变形分析 (13) 3.5 材料的力学性能与粘结工艺 (13) 四研究中存在的问题及反思 (14)

序 输电塔作为这个电器的时代的支撑点,她需要耐人寻味的体态,轻盈的身躯,以及一副刚强的骨架。 一个构筑物第一时间传递给我们是视觉上的冲击,那就是外形。自身的重量是任何物体所必须克服的,轻盈的身躯将为基础减去相当的负担。承受再轻的重量,也必须有相应的骨架。面对高耸的输电塔更是如此。一副合理的骨架结构是承载能力的关键。短短10年时间内我国输电线路长度增加了一倍多。在电网建设的过程中,输电塔也得到了前所未有的发展,从早期的以木材为主要材料作为输电杆,到后来以钢筋水泥杆为主要材料作为输电塔,到现在的以钢材为主要材料作为输电塔;塔重从单基重量1-2吨,发展到现在最大单基塔重3980吨;塔高从几米发展到2004年10月建成投产的江阴段长江大跨越,塔高346.5米,是世界输电第一高塔。因而在此次我们主要考虑以下几个方面来来设计我们的结构:承载能力高、自重轻、结构稳定,合理、外形新颖、符合实际制作、使用时结构变形小。 满足以上各个方面,我们舍弃了传统的类似于筒体的桁架,采用了单刚片受扭的双刚片交叉结构。 她作为一个刚片受水平垃力,可以减少较多面上的短杆件的使用。自重轻,耗材少。外形更是完成了一个突破。同时长杆件的使用减少了结点的处理更符合实际制作的要求。更为了使结构为创新,经济,美观,使用,我们采用了双刚片X交叉的结构。就我们的理论分析,在结构的设计和制作的过程相结合尚在实际使用范畴之内,我们有必要做出大胆的假设,并付出实际的行动。在实践中把握真理。

输电线路铁塔

输电线路铁塔 输电线路塔是支持高压或超高压架空送电线路的导线和避雷线的构筑物。 类型根据在线路上的位置、作用及受力情况分类如表: 还可根据不同的电压等级、线路回路数、导线及避雷线的布置方式、材料及结构形式来确定塔的名称,例如:220千伏单回路导线水平排列的门型耐张跨越塔。常见的悬垂型塔或耐张型塔如图。500千伏台山电厂至香山输变电工程的崖门大跨越钢管塔,该塔位于新会区西江崖门边,在两岸各建一高塔,两座高塔跨越距离2.5公里,塔高215.5米,所用钢管直径达1.58米,单塔重1650吨。常见的悬垂型塔或耐张型塔, 崖门大跨越钢管塔 塔的尺寸和档距须满足电路要求:导线与地面、建筑物、树木、铁路、公路、河流以及其他架空线路之间,导线与导线、导线与避雷线之间,均应保持必要的最小安全距离。避雷线对导线的保护角及使用双避雷线时两根避雷线之间的水平最小距离应满足有关规定。 荷载输电线路塔主要承受风荷载、冰荷载、线拉力、恒荷载、 安装或检修时的人员及工具重以及断线、地震作用等荷载。设计时应考虑这些荷载在不同气象条件下的合理组合,恒荷载包括塔、线、金具、绝缘子的重量及线的角度合力、顺线不平衡张力等。断线荷载在考虑断线根数(一般不考虑同时断导线及避雷线)、断线张力的大小及断线时的气象条件等方面,各国均有不同的规定。 结构计算 塔一般均简化为静态进行分析,对于风、断线、地震等动荷载,通常在静力分析的基础上,分别乘以风振系数、断线冲击系数、地震力反应系数来考虑动力作用。 输电线路塔的内力计算,与塔式结构和桅式结构相同,但须考虑下列两个问题: ①导线风荷载对塔的作用。由于导线的支点间距较大(一般为200~800米)而横向摆动的周期较长(一般为5秒左右),故应考虑风沿导线的不均匀分布及导线对塔的动力效应。20世纪60年代初,许多国家的电力部门曾用实际的试验线路来测定导线在大风作用下的最大响应,并据此制订了实用计算法,其中有的已纳入本国的规程,但是由于受地形、测量仪器的精度、分析水平等各种因素的限制,这些实用计算方法还不能精确反映出真实情况。70年代中期,开始应用随机振动理论分析阵风作用于导线对塔引起的动力响应,这种建立在实测资料基础上并用统计概念及谱分析估计结构响应的概率峰值的方法,比较符合风的特点。 ②断线力对塔的作用。导线突断时对塔的冲击荷载在极短的时间内达到峰值,并且各个部位的相对值大小不一,是一种复杂的瞬态强迫振动,要作理论计算比较困难。一般是根据现场试验实测数据获得冲击力的峰值,并据此制定出实用的“断线冲击系数”,其值为1.0~1.3,视电压的高低、塔的类型、不同的部位而定。 基础 输电线路塔基础的种类很多,并随塔的类型、地形、地质、施工及运输的条件而异,常见的有:①整体式刚性基础;②整体式柔性基础;③独立式刚性基础; ④独立式柔性基础;⑤独立式金属基础;⑥拉线地锚;⑦卡盘及底盘;⑧桩基础。上述①、②类基础主要用于窄塔身用地小的情况,③、④、⑧类基础用于软土地

精馏塔温度控制系统设计

精馏塔温度控制系统设计 The Standardization Office was revised on the afternoon of December 13, 2020

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 0 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而

架空输电线路铁塔结构与基础设计

架空输电线路铁塔结构与基础设计 发表时间:2019-09-18T16:59:35.737Z 来源:《电力设备》2019年第7期作者:侯少龙 [导读] 摘要:在我国现代经济社会发展水平不断提升的背景下,电力系统在设计与运行过程中所依赖的基础条件也发生了相应的改变。 (国网乌鲁木齐供电公司新疆维吾尔自治区乌鲁木齐新市区 830000) 摘要:在我国现代经济社会发展水平不断提升的背景下,电力系统在设计与运行过程中所依赖的基础条件也发生了相应的改变。作为我国当前电力供应的基础保障性设施,架空输电线路在电力供应系统中所发挥的作用是非常重要的。但结合我国电力行业实际情况来看,企业目前仍然是电力供应的主要对象,因此,在电力供应经济改善方面的需求仍然是非常明确的。在对架空输电线路铁塔的设计中,除需保障铁塔结构的安全、稳定以外,还需综合考虑设计的经济效益。在目前已发生的各类输电线路安全事故中,因铁塔结构设计不合理所致事故的比例是非常高的。因此,为提高架空输电线路运行安全性和稳定性,做好对铁塔结构与基础的设计、优化工作有着非常重要的意义与价值。 关键词:架空输电线路;铁塔设计;优化 一、架空输电线路铁塔塔型设计 在对架空输电线路铁塔进行内力分析时,可以将铁塔杆系节点看作成铰接点,进而进行有效的内力分析。由于架空输电线路铁塔的工作环境一般较为复杂,为了确保铁塔能够顺利的进行有效的工作,要对铁塔的塔型进行技术经济分析,优选最适宜的塔型。架空输电线路铁塔塔型的选择要充分考虑输电线的导线型号、铁塔的工作环境以及线路的敷设路径等因素,根据铁塔所承受的机械外负荷条件进行塔型的计算和设计工作,进而确保铁塔结构的刚度、强度、稳定性等满足实际工作的要求。 根据铁塔底部宽度的不同,可以将架空输电线路的铁塔分为:窄基铁塔和宽基铁塔两种类型。其中,窄基铁塔的底部宽度与塔体的高度之比介于1/14~1/12之间,而宽基铁塔的底部宽度相对较大,其比值介于1/6~1/4之间。窄基铁塔的底部宽度相对较小,在同样的塔高条件下,其主材所承受的各种作用力相对较大,为了确保塔体的安全性,对主材的要求相对较高,该种类型的铁塔设计主要用于档距较小的铁塔之中,其挡距要小于100m;而宽基铁塔其底部宽度较大,能够将铁塔的作用力进行有效的分解,其主材所受到的作用力相对较小,该种类型的铁塔设计主要用于档距较大的铁塔之中,其档距不小于100m。 二、架空输电线路铁塔结构设计 不同类型的铁塔其架空输电线路的结构设计不尽相同,其具体的结构设计如下: 2.1窄基铁塔的结构设计 依据横担以及铁塔支架的通用程度可以采用以下两种类型的结构布置方案:(1)可以将窄基铁塔的塔头区域设置为垂直的形式,对口宽进行固定,塔身开始逐渐起坡,其铁塔的整体高度与底部的宽度参数设置一致,不考虑输电线路回路数量划分的影响;铁塔横担具有良好的通用性,铁塔中所设置的横担数量要根据架空输电线路中实际的回路数量进行有针对性的设计。(2)铁塔塔身与塔头均按照要求设置一定的通用坡度,铁塔的总高度与铁塔的上口和底部宽度保持一致;横担设置成固定形式不进行通用设计,根据导线的数量可以分为单导线回路和 双导线回路两种不同的形式。 2.2宽基铁塔的结构设计 根据铁塔中导线回路数量的不同可以采取不同类型的结构设计方案。其中,对于使用单导线回路的铁塔,其结构布置具有“上”字型的特点;对于使用双导线回路的铁塔,其结构布置上具有鼓型的特点。 三、架空输电线路铁塔基础设计的技术优化措施 3.1加强铁塔的基础 在输电线路铁塔结构设计中,杆塔基础分类三类合计三十三种:①水泥杆基础:分为非原状土无拉线盘基础和非原状土有拉线盘基础两种;②钢管杆基础:分为非原状土台阶式基础、非原状土直柱式柔性基础和非原状土素混凝土基础三种;分为原状土掏挖式基础、原状土套筒式基础、原状土卡盘式基础和原状土复合沉井基础四种;及原状土灌注桩长桩单桩基础、原状土灌注桩长桩多桩承台基础、原状土灌注桩短桩抗倾覆基础、原状土灌注桩短桩位移基础、原状土灌注桩美国算法基础、原状土灌注桩钢管短桩位移基础和原状土灌注桩钢管短桩抗倾覆基础十一种;小计十四种;③直立式铁塔系列基础:非原状土刚性台阶式基础、非原状土直柱式柔性基础、非原状土斜柱式柔性基础、非原状土素混凝土(回填土)基础、非原状土联合式基础和非原状土窄基塔独立式刚性台阶式基础六种;及原状土素混凝土(原状土)基础、原状土灌注桩长桩-单桩带连梁基础、原状土灌注桩长桩-多桩带承台基础、原状土灌注桩短桩抗倾覆基础、原状土灌注桩短桩位移基础、原状土掏挖式基础、原状土岩石基础、原状土复合沉井基础、原状土窄基塔独立式长桩单桩灌注桩基础和原状土窄基塔独立式长桩多桩带承台基础十种;小计十六种。 对于运输或浇制混凝土有困难的地区,可采用预制装配式基础或金属基础;对电杆及拉线宜采用预制装配式基础。设计方案中还要正确分析铁塔基础受力,应首先保证安全,针对轴心受压基础、轴心受拉基础,分别选取不同的K值。对于新基础计算的前提条件是地基承载力满足设计要求,若地质属淤泥或淤泥质土,则必须进行重新设计。总之,基础型式应综合沿线地质、施工条件和杆塔型式并综合考虑基础稳定、承载力、不均匀沉降、基础位移、采空区、基础上拔土重度、上拔角、倾覆、冻土和洪泛区等诸多因数。 3.2降低杆塔的接地电阻 高压送电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高耐雷水平的基础,也是最经济、有效的手段。即:①杆塔所在地若有水平放设的条件,可水平外延接地,这样不但可降低工频接地电阻,还可有效地降低冲击接地电阻。②增加埋设深度接地极,就近增加垂直接地极的运用。③合理敷设降阻剂。④增加盐、酸、碱、盐及木炭等物质。如地下较深处的土壤电阻率较低,可用竖井式或深埋式接地极。 3.3优选路径和塔型的最佳搭配 城市紧凑型多回路钢管杆走廊、或钢管塔走廊,它在技术上能满足输电线路的实际要求,且钢管杆造型美观,安装快捷,占地面积省,还与城市地势较为平坦,走廊宽度小,线路施工方便等特点相适应,故得以迅速发展。输电线路的走廊宽度由塔头尺寸、风偏、安全距离三部分组成。减少线路走廊宽度的关键在于控制塔头尺寸和风偏。采用固定挂点的直线杆塔以及固定跳线的耐杆塔,是减少塔头尺寸

精馏塔控制系统设计

Hefei University 《化工仪表及自动化》过程考核之三——设计 题目:精馏塔控制系统设计, 系别: 班级: 姓名: 学号: 教师: 日期:

目录 Hef e i Un iv ers ity (1) 化工班:《化工仪表及自动化》 (1) 过程考核之三——设计 (1) 一、概述 (3) 二、内容 (3) 三、说明 (3) 1、工作要求 (3) 2、物料 (3) 3、精馏过程的控制方案设计 (4) 四、设备选型 (5) 1、测控仪表选型 (5) 2、执行机构选型 (5) 五、总结 (5) 六、参考文献 (5)

精馏塔控制系统设计 一、概述 精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离的目的,满足化工连续化生产的需要。精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻组分流失,提高物料的回收率,也可减少残余物料的污染作用。影响精馏塔温度不稳定的因素主要是来自外界来的干扰。 二、内容 蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。 本文主要内容是结合课本所学仪表自动化知识,掌握测控仪表,了解二元精馏系统流程仪表的位号和特点,仔细研究二元精馏的工艺流程图,熟悉工艺流程依次设计一套完整的控制方案,使系统能对二元精馏的工艺过程进行有效地控制。 三、说明 1、工作要求 精馏塔控制系统主要分为三部分控制:塔釜温度控制精馏塔塔釜温度是产品成分的间接质量指标,要求温度检测点在系统受到干扰时温度变化灵敏,因此塔内测温点设置在灵敏板上,通过控制再沸器蒸汽流量来实现温度的稳定。 2、物料

输电线路杆塔结构设计

浅谈输电线路杆塔结构设计 摘要:文章综述了我国高压输电线路铁塔结构设计方面的一些经验、看法和常被忽略的问题。对我国输电线路杆塔结构在荷载取值、结构优化、新材料应用等方面的研究进展加以介绍,并且根据研究现状和社会经济发展需求,提出今后研究需要进一步加强的内容。 关键词:输电线路;杆塔型;结构设计 abstract: this paper reviews some experience of the design of tower structure for hv transmission lines in china’s views and often overlooked problem. to introduce the research progress on load, structure optimization, the application of new materials and other aspects of china’s power transmission lines, and according to the current research status and the demand of social and economic development, puts forward the future research needs to further strengthen the content. key words: transmission line tower type; structural design; 中图分类号:tb482.2文献标识码:a文章编码: 引言 输电线路杆塔是支承架空输电线路导线和地线并使它们之间以

过程控制课程设计-精馏塔的均匀控制系统设计

目录 1 精馏塔控制系统介绍 (1) 1.1精馏塔原理 (1) 1.2控制要求及干扰因素 (1) 2 设计任务及要求 (2) 3 均匀控制系统 (2) 3.1均匀控制概念 (2) 3.2均匀控制系统特点 (4) 4设计方案选择 (5) 4.1方案一简单均匀控制 (5) 4.2方案二串级均匀控制 (5) 5 系统各器件选型 (7) 5.1检测转换元件的选择、性能参数 (7) 5.2调节阀气开气关式选择 (9) 6.系统仿真与分析 (11) 7.小结与体会 (12) 参考文献 (13)

精馏塔的均匀控制系统设计 1 精馏塔控制系统介绍 1.1 精馏塔原理 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。 蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸汽中转移,蒸汽中的难挥发(高沸点)组分不断地向下降液中转移,蒸汽愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。 蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。 1.2 控制要求及干扰因素 为了保证精馏生产工序安全、高效持续进行,改造生产工艺提出如下控制要求: (1) 保证产品质量。以塔顶产品的纯度作为质量参数进行控制,构建质量控制系统。 (2) 保证平稳生产。首先要使精馏塔的进料参数保持稳定;其次为了维持塔的物料平衡,要控制塔顶和塔底产品采出量,使其和等于进料量;再次塔内的储液量

基于AR法的输电塔线体系风速时程模拟

万方数据

.170?水电能源科学 其中x=[zl,z2,…,zM]T Y=[y1,Y2,…,YM]T z=[2l,施,…,ZM]T 式中,(z;,y,,≈)为空间第i点坐标,i一1,2,…, M;P为AR模型阶数;At为模拟风速的时间步 长;吵。为AR模型自回归系数矩阵,k一1,2,…, P;Ⅳ(£)为独立随机过程向量。 根据风速时程假定,式(4)两边同时乘 VT(X,Y,Z。f_Jf△£),并求数学期望有: B(jz、t)=一∑%R[(歹一是)at-I (歹一1,2,…,户)(5) 式中,R为pM×pM阶自相关Toeplitz矩阵。 则AR模型的正则方程为: 脚=[尝]㈤ 其中lf,=[咖,亿,…,以]T 式中,lf,为pM×M阶矩阵,咿为M×M阶方阵; RN为M×M阶方阵;q为(p一1)M×M阶矩 阵;其元素全部为0。 AR模型阶数根据最小AIC准则确定M。 AIC函数为: AIC(p)一N19Z+2(p+1)(7) 其中Z=2R(o)一R(N) 式中,N为样本容量。从一阶模型开始求AIC(p) 的函数值,直至找到使其最小的户为止,一般取 4"-5阶即可满足要求。 3算例 3.1风速时程模型 500kV栖霞一文登(昆嵛)送电工程直线塔 为5D—SZl双回路直线塔,塔高66.4m,档距500 m,建立三塔四线模型见图1。基于Matlab软件 编制脉动风速时程模拟程序,各参数分别为:①基 本参数。根据文献E7-1求得标准高度(10m)处平 均风速为口l。=29.665m/s,地面粗糙度系数k; 0.005;②时间和频率参数。时间步长0.1s, 时程总长t=300s,初始频率0.01Hz,截止频率 图1输电塔线模型 Fig.1Transmissiontowerlinemode 10Hz;③模型参数。节点设置总数为78个,计算 模型阶数p一4,表1为模型部分节点坐标值。 表1提取风速点坐标 Tab.1Coordinateofextractedpointsm 3.2风速时程分析 (1)点l的脉动风速时程曲线见图2、风速模 拟谱与目标谱拟合曲线见图3。由图可看出,采 用AR法编制程序模拟的脉动风速谱与采用 Kaimal谱计算获得的目标谱拟合效果好。 f,s 图2点1脉动风速时程曲线 Fig.2Timehistorycurveoffluctuating windspeedofpoint1 图3点1风速模拟谱与目标谱拟合曲线 Fig.3Fittedcurveofsimulatedspectrum andtargetspectrumofpoint1 (2)点l、6、14脉动风速时程曲线比较。为便 于比较,将点6、14的脉动风速值分别加20、40 m/s,比较结果见图4。由图可看出:①不同高度 处脉动风速变化趋势相同,但各时刻的速度不同, 表明脉动风速具有随机性;②随高度增大,平均风 速变大,但脉动风的波动区间变小。表明输电塔线 图4点1、6、14脉动风速时程曲线 Fig.4Timehistorycurveoffluctuating windspeedofpoint 1-6,14万方数据

精馏塔控制系统

第6章精馏塔控制系统 6.1 概述 精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。精馏的目的是利用混合液中各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。 轻组分的转移提供能量;冷凝器将塔顶来的上升蒸汽冷凝为液相,并提供精馏所需的回流。 精馏过程是一个复杂的传质传热过程。表现为:过程变量多,被控变量多,可操纵的变量也多;过程动态和机理复杂。因此,熟悉工艺过程和内在特性,对控制系统的设计十分重要。 6.1.1 精馏塔的控制要求 精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。 精馏过程是在一定约束条件下进行的。因此,精馏塔的控 制要求可从质量指标、产品产量、能量消耗和约束条件四方面 考虑。 1.质量指标 精馏塔的质量指标是指塔顶或塔底产品的纯度。通常,满 足一端的产品质量,即塔顶或塔底产品之一达到规定纯度,而 另一端产品的纯度维持在规定范围内。所谓产品的纯度,就二 元精馏来说,其质量指标是指塔顶产品中轻组分含量和塔底产 品中重组分含量。对于多元精馏而言,则以关键组分的含量来 表示。关键组分是指对产品质量影响较大的组分,塔顶产品的 关键组分是易挥发的,称为轻关键组分;塔底产品的关键组分 是不易挥发的,称为重关键组分。产品组分含量并非越纯越好, 原因是,纯度越高,对控制系统的偏离度要求就越高,操作成 本的提高和产品的价格并不成比例增加,因此纯度要求应与使图6.1-1 精馏塔示意图 用要求适应。 2.物料平衡控制 进出物料平衡,即塔顶、塔底采出量应和进料量相平衡,维持塔的正常平稳操作,以及上下工序的协调工作。物料平衡的控制是以冷凝罐(回流罐)与塔釜液位一定(介于规定的上、下限之间)为目标的。 3.能量平衡和经济平衡性指标 要保证精馏塔产品质量、产品产量的同时,考虑降低能量的消耗,使能量平衡,实现较好的经济性。 4.约束条件 精馏过程是复杂传质传热过程。为了满足稳定和安全操作的要求,对精馏塔操作参数有一定的约束条件。 气相速度限:精馏塔上升蒸汽速度的最大限。当上升速度过高时,造成雾沫带,塔板上的液体不能向下流,下层塔板的气相组分倒流到上层塔板,出现液泛现象。 最小气相速度限:指精馏塔上升蒸汽速度的最小限值。当上升蒸汽速度过低时,上升蒸汽不能托起上层的液相,造成漏夜,使板效率下降,精馏操作不能正常进行。

220KV输电线路组塔施工方案实用版

YF-ED-J3532 可按资料类型定义编号220KV输电线路组塔施工 方案实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

220KV输电线路组塔施工方案实 用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1 组立抱杆 1.1组立抱杆操作步骤是: (1)按抱杆各段的配置情况在地面组装 好。15m长的抱杆采取倒落人字钢抱杆组立的方 法,人字铝抱杆头抱带上抱杆帽,用3t卸扣分 别与牵引绳及吊点绳滑车连接,现场布置见图 1.1a。23m长的抱杆采取在基础中心立1根约 5m高的钢抱杆(即组塔抱杆的两段),再利用 钢抱杆吊立组塔抱杆的方法,但注意起吊滑车 挂在抱杆拉线的上方,当起立组塔抱杆至起吊

滑车不受力时,拆除起吊滑车,现场布置见图1.1b,工器具可在组塔工器具中选用。 (2)抱杆组立好后,绑扎好各部位的晃绳及牵引绳。布置抱杆顶部的四条拉线,拉线落地端锚于在预先挖埋好的地锚上,拉线对地夹角小于60°。拉线本身要缠绕在拉线控制器(φ100×250mm钢管)上不少于5圈。调好后拉线在本体上打一背扣,用三个元宝螺栓卡在本线上收紧拉线受力后,即解除吊点,松出牵引绳及晃(3)抱杆底座用四根钢丝绳(托绳)分别与四个基墩或塔腿连接(绑扎处须垫有麻袋等保护物),再收紧钢丝绳后,把抱杆底部固定在塔中心位置。解除吊点,松出牵引绳及晃绳。 (4)根据地形在横线路或顺线路方向布置

过程控制课程设计

… 辽宁工业大学 过程控制系统课程设计(论文) ¥ 题目:精馏塔塔内压力控制系统设计 、 院(系): 》 专业班级: 学号: 学生姓名: 指导教师:

起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院 教研室:测控技术与仪器 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号 学生姓名 专业班级 设计题目 精馏塔塔内压力控制系统设计 课 程 设 计 ( 论 文 ) 任 务 设计任务 设计精馏塔塔内压力控制系统设计,精馏塔塔内压力的单位阶跃响应曲线实验数据如下: 设计要求 1、根据实验数据辨识对象的数学模型,设计一个无差控制系统,确定控制方案并绘制原理结构图、方框图; 2、 选择传感器、变送器、控制器、执行器,给出具体型号和参数; 3、确定控制器的控制规律以及控制器正反作用方式;对设计的控制系统进行仿真,整定运行参数。 4、若设计由数字控制系统实现应给出系统硬件电气连接图及程序流程图; 5、按规定的书写格式,撰写、打印设计说明书一份;设计说明书应在4000 字以上。 技术参数 测量范围:0-5大气压,控制压力:1±大气压 ,超调量小于等于25%; 工作计划 1、布置任务,查阅资料,理解掌握系统的控制要求。(2天 ) 2、确定系统的控制方案,绘制原理结构图、方框图。(1天 ) 3、选择传感器、变送器、控制器、执行器,给出具体型号和参数。(2天 ) 4、确定控制器的控制规律以及控制器正反作用方式( 1天),调节阀的气开 气关形式以及流量特性选择。( 1天) 5、上机实现系统的模拟运行或仿真、答辩。(2天 ) 6、撰写、打印设计说明书(1天 ) 指导教师评语及成绩 平时: 论文质量: 答辩: 指导教师签字: 总成绩: 年 月 日

输电杆塔

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cccccccccccccccccccccccccccccccccccccccccccccccc一、填空(23分) 1.钢筋混凝土基础的表面缺陷有、、、四种类型。 2.混凝土强度检查有、、三种方法。 3.降低接地电阻的措施有、、、、等。 4.组立杆塔需要的主要工具有:、、、、、 5.腰滑车的作用是。 6.放线施工的基本有:、、、。二、判断题(10分) 1.震动对架空线的危害很大,易引起架空线断股甚至断线,因此根据设计要求施工紧线结束后应尽快安装防振金具。() 2.同一档距内,同一根导线的接头不允许超过一个。() 3.混凝土的水灰比主要指的是混凝土中水泥与水的质量之比。() 4.架空线的连接点应尽量靠近杆塔,以方便连接器的检测和更换。() 5.线路的终勘测量也称为定线测量。() 6.接地装置由接地体和接地引下线两部分组成。()7.混凝土的配合比是指组成混凝土的原料中水、水泥、砂、石的质量比,并以水为基数1。()

8.电杆各部件的穿向要求:顺线路者均由受电侧穿入。()9.混凝土杆在靠近地面处裂纹时,除用水泥浆填补外,还应在地面上下1米段内涂抹防腐沥青。() 10.钢丝绳手扳葫芦是一种设计新颖、制造精良的中型手动起重工具。()三、选择题(14分) 1.送电线路在跨越标准轨铁路时,其跨越档内() A 不允许有接头 B 允许有一个接头 C 允许有两个接头 D 不能超过3个接头 2.观测弧垂时,若紧线段为1~5档者,可选其中()A、两档观测 B、中间地形较好的一点观测 C三档观测 D、靠近紧线档观测 3.起重作业常用的麻绳有三种规格:()A 3、4、5股 B 2、4、9股 C 3、4、9股 D 4、5、9股 4.电力线路适当加强导线绝缘或减少避雷线的接地电阻,目的是为了()。 A、减少雷电流 B、避免反击闪络 C、减少接地电流 D、避免内过电压 5.架空施工时,某观测档已选定,当弧垂最低点低于两杆塔基部连线,架空线悬挂点

相关主题