搜档网
当前位置:搜档网 › 层析技术在生物制药产业上的应用

层析技术在生物制药产业上的应用

层析技术在生物制药产业上的应用
层析技术在生物制药产业上的应用

芜湖职业技术学院

毕业设计报告书

层析技术在生物制药产业上的应用

生物工程系

制药技术专业

08制药班学生贺行涛

系主任杨靖东指导教师曹侃

2010 年12月1日

芜湖职业技术学院

毕业设计任务书

2008——2011学年

生物工程系制药技术专业

编号批准日期

学生贺行涛系主任

Ⅰ设计题目:层析技术在生物制药产业上的应用

Ⅱ原始资料:

[1] 梁荣梯. 层析技术介绍[J]. 动物学杂志, 1983,

(01)

[2] 焦今召. 几种层析液分离色素的效果比较[J]. 生物学教学, 2000, (06)

[3] 张守本. 电阻率层析技术的一些新进展[J]. 世界核地质科学, 1998, (01)

[4] 张善法. 桩基检测中跨孔电磁层析技术的应用[J]. 地球物理学进展, 2005, (01)

[5] 江玉姬, 邓优锦, 刘新锐, 胡方平, 谢宝贵, 刘福阳, 黎志银. JS018菌有机磷农药降解酶的纯化[J]. 江西农业大学学报, 2006, (03)

[6] 江玉姬, 邓优锦, 刘新锐, 胡方平, 谢宝贵, 刘福阳, 黎志银. Roseomonas JS018有机磷农药降解酶的纯化[J]. 福建农林大学学报(自然科学版), 2006, (04) [7] 贾敏. 对比讨论常用三种静校正方法的优劣[J]. 知识经济, 2010, (14)

[8] 高友红. 层析液的配制[J]. 生物学通报, 1998,

(08)

[9] 齐翔林, 汪云九. 生物组织X光照片圆层析合成法的研究——Ⅰ、优化断层片的数学方法[J]. 生物物理学报, 1990, (04)

[10] 韩亮, 刘淑玲, 赵丽欣, 张秀霞, 杨桂云, 张志, 曾国华. 抗基因工程干扰素单克隆抗体的纯化[J]. 中国生物制品学杂志, 1993, (02)

[11] 刘程. 层析技术成为生物制药得力工具[N]. 中国医药报, 2007, (2007-04-26)

[12] 本报记者邢佰英俞叶峰. 安科生物争做生物制药先锋[N]. 中国证券报, 2009, (2009-09-23) [13] 记者卢志民特约通讯员李波. 投资6亿打造一流生物制药基地[N]. 湛江日报, 2009, (2009-12-30)

[14] 本报记者熊光明. 生物制药,打开医药产业新天地[N]. 中国医药报, 2010, (2010-04-15)

[15] 九鼎德盛. 生物制药多重利多因素提升市场机会[N]. 证券日报, 2010, (2010-11-13)

[16] 姜小莉. 现代“找药人”[N]. 常州日报, 2009, (2009-11-23)

[17] 记者杨俊坚. 民企发力生物制药[N]. 医药经济报, 2010, (2010-05-10)

[18] 本报记者陈术培. 奋力抢占全国生物制药“制高点”[N]. 成都日报, 2010, (2010-01-20)

[19] 本报记者黄捷文. 生物制药前景广阔[N]. 韶关日报, 2010, (2010-11-11)

[20] 王丹红. 冰岛著名生物制药公司申请破产保护[N]. 科学时报, 2009, (2009-12-02)

目录

摘要 (4)

关键词 (4)

正文…………………………………………………………6—20

1.层析定义与原理 (6)

2.分析工作范围 (6)

3.平面层析 (7)

4.薄层层析 (7)

5.气相色谱 (8)

6.高效薄层层析 (9)

7.吸附层析法 (10)

8.定制个性化层析 (12)

9.层析柱装填自动化 (12)

10.膜层析应用优势明显 (13)

11.层析技术在生物中的应用实例 (14)

12.国外生物制药现状 (16)

13.国内生物制药现状 (17)

14.我国生物制药产业的发展 (19)

层析的简单定义为:层析是一种差速迁移过程, 样品组分在其固定相与流动相间的分取决于组分对其中一相或二相的亲和力, 迁移的速率从零至流动相速度而不同刀。流动相可以是液体或气体;固定相可以是固体或是一些吸附于适当支持介质上与流动相不相混合的其它相。

液相层析(lc)指除气相层析(GC)以外的各种层析技术,包括纸层析(PC)、柱层析(CC)、薄层和高效薄层层析(TLC和HPTLC)以及高效液相层析(HPLC)。

层析过程是基于样品组分在互不相溶的两“相”溶剂之间的分配系数之差( 分配层析),组分对吸附剂吸附能力不同(吸附层析),和寓子交换, 分子的大小( 排阻层析) 而分离。

层析技术是功能最强大的纯化工具之一,广泛应用于多种行业。尤其在生物制药工业领域,不断改进完善的层析技术正在帮助制药厂家应对不断出现的产能挑战。近年来,为了满足对无杂质的蛋白质、病毒、核酸、酶和酶抑制物不断增长的需求,生产厂家不断增加层析技术在药物纯化方面的应用,随着应用的增加,层析工艺技术也出现了很多新的趋势。

在药物的开发、配方、销售和药物代谢动力学的评价中, 分析工作的范围包括如下几方面:

1 药物生产原料的鉴定和纯度测定;

2 药物的鉴定和纯度检查;

3药物中微量杂质的分离和鉴定;

4药物的降解率和降解产物的测定;

5制剂中药物的鉴定及其含量测定;

6制剂中降解产物的测定, 分离供毒性试验的物质;

7对小剂量处方中药物, 检测含量的均匀性;

8分析药物及其制剂中的其它物质(如水份, 残留溶剂,重金属, 防腐剂和特异的杂质);

9 测定体液中药物和代谢物的浓度, 以便确定药物在体内的吸收, 生物利用度和消除。

许多方法都可用来获得上述信息。包括颜色反应、熔点测定、分光光度

法(UV,IR,NMR和MS)旋光度折射率和微生物学测定.在一特定时间内, 层析法一般是能提供最多信息的技术。在某些情况下, 亦可将一种非专一一性的定量测定法(如分光光度法)与一种简单的定性层析试验(如TLC) 联用, 由于TLC可表明干扰杂质不存在, 因而这二种方法的联用可以提供GC或HPLC 分析同样多的信息, 而且较有经济效益

1、平面层析(planar chromatography)

平面或平板层一析包括纸层析(pc) 和薄层层析(tlc)技术。

1、1薄层层析(TLC)

薄层层析是一种简便、快速、微量的层析方法。一般将柱层析用的吸附剂撒布到平面如玻璃片上, 形成一薄层进行层析时一即称薄层层析。其原理与柱层析基本相似。

由于TLC具有较高的分辨率和能出现更多致密的色斑, 可用肉眼看出低浓度杂质的存在, 因而在各国药典中,TLC已逐渐取代PC.

TLC 的主要优点是经济和简便, 主要缺点则是, 尽管足以胜任许多限量试验的要求, 但由目测测量不免带有很高的主观性而且这种方法至多不过是半定量。在药典的不同标题项下(例如有关化合物分解产物,有关物质,外来物质等)均列有使用TLC的限量试验。限量试验中, 使用TLC的最常用方法是以物质的二种浓度水平进行检测。较稀的溶液代表允许杂质的最大浓度, 因而, 不需要参照样品。在显色后, 较稀溶液的层析图谱中应仅出现主要组分的一个斑点。Fairbroth(1984)综述了TLC在药学中的应用技术和应用范围, 后者包括药物鉴别, 杂质检查, 药物稳定性, 制剂分析, 体液中的药物,抗生素, 天然产物, 表面活化剂, 化妆品, 类脂物和添加剂等。毒物中或无标记白色片剂的活性成分的未知药物鉴别, 在无整套标准对照品存在下是完全不可能的。但是, 尽管由于实验条件不同, 实一验室间Rf 值有差异, 而TLC确实能提供一种简便和快速的鉴别方法。Dhont报道了一种简单校正Rf值的方法以沟通实验室间的相互关系。对特定实验条件仅使用二个参考物质(高Rf 值和低Rf值), 就可计算出校正因素数。因此, 这种方法可用于与其它实验室(例如文献报道值)的实验结果进行比较。该法与Moffatt 等由8个TLC 系统794个药物所得出的HRF值一起, 可用以抗组织胺类、局

部麻醉剂、中枢神经兴奋剂、磺胺类和苯二氮杂覃等类药物的鉴定

1、2高效薄层层析(HPTLC)

高效薄层层析定量分析可能比HPLC昂贵, 然而却有许多优点, 包括操作简便和样品通过速度快, 从而使得分析每个样品非常经济有效1985 年的国际会议指出, 就方法的准确度、多功能性、精密性和灵敏度方面,TLC 和HPTLC 都相当于或超过GC和HPLC

例如用TLC和HPTLC作沙丁胺醇的药代动力学研究, 可以测至1ug/ml 水平,而且测定比GC/MS快。一种用于控制抗生素生产发酵过程的单一半自动TLC系统可提供相当于8个HPLC系统所得等量的数据。用定量HPTLC分析体液中的药物和代谢产物已由Ritter综述。用液一液提取和tlc相结合的方法已用于药物制剂和生物体中药物的快速鉴别。柱层析在法定分析中, 常规的柱层析(用玻璃柱)常用在另一种分析方法(如分光光度法)之前作为一种纯化预处理操作。对痕量污染物的检测和测定, GC和HPLC往往优于其它方法, 但如果这些化合物不能从柱上洗脱, 则GC和HPLC显然不如TLC。因此GC或HPLC的选择取决于分析化合物的理化性质,样品的种类以及所要求的检测浓度。

对药物分析的应用, 一般采用HPLC多于GC, 这是因为:

1,HPLC的大多数分离都在室温进行,不易发生热分解;

2与GC分析所用的固定相相比HPLC仅需较少的层析柱就可进行一系列的分离;

3,HPLC 通常无需进行衍化操作ΗΕ , 混合基质(如油膏、霜剂万栓剂)中的药物, 毋需进行预提取步骤, 而可溶于适当溶剂中直接进样。另一方面, GC则不存在HPLC的溶剂浪费间题。

因此, 对每件检样的总耗费较低, 而且GC尤以毛细管柱对复杂组分(如挥发油类)的分辨率较HPLC好。

1、3气相层析

在药物分析中,GC 的应用研究有三个主要方面?? 原料测定Η不同处方中药物的含量测定Η药物中存在的杂质和溶剂的测定。多数的分析, 尤在法定分析中,’是利用1-3米长的填充柱, 并用火焰离子化检测器检测分

离的化合物。该法已应用于许多药物, 包括抗组胺类, 抗惊厥药, 镇痛药, 三环类抗抑制剂, 苯二氮草类, 中枢神经兴奋剂, 抗肿瘤剂, 抗生素和利尿剂等的定性和定量分析。GC与作为检测器的质谱联用, 又可获得用其它技术所未能取得的定性和定量信息。热解气相层析(PGC) 是将被分离物质先进热分解成更易挥发的成分然后再通过层析柱的一种气相层析法。此法主要应用于常规GC不能达到足够挥发性以进行分析的物质的检测。PGC在药物领域的应用很有意义且广泛,现已应用于微生物和真菌的鉴别、临床分析(对某些代谢失调, PGC/MS可提供一特有的线索)、毒物和药物分析(如巴比士酸盐类、吗啡、吩唾嗓类、磺胺类,青霉素和头抱菌素类等)。

1、4高效液相层析

HPLC是在药物分析中应用最为广泛的分析方法。该技术本身有助于自动化。最佳系列型号仪器包括自动进样器、三元或四元梯度溶剂系统, 柱转换装置和二极管阵列或快扫描UV检测器, 全部电子计算机化,对特殊的测定用数据处理设备计算结果并打印报告。目前, 正在设计更为精密的和专门适用于药品质量控制的HPLC仪器HPLC 中的傅里叶变换红外检测器的开发和合适的数据库联用, 又可提供一种非常强有力的分析工具。HPLC的许多应用虽无需对样品作进一步的纯化, 但却需要除去由于物理体积和化学行为(如蛋白质和类脂物)而损坏层析柱的杂质。简单的溶液(如注射剂)可直接进样或稀释至浓度适应于检测器的检测范围后注样。糖浆剂亦需稀释, 而片剂和胶囊则需置超声浴中处理并滤过以除去异常物质。尽管霜剂和软膏在用保护柱时可直接进样, 但最好预先分离亲脂性物质

例:层析技术携手蛋白质类药

据《药物技术》报道,随着对蛋白质类药物需求的增加,美国Pall 公司开发出了新型混合式层析吸附剂BioSepra PPA 和HEA HyperCel,可使蛋白质净化过程的速度更快、成本更低。与传统的吸附剂HIC 相比,这些新型吸附剂更具有价格竞争力,成本比许多亲和性介质要低得多。在生物制药领域,色层分析法应用于上游生产过程中,可提高高浓度蛋白质的产量。目前,蛋白质组的应用正推动着层析技术市场的发展,而应用层析技术则可以解决吸附剂下游生产的瓶颈,推动蛋白质类药物的生产发展。BioSepra PPA 和

HEA HyperCel 吸附剂可以区分那些具有类似等电离点的蛋白质,且不需要液向性或其他盐添加剂,因此,不太会受到那些可能导致蛋白质聚集及稳定性改变的有害处理条件的限制。而且,BioSepra PPA 和HEA HyperCel 可以加速原料或者中间体的黏合,同时避免对盐添加剂进行循环使用(这种用法费用昂贵并且污染环境),相应地节约了成本,运行费用也会大大降低。此外,由于这种新型吸附剂能够调节针对不同蛋白质的选择性,因此可应用于各种不同的领域,包括单克隆抗体(MAbs)、酶、疫苗、重组蛋白质和血浆分离等等。

1、5吸附层析法

吸附剂、溶剂与被分离物性质的关系:液- 固吸附层析是运用较多的一种方法,特别适用于很多中等分子量的样品(分子量小于1,000的低挥发性样品)的分离,尤其是脂溶性成分一一般不适用于高分子量样品如蛋白质、多糖或离子型亲水住化合物等的分离。吸附层析的分离效果,决定于吸附剂、溶剂和被分离化合物的性质这三个因素。

龄前吸附剂: 常用的吸附剂有硅胶、氧化铝、活性炭、硅酸镁、聚酰胺、硅藻土等。

硅胶: 层析用硅胶为一多孔性物质, 分子中具有硅氧烷的交链结构, 同时在颗粒表面又有很多硅醇基。硅胶吸附作用的强弱与硅醇基的含量多少有关。硅醇基能够通过氢键的形成而吸附水分, 因此硅胶的吸附力随吸着的水分增加而降低。若吸水量超过1 7 %, 吸附力极弱不能用作为吸附剂, 但可作为分配层析中的支持剂。对硅胶的活化, 当硅胶加热至100~110℃时, 硅胶表面因氢键所吸附的水分即能被除去。当温度升高至5 0 0 ℃时, 硅胶表面的硅醇基也能脱水缩台转变为硅氧烷键, 从而丧失了因氢键吸附水分的活往, 就不再有吸附剂的性质,虽用水处理亦不能恢复其吸附活性。所以硅胶的活化不宜在较高温度进行。硅胶是一种酸性吸附剂, 适用于中性或酸性成分的层析。同时硅胶又是一种弱酸性阳离子交换剂, 其表面上的硅醇基能释放弱酸性的氢离子, 当遇到较强的碱注化台物, 则可因离子交换反应而吸附碱性化合物。

氧化铝: 氧化铝可能带有碱性( 因其中可混有碳酸钠等成分) , 对于分

离一些碱性中草药成分, 如生物碱类的分离颇为理想。但是碱性氧化铝不宜用于醛、酮、醋、内酯等类型的化合物分离。因为有时碱性氧化铝可与上述成分发生次级反应。除去氧化铝中绚碱性杂质可用水洗至中性, 称为中性氧化铝。中性氧化铝仍属于碱性吸附剂的范畴, 本适用于酸性成分的分离。用稀硝酸或稀盐酸处理氧化铝, 不仅可中和氧化铝中含有的碱性杂质, 并可使氧化铝颗粒表面带有N O 3 - 或C I - 的阴离子, 从而具有离于交换剂的性质, 适合于酸性成分的层析, 这种氧化铝称为酸性氧化铝。供层析用的氧化铝, 用于拄层析的, 其粒度要求在100~160 目之间。粒度大子100 目,分离效果差: 小于1 6 0 目, 溶浓流速大慢, 易使谱带扩散。样品与氧化铝的用量比, 一般在1:(20~50)之间层析柱的内径与柱长比例在1:(10-20)之向。在用溶剂冲洗柱时, 流速不宜过快, 洗脱液的流速一般以每半~1 小时内流出液体的毫升数与所用吸附剂的重量( 克) 相等为合适。

活性炭: 是使用较多的一种非极性吸附剂。一般需要先用稀盐酸洗涤, 其次用乙醇洗,再以水洗净,于80℃干燥后即可供层析用。层析用的活性炭,最好选用颗粒活注炭,若为活性炭细粉,则需加入适量硅藻土作为助滤剂一并装柱,以免流速太慢。活性炭主要且于分离水溶性成分,如氨基酸、糖类及某些甙。活性炭的有为吸附作用,在水溶液中最强,在有机溶剂中则较低弱。故水的洗脱能力最弱,而有机溶剂则较强。例如以醇- 水进行洗脱时,则随乙醇浓度的递增而洗脱力增加。活性炭对芳香族化合物的吸附力大于脂肪族化合物,对大分子化合物的吸附力大于小分子化合物.利用这些吸附性的差别,可将水溶性芳香族物质与脂肪族物质分开,单糖与多糖分开,氨基酸与多肽分开。

溶剂: 层析过程中溶剂的选择, 对组分分离关系极大。在柱层析时所用的溶剂( 单一剂或混合溶剂) 习惯上称洗脱剂, 用于薄层或纸层析时常称展开剂。洗脱剂的选择, 须根据被分离物质与所选用的吸附剂性质这两者结合起来加以考虑在用极性吸附剂进行层析时, 当被分离物质为弱极性物质, 一般选用弱极性溶剂为洗脱剂; 被分离物质为强极性成分, 则须选用极性溶剂为洗脱剂。如果对某一极性物质用吸附性较弱的吸附剂( 如以硅藻土或滑石粉代替硅胶) , 则洗脱剂的极性亦须相应降低。在柱层操作时, 被分离

样品在加样时可采用于法, 亦可选一适宜的溶剂将样品溶解后加入。溶解样品的溶剂应选择极性较小的, 以便被分离的成分可以被吸附。然后渐增大溶剂的极性。被分离物质的性质: 被分离的物质与吸附剂, 洗脱剂共同构成吸附层析中的三个要素, 彼此紧密相连。在指定的吸附剂与洗脱剂的条件下, 各个成分的分离情况,直接与被分离物质的结构与性质有关。对极性吸附剂而言, 成分的极性大, 吸附住强。当然, 中草药成分的整体分子观是重要的, 例如极性基团的数目愈多, 被吸附的住能就会更大些, 在同系物中碳原子数目少些, 被吸附也会强些。

(一)定制个性化层析

目前有大量不同来源的基于重组细胞的治疗方法,包括哺乳动物和非哺乳动物细胞、转基因牛奶,以及玉米和烟草类植物。原料的多样性要求层析工艺的个性化,以达到最高的效能。在某些情况下,药物纯化过程可能包含多达 6 个独立的层析步骤。庆幸的是,层析工程技术能帮助生产厂家根据具体应用定制适合的解决方案。

对重组细胞治疗性药物的生产厂家而言,柱层析是下游生产过程中最常用、也是功能最强大的纯化方法,可采用包括亲和、离子交换、疏水作用以及金属螯合和凝胶过滤等在内的多种方法。随着要求高剂量和长期监管的药物数量不断增加,要以更快的速度增加产量以满足需求,这已为厂商带来巨大压力。通过扩大柱层析设备实现产能增加,目前生产中所使用的最大层析柱直径超过两米,而且在某些生产设备中可能还需要更大的层析柱。

(二)层析柱装填自动化

近年来,柱层析方法进行了许多方面的创新,尤其表现在自动化和过程控制领域中。用于流体传送和数据采集的新式精确控制器以及先进的处理系统都提高了柱层析的可靠性和重现性。自动化促进柱层析科学发展的一个领域是装填工序。将介质装填到层析柱中曾经被认为是一项需要熟练技巧、劳动强度大的生产活动,需要大量的操作培训才能保证一致性。但是,事实上,再纯熟的人工操作也会导致不定因素出现,并可能破坏批次生产的重复性。对药品的研发而言,

重复性是非常关键的,若层析柱装填没有达到标准,产品纯度和产率就会受

影响。最严重的结果是,该批生产会遭到破坏,导致成本大幅超支和生产停工。

层析柱装填的创新突破在于采用自动原位装填技术,即在装填过程中,通过独立的装填工作站,重悬介质并泵入组装好的柱内。原位装填有利于介质均匀装填到柱内,带来更好的分辨率和产率。它还确保了填充床更稳定,从而提高了批次间的一致性。

自动原位装填的另一优点是使整个过程更加符合卫生要求,因为操作员使用的是全封闭系统。所有装填和在位清洁工序无需拆卸柱头,消除了生产过程中的污染风险,并且在某些情况下还可防止操作员在处理生物危险性物品时受到伤害。目前,全球有超过 70%的新型柱层析操作设备采用原位装填系统。

柱层析最重要的发展之一是采用超声波技术监测柱内填料床的密度。尽管仍处于发展阶段,但以超声波辅助层析柱装填的应用迟早会商业化。其性能直接决定了它具有很大的潜力,可以为操作员判断层析柱的装填情况提供精确的工具。

超声波检测器对层析柱中的柱床压缩、流动组成和可溶成分的存在非常敏感。超声波可检测层析柱使用之前所记录和验证的"实时"组成数据,与来自装填工作站的动态反馈控制,能帮助确保在使用之前装填的一致性和准确性。

(三)膜层析应用优势明显

在许多应用中,膜层析在速度和工艺经济性方面表现出显著的优势。这项技术是采用多孔膜并在膜表面键合活性化学基团。膜层析具有一种孔结构,该结构可通过化学修饰键合带电的亲水聚合物。与常规的层析填料相比,开放的孔结构能为生物分子结合提供更多可供使用的表面积。对流孔促使物质传递快速而且有效,因为流体流动直接穿过膜孔,没有扩散流限制。

目前,膜层析已成功应用于生产规模中 DNA、蛋白质和病毒的捕获和去除。抛弃型装填好的层析膜柱,其去除杂质的速度是柱层析的 100倍。在柱层析中可供结合的表面积大多位于填料孔结构中,只有通过扩散力才能达到。大分子和病毒无法扩散到这些孔隙中,仅与填料外表面位点结合。与柱

层析相比,无扩散流限制的膜层析在去除 DNA、病毒、质粒等方面高出10~100 倍。膜层析同样可以线性放大,这是生产厂家把产品从实验室规模放大到生产规模需要考虑的关键因素。

在捕获大分子方面,膜层析比柱层析更加有效,这在需要捕获小型质粒DNA 或病毒的大规模生产中特别有优势。在基因治疗载体的纯化方面,膜层析日益被认为是一项可行性技术。带正电荷的 Q膜可有效结合大小为 23kb 的质粒 DNA,同时膜层析的快速处理可以有效分离不稳定的大分子质粒。

膜层析可有效地去除模型病毒,比如猪细小病毒、甲型肝炎病毒、鼠白血病病毒和伪狂犬病病毒,去除效率为 104和 107。

在具有代表性的案例中,膜层析作为纯化后期精纯步骤获得了成功的实施。美国食品药品管理局(FDA)和欧盟药品委员会(EMEA)批准了采用膜层析来纯化 Aldurazyme,后者是美国生物制药公司 BioMarin 生产的一种酶替代治疗药物。当与基于膜的分子排阻超滤过程一起使用时,膜层析按FDA 和 EMEA 规定,提供病毒去除的正交法。这使 BioMarin 公司免于进行DNA分批检测,成为蛋白质药物生产中的一个里程碑。而且,除了每批生产平均节省 2000 美金以外,BioMarin 公司已经大大减少了生产批次失败的可能性,而失败的代价是极其高昂的。通过广泛采用与此类似的工艺,生物制药公司在单克隆抗体类和重组蛋白药物的生产中可节省数千万美元。

膜层析可做成抛弃型或重复使用型。它们的应用非常灵活,能经常作为精纯步骤添加到现有的生产环节中。由于膜层析可以一次性使用,不存在清洁或清洁检验的问题,大大加快了生产速度并且减少了劳动力和缓冲液成本。

生物制药是以基因工程为基础的现代生物工程,即利用现代生物技术对DNA进行切割、连接、改造,生产出传统制药技术难以获得的生物药品。而现代生物技术是以基因为源头,基因工程和基因组工程为主导技术,与其他高技术相互交叉、渗透的高新技术。

层析技术在生物中的应用实例

例如:

层析法又称纸色谱法。以纸为载体的色谱法。固定相一般为纸纤维上吸

附的水分,流动相为不与水相溶的有机溶剂;也可使纸吸留其他物质作为固定相,如缓冲液,甲酰胺等。将试样点在纸条的一端,然后在密闭的槽中用适宜溶剂进行展开。当组分移动一定距离后,各组分移动距离不同,最后形成互相分离的斑点。将纸取出,待溶剂挥发后,用显色剂或其他适宜方法确定斑点位置。根据组分移动距离(Rf值)与已知样比较,进行定性。用斑点扫描仪或将组分点取下,以溶剂溶出组分,用适宜方法定量(如光度法、比色法等)。在环境分析测试中,有时用纸层析法分离试样组分,它用于一些精度不高的分析,如3,4-苯并芘。但不如GC、HPLC应用普遍。

1.1 作用

洗去浮色。

1.2 原理

苏丹Ⅲ是弱酸性染料,易溶于体积分数为50%酒精。

1.3 应用

脂肪的鉴定实验。在该实验中,用苏丹Ⅲ对花生子叶薄片染色后,在薄片上滴1~2滴体积分数为50%的酒精溶液,可以洗去被染玻片标本上的苏丹Ⅲ染液浮色。

2 体积分数为95%的酒精

2.1 作用

①解离;

②析出提取含杂质较少的DNA。

2.2 原理

①解离原理:用质量分数为15%的盐酸和体积分数为95%的酒精1∶1混合,能使组织中的细胞相互分离开来;

②析出提取含杂质较少的DNA的原理:DNA不溶于酒精,尤其是体积分数为95%的冷冻酒精,而细胞中的某些物质可以溶解于酒精。

2.3 应用

①观察植物细胞的有丝分裂;

② DNA的粗提取与鉴定。

3 体积分数为75%的酒精

(一)国外生物制药现状

目前正在临床开发中的创新生物技术产品:

①Genentech公司的抗血管内生长因子(VEGF),用于结肠和非小细胞肺癌(皿期临床试验);

②Dendreon公司的树状细胞免疫制剂,用于前列腺癌m期临床试验);

③GenvZme公司的树状细胞免疫制剂,用于乳场(1期临床试验)和黑色素瘤(二周期临床试验);

④nxx/$纳一兰伯特公司的 ONYX—015肿瘤抑制剂基因治疗,用于头颈癌(I期临床试验);

⑤Genetech/诺华/Tanox Blosystems公司的抗 IgE人源化单克隆抗体,用于气喘(完成皿期临床试验);

⑥Progenics公司的PRO542,用于HIV;

⑦罗氏公司的聚乙二醇化干扰素Pegasre,用于丙型肝炎mM临床试验);

⑧NPS制药公司的重组人甲状旁腺激素,用于骨质疏松(II期临床试验);

⑨CeltriX制药公司的免疫系统增强药Somatokine,用于严重烧伤(完成11期临床试验);

⑩onnetics公司的弛缓素蛋白onxn,用于硬度病(I/m期临床试验)

11 Ah6g6nix公司的抗体ABX—ILB,用于牛皮癣(liP临床试验)PhRMA1988年第一次生物技术调查时仅有幻个临床试验中产品,而今年2月份进行调查时,已有76个生物技术产品被FDA批准。“美国生物技术产品的销售额1991年为58亿美元,1996年为101亿美元,2000年则达到5000亿美元。目前仅在美国从事生物技术开发研究的公司就有1140多家,西欧800多家,日本也有800多家。欧洲和日本也是生物技术产业发展较快的地区,其中日本生物技术产品的销售额,1991年仅为2648亿日元,1996年为6552亿日元,1998年则达到 10433亿日元。

(二)国内生物制药现状

治疗用粘质沙雷氏菌菌苗(商品名:雷舒宁)、外用重组人碱性成纤维细胞生长因子(商品名:扶济复)(2种,不同申请单位和不同规格)、

外用冻干重组人表皮生长因子、口服重组B亚单位瘤体霍乱菌苗(肠溶胶囊)。

①徽安科公司:该公司是专门从事基因工程药物研制、开发和生产的高新技术企业,相继开发了“人a一干扰素单克隆抗体亲和层析胶”、“重组人干扰素db”、“重组人生长激素”等具有国际先进水平的生物高科技产品,填补了我国多项空白,井成功地实现了产业化,产生了很大的经济效益。

目前公司正在研制的国家一类新药“基因重组葡激酶”已完成了全部新药研制工作,即将进人临床试验。

②山东东阿阿胶集团:

从1995年开始进行生物药品研究,于1998年出色完成了属世界高精度技术产品的基因工程药物——用于肾性贫血及多种贫血替代输血治疗的重组人红细胞生成素(简称EPO)。有关专家和权威人士一致认为,东阿阿胶集团公司研制的EPO在产品内在质量、生产技术等方面处国内领先地位,细胞表达量在国际上也名列前茅。随后公司以EPO为起点,先后投巨资开发了升高血小板的白介素一fi等3个基因工程药物新产品,从而在企业形成了一个高科技产品群。预计三年以.该公司将发展成为山东省规模最大的基因工程制药基地,届时至少有6个基因工程药物产品上市。

③云南大学生物技术有限公司:

该公司运用单克隆生物技术生产的系列产品——“安全期”避孕试纸、优生试纸、女性不孕检测试纸已正式大批量投放市场。并已有昆明高新技术产业开发区内投资建设了一条国内一流、日产8万条试纸的生产线。

④杭州生物制药:

目前杭州市具有现代生物医药开发能力的医药企业已达15家,先后开发引进了20余项高科技产品,直接创造经济效益近10亿元。其中部分成果在国内处于领先水平。据有关人士介绍,今年杭州市还将有10多个新产品投人生产,预计可带来近10亿元的产值。

⑤深圳科兴生物制品有限公司:

该公司投资7亿元在深圳兴建亚洲最大的生物工程产业化基地——“北大生物谷”。“北大生物谷”是深圳市政府、北京大学、香港科技大学联合建立的产学研基地,主要项目有基因工程干扰素、基因工程胰岛素等。

⑥里湖科技股份有限公司:

该公司主要投资基因芯片,公司将出资2.5亿元设立上海博星基因芯片有限责任公司。据悉,博星公司将充分利用现有的基因芯片技术和资源,进行基因表达港芯片、商品检测芯片、疾病诊断芯片、芯片实验室系统等基因芯片产品的生产、经营和技术开发、服务。

⑦浙江青荷生化股份有限公司:

投资1.36亿元兴建“青荷生化”生物工程项目一利他乐肝宝囊、苦瓜系列产品开发。该项目属新建高科技生物工程,其产品可作为熊胆替代品进行系列开发。

⑧吉林东升药业有限公司:

该公司建成投产后,主要生产生物制品、免疫制品、生化制品等。预计年销售额可实现1.2亿元,利税5000万元。与此同时,该公司还将陆续生产代表国际先进水平、填补国内空白的‘’特异性抗轮状病毒免疫球蛋白肠溶微囊”等国家一类新药。

⑨青岛将建国际创新生物谷及生命科学研究院:

据了解,生物谷将遵循现代企业制度,采用资本运作的方式,大力促进科技成果转化,并着力于机制创新,完善创业环境,最终成为国际知名的生物科学研发和产业化基地。

⑩天津市将建国家干细胞基因工程产业化基地:

“基地”正式落户天津华苑产业园区,园区预计将在3年内建成我国最大的干细胞库、干细胞移植中心以及相关科研用基础设施。

哈尔滨工大高行技术产业开发股份有限公司与哈佛合作开发善因药物。合作有两个项目:一是投资1800万元搞基因药物疗法治疗银屑病项目,该药品是由哈工大与哈佛大学生命科学院、美国波士顿大学共同研制而成。第二个项目是投资1.6亿元筹建工大生命科学园。

(三)我国生物制药产业的发展

1、国际医药产业巨大的经济效益来源于创新,发达国家现代生物医药产业都拥有自己实力雄厚的研究机构,通常每年投人的经费占全部销售额的历10%一20%,而美国每年用于研究开发生物药品的投人占总投资额的60%~70%。每个大型医药公司都有自己“拳头产品”,单个产品的年销售额就可达十亿至几十亿多元。公司拥有这些产品的知识产权,国家给予专利保护,产占可以在10年或更长时间内独占市场,一个产品就可赢得丰厚的利润,再从利润中拿出巨额资金投入研究开发新的具有知识产权的创新药物,周而复始形成良性循环。从美国生物制药发展模式来看,技术力量雄厚的专家型小生物技术公司进行技术开发与创新,大制药公司通过战略联盟实现生物技术的产业化,风险投资为生物技术开发提供资金支持,这三种力量的有机结合是生物制药产业良性发展的关键。而从目前我国生物制药产业模式来看,主要通过购买技术实现生产,风险投资机制不足且资金太少,另外技术创新力量薄弱。因此,生物技术产业很难形成气候。我国的医药企业规模小而分散,大多不具备技术开发与创新能力,生产的产品基本是引起仿制产品,重复开发投资现象也非常严重,恶性性竟争必然带来效益低下的状况。

我国药品进口额呈逐年上升趋势,三资企业产品销售额也在逐年增长,一份国外研究报告中指出:“如果政府不干预,中国的医药市场将在5年内完全被国际医药大公司操纵。”

2、低水平重复研究、重复建设严重,市场竞争非常激烈。生物技术产品的广阔前景和丰厚收益吸引了国内众多企业加人开发,但其中多数是仿制国外的,品种少,厂家多,在同一水平上重复建设投资。

3、开拓市场能力低。由于产品生产工艺水平和经营手段落后,国内市场将面临进口药品的冲击。

具体表现为:

一是对国外市场开拓不够,许多企业的市场定位不准;

二是开发市场的投入量不足;

三是生物药品良好的临床效果虽得到医务人员和患者的肯定,但其售价相对偏高,消费能力不足。

因此,我国需要进一步加大对生物制药产业的资金与投术投人,并深化科研成果产业化的机制改革,在这一过程中,尤其要发挥资本市场和凤险投资公司的积极作用。

层析法的最大特点是分离效率高,它能分离各种性质极相类似的物质。而且它既可以用于少量物质的分析鉴定,又可用于大量物质的分离纯化制备。因此,作为一种重要的分析分离手段与方法,它广泛地应用于科学研究与工业生产上。我相信层析技术在制药技术发面有很好的方法!

生物制药专业简介

生物制药专业简介 培养目标: 培养适应社会主义现代化建设和医药卫生事业发展需要,德、智、体、美全面发展,具备药学和生物学的基本理论、基本知识和基本技能,掌握生物制药的基本原理和技术,熟悉生物医药分析和药品检验技术,能在生物制药研究、开发、生产以及医学检验、卫生防疫等领域从事相关工作的应用型人才。 培养要求: 本专业学生应掌握生物化学、生化分离分析技术、生物技术及工业药剂学等方面的基本理论知识和专业技能,受到生物制药研究和生产技术的基本训练,毕业后能从事生物药物的资源开发、产品研制、生产、技术管理、质量控制等工作。学制:四年制本科。 授予学位:理学学士。 主干学科:药学、生物学。 主要课程:生物化学、微生物学、解剖生理学、分子生物学、细胞生物学、生物制药工艺学、生物药物分析、抗生素、发酵工艺学、生物技术药物、药理学、药剂学。 专业特色和优势: 1、生物制药专业是高新生物技术应用专业,具有广阔的发展前景 21世纪是生命科学的世纪,生物技术产业已经成为国际科技竞争乃至经济竞争的重点,生物制药是生物技术产业的龙头,被称为“永不衰落的朝阳产业”。我国在“十一五”发展规划中,把发展生物技术制药作为迎头赶上国际高新技术水平的重点领域之一。由于生物技术的飞速发展,生物药物的研究与开发已成为生命科学研究中极其活跃的组成部分,特别是人类基因组计划的实施,更是激起了人们对生物药物研究领域的关注。生物制药产业迅猛崛起,生物医药产业化发展急需应用型创新人才。 2、培养目标定位准确,符合社会和市场需要

本专业设立了由行业专家、一线管理人员和专业教师组成的专业指导委员会,共同制订专业培养方案,以全面素质为基础,以能力为本位,瞄准社会和行业需求,准确定位培养目标。毕业生受到用人单位的普遍欢迎。 3、业务素质过硬的师资队伍 本专业拥有一支教育观念新、理论水平高、改革意识强、专业能力强,热心高等教育的师资队伍。生物制药专业带头人为潘扬教授,教研室现有教授1人,副教授2人,讲师7人,实验师1人。目前承担生物制药、药学、中药、药物制剂等专业的生物制药工艺学、生物药物分析、抗生素、发酵工艺学、生物技术药物、药用真菌学等多门课程的教学任务。在科研方面,主持或参与国家级、部省级等各级各类课题20余项,在国内外权威学术期刊发表论文150多篇,出版著作6部,获得部省级科研教学成果奖6项。

层析技术的应用

层析技术的应用 一、层析技术的原理和分类 (一)层析技术的原理 层析法是目前广泛应用的一种分离技术。本世纪初俄国植物学家M.Tswett发现并使用这一技术证明了植物的叶子中不仅有叶绿素还含有其它色素。现在层析法已成为生物化学、分子生物学及其它学科领域有效的分离分析工具之一。 层析法是利用不同物质理化性质的差异而建立起来的技术。所有的层析系统都由两个相组成:一是固定相,它或者是固体物质或者是固定于固体物质上的成分;另一是流动相,即可以流动的物质,如水和各种溶媒。当待分离的混合物随溶媒(流动相)通过固定相时,由于各组份的理化性质存在差异,与两相发生相互作用(吸附、溶解、结合等)的能力不同,在两相中的分配(含量对比)不同,而且随溶媒向前移动,各组份不断地在两相中进行再分配。与固定相相互作用力越弱的组份,随流动相移动时受到的阻滞作用小,向前移动的速度快。反之,与固定相相互作用越强的组份,向前移动速度越慢。分部收集流出液,可得到样品中所含的各单一组份,从而达到将各组份分离的目的。 (二)层析法分类见表16-5~7 (三)层析法的特点与应用 表16-5按两相所处状态分类 层析法是根据物质的理化性质不同而建立的分离分析方法。根据层析峰的位置及峰高或峰面积,可以定性及定量。层析法与光学、电学或电化学仪器连用,可检测出层析后各组份的浓度或质量,同时绘出层

析图。层析仪与电子计算机联用,可使操作及数据处理自动化,大大缩短分析时间。由于层析法具有分辨率高、灵敏度高、选择性好、速度快等特点,因此适用于杂质多、含量少的复杂样品分析,尤其适用于生物样品的分离分析。近年来,已成为生物化学及分子生物学常用的分析方法。在医药卫生、环境化学、高分子材料、石油化工等方面也得到了广泛的应用。 表16-6按层析原理分类 表16-7按操作形式不同分类

高职高专教育生物制药技术专业设置基本要求方案

高职高专教育生物制药技术专业设置基本要求(试行) 1 总则 1.1 指导思想和依据 为了加强高职高专药学教育的宏观管理,规范高职高专生物制药技术专业设置,保证其教育教学质量和办学效益,促进高职高专药学教育事业健康、协调、可持续发展,特制定《高职高专教育生物制药技术专业设置基本要求(试行)》(以下简称“要求”)。 本《要求》以《中华人民共和国高等教育法》、《中华人民共和国职业教育法》、《中共中央国务院关于深化教学改革全面推进素质教育的决定》、《中国教育改革和发展纲要》、《教育部关于加强高职高专教育人才培养工作的意见》、《普通高等学校高职高专指导性专业目录(试行)》以及教育部、卫生部、国家食品药品监督管理局其它相关法规和文件的精神为指导。 1.2 学校的基本办学条件 申报设置本专业的学校必须达到教育部《普通高等学校基本办学条件指标(试行)》(教发[2004]2号)的要求,并达到《高职高专院校人才培养工作水平评估方案(试行)》(教高厅[2004]16号)的要求。 1.3 适用范围 本《要求》适用于已设置和申报设置高职高专生物制药技术专业的全日制普通高等院校(含民办高等学校)。

2 专业设置的基本原则 设置高职高专生物制药技术专业必须符合国家医药教育发展的总体规划和布局;适应所在社会区域、经济以及医药卫生发展规划;进行充分的医药市场人才需求调研、预测以及可行性论证;办学指导思想明确,有切实可行的专业建设规划和实施办法。有健全的专业教学组织、教学管理制度以及科学、合理、切实可行的教学计划。符合教育部专业设置的有关规定和申报程序。 3 专业面向 本专业培养的人才主要面向医药行业,从事生物药物生产、质量检测、经营管理等工作。 4 专业培养目标和要求 4.1 培养目标 本专业旨在培养拥护党的基本路线,德智体美全面发展,掌握生物药物尤其是抗生素类药物生产、菌种筛选、质量控制、设备维护等所必需的实践操作技能和基本理论知识,具有良好的职业素质和文化修养,面向医药行业,从事生物药物生产、质量检测、经营管理等工作的高级技术应用性专门人才 4.2 专业培养要求 本专业学生应掌握生物制药的基本理论、基本知识和基本技能,掌握生物药物的制备方法、生产工艺、质量控制方法和应用,接受药品工业化大生产的基本培训,具有药品生产、操作和管理的基本能力。毕业学生应获得以下几个方面的知识和能力:

动物细胞生物制药应用

第11讲 动物细胞生物制药应用

新民周刊 2010,5.17-23.P76-9 2010.11.2:世界肺炎日(第2个) 全球每年约有160万人死于肺炎链球菌 疾病,平均每38秒1名5岁下儿童死于此 病,1100万儿童因肺炎住院。导致儿童 死亡的头号杀手,并高致残:智力低下 、癫痫(17%)、耳聋(27.7%)。 中国是10个肺炎发病率最高的国家之一 ,1/4儿童携带病菌;死亡儿童该病占 46.8%。占西太平洋区的70%。 红霉素不敏感几乎达到100%,青霉素达 86%。 1983年23价肺炎链球菌夾膜多糖疫苗 PPV23诞生。2000年针对2岁以下儿童的 7价肺炎链球菌蛋白结合疫苗PPV7问世 。目前已经接种3亿剂,世界第一大单 个疫苗。 肺炎链球菌发现100年后,真正安全有 效的PPV7疫苗才大规模使用。制造工艺 非常复杂,约需要一年左右。只有爱尔 兰、美国两家工厂。

猪流感(Swine Flu),是猪群中发现的一种可引起地方性流行性感冒的正黏液病毒,属呼吸系统疾病,由甲型流感病毒(A型流感病毒)引发。 以往曾经发生人类感染猪流感,但未有发生人传人案例。2009年4月墨西哥猪流感造成数150多死亡事 件,并在多个国家蔓延。 病毒及病毒疾病 甲型H1N1 流感病毒

H、N的意思 世界卫生组织2009年4月30日建议使用“A/H1N1流感”的名称。 病毒根据抗原性的不同,可分为A、B、C三型。根据血凝素(Hemagglutinin,H)和神经氨酸酶(Neyramidinase,N)的抗原特性,将A型流感病毒分成不同的亚型。目前,有15种特异的H亚型和9种特异的N亚型。 病毒进入细胞:血凝素(H)能和细胞膜上的蛋白结合,在细胞上打开一个通道,使得病毒能进入细胞。 病毒要钻出宿主细胞:神经氨酸酶(N)通过“水解”的方式切断病毒和宿主细胞的最后联系,使病毒脱离宿主细胞。

层析技术在生物制药产业上的应用

芜湖职业技术学院 毕业设计报告书 层析技术在生物制药产业上的应用 生物工程系 制药技术专业 08制药班学生贺行涛 系主任杨靖东指导教师曹侃 2010 年12月1日

芜湖职业技术学院 毕业设计任务书 2008——2011学年 生物工程系制药技术专业 编号批准日期 学生贺行涛系主任 Ⅰ设计题目:层析技术在生物制药产业上的应用

Ⅱ原始资料: [1] 梁荣梯. 层析技术介绍[J]. 动物学杂志, 1983, (01) [2] 焦今召. 几种层析液分离色素的效果比较[J]. 生物学教学, 2000, (06) [3] 张守本. 电阻率层析技术的一些新进展[J]. 世界核地质科学, 1998, (01) [4] 张善法. 桩基检测中跨孔电磁层析技术的应用[J]. 地球物理学进展, 2005, (01) [5] 江玉姬, 邓优锦, 刘新锐, 胡方平, 谢宝贵, 刘福阳, 黎志银. JS018菌有机磷农药降解酶的纯化[J]. 江西农业大学学报, 2006, (03) [6] 江玉姬, 邓优锦, 刘新锐, 胡方平, 谢宝贵, 刘福阳, 黎志银. Roseomonas JS018有机磷农药降解酶的纯化[J]. 福建农林大学学报(自然科学版), 2006, (04) [7] 贾敏. 对比讨论常用三种静校正方法的优劣[J]. 知识经济, 2010, (14) [8] 高友红. 层析液的配制[J]. 生物学通报, 1998, (08) [9] 齐翔林, 汪云九. 生物组织X光照片圆层析合成法的研究——Ⅰ、优化断层片的数学方法[J]. 生物物理学报, 1990, (04) [10] 韩亮, 刘淑玲, 赵丽欣, 张秀霞, 杨桂云, 张志, 曾国华. 抗基因工程干扰素单克隆抗体的纯化[J]. 中国生物制品学杂志, 1993, (02) [11] 刘程. 层析技术成为生物制药得力工具[N]. 中国医药报, 2007, (2007-04-26) [12] 本报记者邢佰英俞叶峰. 安科生物争做生物制药先锋[N]. 中国证券报, 2009, (2009-09-23) [13] 记者卢志民特约通讯员李波. 投资6亿打造一流生物制药基地[N]. 湛江日报, 2009, (2009-12-30)

2018年生物技术制药习题及答案

2018年生物技术制药习题及答案 一、选择填空题 1. 酶的主要来源是什么? 微生物生产。 2. 第三代生物技术是什么? 基因组时代。 3. 基因治疗最常用的载体是什么? 质粒载体和λ噬菌体载体。 4. 促红细胞生长素基因可在大肠杆菌中表达。但不能用大肠杆菌工程菌生产人的促红细胞生产素为什么? 因为大肠杆菌不能使人的促红细胞生长素糖基化, 人的促红细胞生长素对大肠杆菌有毒性作用。 5. 菌体生存所需能量已菌有氧代谢所需能量在什么情况下产生代谢产物乙酸?

菌体生长所需能量 (大于) 菌体有氧代谢所能提供的能量时, 菌体往往会产生代谢副产物乙酸。 6.cDNA 第一链所合成所需的引物是什么? cDNA 第一条链合成所需引物为 PolyT 。 7. 基因工程制药在选择基因表达系统时首先考虑什么? 表达产物的功能。 8. 为了减轻工程菌代谢负荷,提高外源基因表达水平可采取什么措施? 将宿主细胞生长和外源基因的表达分成两个阶段。 9. 根据中国生物制品规定要求,疫苗出厂需要经过哪些检验? 理化检定、安全检定、效力检定。 10. 基因工程药物化学本质是什么? 蛋白质。

11.PEG 诱导细胞融合? PEG 可能与可能与临近膜的水分相结合, 使细胞之间只有微笑空间的水分被 PEG 取代, 从而降低了细胞表面的极性,导致双脂层的不稳定,使细胞膜发生融合。 12. 以大肠杆菌为目的基因表达系统的表达产物,产物位置是什么? 胞内、周质、胞外。 13. 人类第一个基因工程药物是什么? 重组胰岛素。 14. 动物细胞培养的条件是什么? 温度 :哺乳类 37昆虫 25~28, ph7.2~7.4,通氧量:使 co2培养箱,不同动物比例不同。防止污染, 基本营养物质:三大营养物质维生素, 激素, 促细胞生长因子, 渗透压:大多数 260~320。 15. 不属于加工改造抗体的是什么? 单域抗体。 16. 第三代抗体是什么?

生物制药复习提纲和答案说课材料

基本概念: 1.生物药物 是利用生物体、生物组织或其成分,综合应用生物学、生物化学、微生物学、免疫学、物理化学和药学的原理与方法进行加工、制造而成的一大类预防、诊断、治疗制品。 2.生物技术药物 是指采用DNA重组技术、单克隆抗体技术或其他生物技术研制的蛋白质、抗体或核酸类药物。生物技术药物可以是在药理上有高度活性的,也可以是在免疫或其他生理系统上有活性的。生物技术药物可以分为三大类,即重组蛋白质、治疗性抗体和核酸。 3.生物制品 用微生物及微生物代谢产物或动物血清制成的用于预防、诊断和治疗的制品。 4.生物制药工艺学 是从事各种生物药物的研究、生产和制剂的综合性应用技术科学。研究内容包括生化制药工艺、生物制品制造与相关的生物医药产品的生产工艺。主要讨论各类生物药物的来源、结构、性质、制造原理、工艺过程、生产技术操作和质量控制。 5.抗生素 青霉素、链霉素、红霉索等一类化学物质的总称。它是生物,包括微生物、植物和动物,在其生产活动过程中所产生,并能在低微浓度下有选择性地抑制或杀灭其他微生物或肿瘤细胞的有机物质。 6.热原质 热原质是在生产过程中由于被污染后由杂菌所产生的一种内毒素。 7.四环类抗生素 是以四并苯为母核的一类有机化合物。金霉素、土霉素、四环素、地美环素。四环类抗生素可与微生物核糖核蛋白体30S亚基接合,通过抑制氨基酰-tRNA与起始复合物中核蛋白体的结合,阻断蛋白质合成时肽链的延长。 8.大环内酯类抗生素 由链霉菌产生的弱碱性抗菌素,因分子中含有一个内酯结构的14或16元环而得名,红霉素是本类药物最典型的代表。大环内酯类作用于细菌细胞核糖蛋白体50s亚单位,阻碍细菌蛋白质合成,属于生长期抑制剂。 9.β-内酰胺类抗生素 10.氨基糖苷类抗生素 由氨基环醇(aminocyclitol)、氨基糖(aminosuger)和糖组成的抗生素的总称。 11.耐药性 12.干扰素 系指由诱导剂诱导有关生物细胞所产生的一类高活性、多功能的诱生蛋白质。这类诱生蛋白质从细胞中产生和释放之后,作用于相应的其它同种生物细胞,并使其获得抗病毒和抗肿瘤等多方面的免疫力。有α型、β型和γ型及许多亚型。 13.硫酸软骨素 硫酸软骨素一般含有50~70个双糖单位,链长不均一,相对分子质量在1~3万,硫酸软骨素按其化学组成和结构差异,又分为A、B、C、D、E、F、H等多种。它们均由D-葡萄糖醛酸和N-乙酰-D-氨基半乳糖组成,只是硫酸基团位置不同而己。 14.肝素 属高分于化合物,分于量6 000~20 000以前肝素钠一般都由动物肝脏中提取,现在大多从猪、羊、牛等动物的肠粘膜中提取,亦可从肺脏和心脏中提取。作为一种重要的生化药物,是一簇酸性粘多糖化合物的统称,它是由已糖醛酸(L-艾杜糖醛酸、葡萄糖醛酸)与硫酸氨基葡萄糖分子以一定的比例交替联结形成的具有六糖或八糖单位的线型链状大分子

生物制药的发展前景

生物制药的发展前景 智研数据研究中心网讯: 内容提示:生物制药作为生物工程研究开发和应用中最为活跃、进展最快的领域,被公认为是21 世纪最有前途的产业之一,国内医药企业在国际竞争中求得生存和发展的关键,莫过于加快生物医药研发的国产化。 内容选自智研数据研究中心发布的《2012-2016年中国生物制药市场竞争现状与投资前景分析报告》 1、我国生物制药的发展与世界先进国家相比,我国生物制药产业明显存在很大竞争差距。企业规模小。 目前,我国生物制药相关企业有5000 多家,但规模普遍较小。中草药及其有效生物活性成份的发酵生产,改造抗生素生产工艺技术,大力开发疫苗与酶诊断试剂,开发重点是乙肝基因疫苗与单克隆抗体诊断试剂,开发活性蛋白与多肽类药物,开发重点是干扰素、生活激素与T-PA 等。发展氨基酸工业和开发甾体激素,应用微生物转化法与酶固定化技术发展氨基酸工业和开发甾体激素,并对现在传统生产工艺进行改造。 2、生物制药的应用现代生物制药技术是一项与制药产业结合极为密切的高新技术,不断为医药行业提供新产品、新剂型,为制药界开创一条崭新之路,正在改变生物制药业的面貌,为解决人类医药难题提供最有希望的途径。 2.1 基因工程技术。激素和许多活性因子是调节人体生理代谢与机能的重要物质,其活性强,临床疗效明显,但这些物质自然界甚为稀少,从人体及动物中提取难度大,来源有限,无法满足临床需要,而现代生物制药技术却为临床提供了这类廉价、高效的药品。 2.2 酶及细胞固定化技术。微生物转化早已在制药工业中广泛应用。固定化细胞、特别微生物细胞在抗生素、激素、氨基酸等药物的合成中得到广泛的研究和应用。用固定化酶的膜反应器分离布洛芬可得到许多有光学活性的化合物,体外试验证明其S-异构体比R-异构体活性高100 倍。 3、生物制药的展望。我国生物制药行业自上世纪80 年代以来,一直保持着较快的发展势头:年均增长率保持在25%以上;随着行业整体技术水平的提升以及整个医药行业的快速发展,未来,生物制药行业仍具备较大的发展空间;生物制药子行业也是医药行业中最具投资价值的子行业之一。 而各子行业当中,单克隆抗体仍是目前研发的热点,也将是未来生物制药行业发展的重要动力所在。我国生物技术药物产业化水平与世界平均水平相差不大,但抗体药物发展远远落后,销售额仅占全部生物技术药物1.7%,远低于全

生物制药技术在制药工艺中的应用

生物制药技术在制药工艺中的应用 生物制药技术为制药行业提供了一个全新的发展方向,其展示出不可比拟的应用优势,极大地提高了制药质量,因此应加大对生物制药技术的探讨和研究,本文重点分析制药工艺中对于各种生物制药技术的应用,以供参考。 标签:制药工艺;生物制药技术;应用; 近年来,生物制药技术发展迅猛,成就突出,特别是在制药工艺中的应用,当前生产出的免疫性药物、神经性药物、肿瘤性药物等都取得了良好的临床试验效果,这引起国内外医学学者的广泛关注,在未来发展过程中,我国应高度重视制药工艺中生物制药技术的应用,研制出更多、更好的药品,提升我国的医疗服务水平。 1 常见的生物制药技术 1.1 细胞工程。 细胞工程技术主要包括染色体操作、基因转移、细胞拆合、培养和融合等内容,为制药工艺提供了更多的可能性,传统制药行业为了满足市场对于药品的需求,多是通过人工到全国各地区采摘各种中草药,而通过运用细胞工程技术,可以在实验室中培养中草药植物细胞,从而培养各种各样的中草药,为制药工艺提供充足的中药材,缩短了制药工艺周期,并且有效降低制药企业的人力成本,满足了制药工艺对于生产材料的需求,有助于实现制药工艺的标准化、产业化、规模化发展。 1.2 固定化酶技术。 固定化酶技术在制药工艺中应用非常广泛,这种技术通过连续回收相关反应酶,有效降低制药成本,提升制药质量和效率。同时,固定化酶技术可以定位和限制细胞特定位置,从而固定某些特殊细胞,主要用于生产激素、氨基酸、抗生素等药品。 1.3 基因工程技术。 基因工程技术在实际应用中,采用某种人工手段,将载体插入目标基因中,重新组合遗传物质。在应用基因工程技术时,主要集中在细胞级层面,在认为控制作用下实现基因的重新组合或者复制,从而达到制药目标。同时,细胞中各种激素和活性因子是维持人类正常生存和新陈代谢必不可少的部分,然而在正常情况下,人体细胞中只有有限含量的这些物质,根本无法满足实际的医疗需求,通过运用基因工程技术,如对于人们的糖尿病,利用基因工程技术代替传统药物治疗,增加人体胰岛素含量,获得良好的治疗效果。

层析技术简单介绍及其应用

层析法的主要介绍及其应用 1.层析法的概念 [1].色层法或层离法(Chromatography层析法又称色谱法),是一种应用很广的分离分析方法。1903年,俄国的植物学家M,C.UBeT在研究分离植物色素过程中,首先创造了色谱法,这是一种根据化合物的不同结构和不同的物理,化学特性,从而具有不同吸附性能的原理,以分离混合物中的化学成分的一种物理化学分离方法,最初用于有色物质,之后应用于大量的无色物质。色谱法的名称虽然仍然沿用,但已失去原来的含义。层析法和其他分离方法比较,具有分离效率高,操作又不太麻烦的优点。因此,层析法的应用越来越广,对于近代化学科学的发展有巨大的影响。在制药、化工、农业、医学等方面都有着广泛的应用。 2.层析法的历史及原理 层析法的历史 1903年3月21日俄国植物学家茨维特(Michael Tswett,1872-1919)在华沙自然科学学会生物学会议上发表了“一种新型吸附现象及其在生化分析上的应用”研究论文,介绍了一种应用吸附原理分离植物色素的新方法,并首先认识到这种层析现象在分离分析方面有重大价值。1906年他在德国植物学杂志发表文章,首次命名上述分离后色带为色谱图,称此方法为色谱法(Chromatography)。1907年在德国生物学会年会上,展示过带有色带的分离柱管和纯化过的植物色素溶液。茨维特被世人公认为色谱创始人。 德籍奥地利化学家R.Kuhn 等利用他的方法在纤维状氧化铝和碳酸钙的吸附柱上将过去一个世纪以来公认为单一的结晶状胡萝卜素分离成a 和b 两个同分异构体,并由所取得的纯胡萝卜素确定出了其分子式。Kuhn正是由于在维生素和胡萝卜素的离析与结构分析中取得了重大研究成果而获得了1938年诺贝尔化学奖. 1952年,Martin和James发表第一篇气液色谱论文,首次用气体作流动相,配合微量酸碱滴定,发明了气相色谱,它给挥发性化合物的分离测定带来了划时代的革命。 2.2层析法的原理 层析Chromatography(色谱),利用混合物中各组分的物理化学性质间的差异(溶解度、分子极性、分子大小、分子形状、吸附能力、分子亲合力等) ,使各组分在支持物上集中分布在不同区域,借此将各组分分离。 层析法进行时有两个相,一个相称为固定相(Stationary phase ),另一相称为流动相(Mobile phase )。由于各组分所受固定相的阻力和流动相的推力影响不同,各组分移动速度也各异,从而使各组分得到分离。 层析技术与待分离混合物中各组分的理化性质(分子自然形状、大小、获电状态、溶解度与选择性吸附剂或载体物的吸附能力,分配系数、酸碱环境(pH)、温度、极性以及分子的亲和能力等)有着直接关系[2]。除此,任何层析技术,均具有两相条件(即流动相和固定相),造成流动相对固定相作单向相对运动。这种流动相推动样品中各组分通过固定相向前迁移,其运动速率与两相物质和被分离物质状态有关。由于被分离物各组分中的理化性质不同,对分子筛效通过吸附一解吸,

生物技术与生物制药(doc5)(1)

生物技术与生物制药 1生物技术制药工业发展动态 生物技术与生物制药联合企业的发展正日益全球化,在生物技术企业发展中美国位居世界榜首。正在研究开发的生物技术药物品种63%在北美,25%在欧洲,7%在日本,5%在世界其它地方。生物技术药品市场45%在美国,28%在欧洲,37%在世界各地。 生物技术工业经过25年努力,创造了35种重要治疗药物,年销售额已超过70亿美元。全球已有生物技术制药公司2 000多家,其中美国有1 300家,欧洲有700家。1997年美国的生物技术研究与开发费用为76亿美元、欧洲为18亿美元。生物技术产业为美国创造了12万个就业机会,在欧洲提供了2.75万个就业机会,而且未包括其相关支撑产业与制药行业。已有20%的美国生物技术制药公司股票上市,也有相当比例的欧洲生物技术制药公司的股票上市,获利的生物技术公司正在逐年增加。 到下世纪初生物技术药物的种类数目尚不会超过一般药物的总数,但生物技术制药公司总数将超过前10年的6倍。目前主要生物技术公司多分布在美国,如Amgen,Genetics institute,Genzyme,Genentech和Chiron,还有Biogen也发展较快。1987年尚没有一种重组DNA药物进入世界药品销售额排名前列表,但到1996年已有多种生物工程药物榜上有名。经上市的生物技术药物主要含3大类,即重组治疗蛋白质、重组疫苗和诊断或治疗用的单克隆抗体。 2未来10年的生物技术药物

生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)已广泛用于治疗癌症、艾滋病、冠心病、多发性硬化症、贫血、发育不良、糖尿病、心力衰竭、血友病、囊性纤维变性和一些罕见的遗传疾病。生物技术药物的原始材料是细胞及其组成分子。重点是应用DNA重组技术生产的蛋白、多肽、酶、激素、疫苗、细胞生长因子及单克隆抗体等,主要产品类型为疾病治疗剂、诊断试剂、预防药物与兽用治疗剂。 开发中的生物技术疫苗迅速增加,年增加品种达44%(达66种),用于癌症、艾滋病、类风湿性关节炎、镰刀形贫血、骨质疏松症、百日咳、多发性硬化症、生殖器疱疹、乙型肝炎及其它感染性疾病。最近生物技术药物还试用于普通感冒、帕金森氏症、遗传性慢性舞蹈症。 今后10年生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。主要涉及下列医疗领域。 2.1 肿瘤在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的 患者为100万,死于肿瘤者达54.7万。用于肿瘤的治疗费用1020亿美元。 肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治 疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤, 应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤 (如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑 制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿 瘤治疗剂,已有3种化合物进入临床试验。 2.2 神经退化性疾病老年痴呆症、帕金森氏病、脑中风及脊椎 外伤的生物技术药物治疗,胰岛素生长因子rhIGF-1已进入Ⅲ期临床。神 经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌萎缩 硬化症,均已进入Ⅲ期临床。 美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不可逆脑损伤的药物更少,Cerestal已证明

生物制药技术知识要点

第一章 1、生物技术与微电子技术,新材料、新能源并列,是四大科学技术支柱,生物技术是以生 命科学为基础,利用生物体的特性和功能,设计构建具有预期性状的新物种或新品系,并与工程相结合,利用这样的新物种,进行加工生产,为社会提供商品和服务的一个综合性的技术体系。 2、生物技术可以分为传统生物技术、近代生物技术、现代生物技术。 3、近代生物技术的特点:(1)产品类型多(2)生产技术要求高(3)生产设备规模大 (4)技术发展速度快 4、现代生物药物四大类型:(1)应用重组DNA技术(2)基因药物(3)来自动、植 物和微生物的天然生物药物(4)合成与部分合成的生物药物 5、根据生物药物的功能途径可分为:(1)治疗药物(2)预防药物(3)诊断药物 6、生物技术药物的特性 (1)分子结构复杂(2)具有种属特异性(3)治疗针对性强、疗效高(4)稳定性差(5)基因稳定性(6)免疫原性(7)体内半衰期短(8)受体效应 (9)多效性和网络性效应(10)检验的特殊性 7、生物技术制药的特征:(1)高技术(2)高投入(3)长周期(4)高风险(5)高收益 第二章 1.基因工程药物分类:(1)免疫性蛋白(2)细胞因子(3)激素(4)酶类 2.基因工程生产药物的优点在于: (1)可大量生产过去难以获得的生理活性蛋白和多肽,为临床使用建立有效的保障。(2)可提供足够数量的生理活性物质,以便对其生理、生化和结构进行深入研究,从而扩大这些物质的应用范围。 (3)可以发掘更多的内源性生理活性物质。 (4)内源性生理活性物质在作为药物使用时,存在不足,可通过基因工程和蛋白质工程对其进行改造。 (5)可获得新型化合物,扩大药物筛选来源。 3.基因工程药物制造的主要步骤:目的基因的克隆,构建DNA重组体,构建工程菌,目的基因的表达,外源基因表达产物的分离纯化,产品的检验。 4.制备基因工程药物的基本过程:获得目的基因—构建重组质粒—构建基因工程菌—培养工程菌—产物分离纯化—除菌过滤—半成品检定—成品检定—包装 5.目的基因的获得: (一)反转录法:(1)mRNA的纯化(2)cDNA第一链的合成(3)cDNA第二链的合成 (4)cDNA克隆(5)将重组体导入宿主细胞(6)cDNA文库的坚定 (7)目的cDNA克隆的和鉴定 (二)反转录—聚合酶链反应法 (三)化学合成法 (四)筛选基因的新方法 (五)对已发现基因的改造 6.基因表达:是指结构基因在生物体中的转录、翻译以及所有加工过程。 7.基因高效表达:是指外源基因在某种细胞中的表达活性,即剪切下一个外源基因片段,拼接到另一个基因表达体系中,使其能获得既有原生物活性又可高产的表达产物。 8.宿主菌应满足以下要求:具有高浓度、高产量、高产率;能利用易得廉价原料;不致病、不产生内毒素;发热量低,需氧低,适当的发酵温度和细胞形态;容易进行代谢调控;容易

纳米技术在生物医药中的应用

科技创业 PIONEERINGWITHSCIENCE&TECHNOLOGYMONTHLY 月刊 科技创业月刊2007年第8期 1990年在美国召开了第一届纳米技 术国际学术会议,成为纳米科技发展进步的一个重要标志。1999年,美国的RobertAFreitasJr出版了《 纳米医学》,表明了纳米科技的发展已促使人们开始多方面考虑并且探索纳米科技在医学临床诊治、药物学等方面的应用。纳米技术作为一项新兴技术,在生物医药领域具有十分广阔的应用前景。 1纳米技术 纳米是英文nanometre的译名,像米、 厘米、毫米等一样,是一个长度单位。1纳米(nm)为10-9米,也即百万分之一毫米,相当于一根头发丝直径的五万分之一。更形象地讲,如果把1nm的物体放在乒乓球上,就像一个乒乓球放在地球上。在纳米尺度上,由于物质的量子效应,物质的局域性和巨大的表面、界面效应,形成的材料性能发生了由量变到质变的飞跃,从而突变或产生奇异的新现象。 纳米技术是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。这一基本概念普遍认为由美国著名物理学家、诺贝尔物理奖获得者RichardFeynman在一次题为《在物质底层有很大的空间》的演讲中提出,“为什么我们不可以从另外一个方向出发,从单个的分子甚至原子开始组装,以达到我们的要求……如果有一天能按照人们的意志安排一个个原子和分子,将会产生什么样的奇迹”。 纳米技术涵盖领域广泛,包括纳米材料学、纳米生物学和纳米显微学等方面,它建立了一种崭新的思维方式,使人类能够 利用越来越小、越来越精确的物质和越来越精细的技术成品来满足更高层次的要求。目前,由于纳米技术具有的独特优势以及人们对健康和重大疾病防治等问题的日益关注,纳米技术开始广泛应用于生物医药领域。 2纳米技术在生物医药中的应用 方兴未艾的纳米技术把人类对微观世 界的认识带入了一个全新的境界,同时也为人类战胜疾病、提高健康水平提供了更为有力的武器。就目前而言,纳米技术在生命领域的应用前景已逐渐展现,并且许多设想已经逐渐实现,可以预见纳米技术将渗透至生物医药研究和应用的方方面面。 2.1万能的机器人 1986年,美国预见研究所的工程师埃 里克?德雷克斯勒说:“我们为什么不制造出成群的、肉眼看不见的微型机器人,让它们在地毯或书架上爬行,把灰尘分解成原子,再将这些原子组装成各种物品。这些微型机器人不仅是搬运原子的建筑工人,同时还具有绝妙的自我复制和自我修复能力。” 同时,还有些科学家设想将蛋白质芯片或基因芯片组装成尺寸比人体红细胞还小的纳米机器人,使其具有某些酶的功能,它是纳米机械装置与生物系统的有机结合,在生物医学工程中可充当微型医生,解决传统医生难以解决的问题。将这些纳米机器人注入血管内,可按照预定程序,直接打通脑血栓,清洁心脏动脉脂肪沉积物等,达到预防和治疗心脑血管疾病的目的。 除此以外,不同的组合方案还可组装出其他功能的纳米机器人,例如,有的可以吞噬病菌、杀死癌细胞;有的可以作为人体 器官的修复工具,修复损伤的器官和组织等,以完成整容手术或其他器官修复手术;有的可以进行基因装配工作,除去基因中错误或有害的DNA片段,并将正常的 DNA片段装配进染色体,使机体正常运 作。 2.2灵敏的检测器 癌症是人类死亡率极高的疾病之一, 但以目前的医疗诊断水平,癌症一旦被确诊通常已发展到晚期,即已无药可救或已过最佳治疗时期。科学家设想,可制造出纳米传感器植入体内,监控早期癌变信号分子的产生,通过与外界特定的声信号或其他信号的相互作用,将内部信号转化为外部信号。 另外,近年来科学家正尝试应用纳米技术的新型检测仪器和诊断试剂,只需检测少量血液中蛋白质和DNA就可诊断出某人患各种疾病的可能性。国内外研究者正致力于脑肿瘤、肝癌、肺癌、白血病等癌症的早期纳米诊断手段的研究,并取得了一定的成绩。 2.3多彩的标记物 科学家根据CD唱机中激光二极管的 发光原理,研制出半导体纳米晶体。这种微型的无机晶体被称作量子点,可通过对其大小的控制,使其经同一光源激发后,发出红、黄、蓝等多种颜色的光。又因量子点比传统有机染色小分子更稳定,目前得到了广泛应用。例如,研究者可用量子点附着在不同基因序列组成的DNA分子上,通过比较标记的基因序列与已知序列找出哪些基因在特定细胞或组织中表达较为活跃;当用量子点标记蛋白质或其他物质时,技术人员可动态跟踪标记物在体内的过程,从而使其应用于一些疾病的诊断。 纳米技术在生物医药中的应用 夏 涛 (华中师范大学第一附属中学 湖北 武汉 430223) 摘 要 纳米技术是在纳米尺度上研究物质的特性,通过组建和利用纳米材料来实现特有功能和智能作用 的高科技先进技术。介绍了纳米技术在生物医药中的应用现状和前景,并分析了纳米技术在生物医药领域应用中的纳米材料安全性和成本问题。 关键词 纳米技术 纳米材料 生物医药 中图分类号 TD383:R319文献标识码 A 收稿日期:2007-04-17 86

最新层析技术简单介绍及其应用

层析技术简单介绍及 其应用

层析法的主要介绍及其应用 1.层析法的概念 层析法又称色谱法[1].色层法或层离法(Chromatography),是一种应用很广的分离分析方法。1903年,俄国的植物学家M,C.UBeT在研究分离植物色素过程中,首先创造了色谱法,这是一种根据化合物的不同结构和不同的物理,化学特性,从而具有不同吸附性能的原理,以分离混合物中的化学成分的一种物理化学分离方法,最初用于有色物质,之后应用于大量的无色物质。色谱法的名称虽然仍然沿用,但已失去原来的含义。层析法和其他分离方法比较,具有分离效率高,操作又不太麻烦的优点。因此,层析法的应用越来越广,对于近代化学科学的发展有巨大的影响。在制药、化工、农业、医学等方面都有着广泛的应用。 2.层析法的历史及原理 层析法的历史 1903年3月21日俄国植物学家茨维特(Michael Tswett,1872-1919)在华沙自然科学学会生物学会议上发表了“一种新型吸附现象及其在生化分析上的应用”研究论文,介绍了一种应用吸附原理分离植物色素的新方法,并首先认识到这种层析现象在分离分析方面有重大价值。1906年他在德国植物学杂志发表文章,首次命名上述分离后色带为色谱图,称此方法为色谱法(Chromatography)。1907年在德国生物学会年会上,展示过带有色带的分离柱管和纯化过的植物色素溶液。茨维特被世人公认为色谱创始人。 德籍奥地利化学家R.Kuhn 等利用他的方法在纤维状氧化铝和碳酸钙的吸附柱上将过去一个世纪以来公认为单一的结晶状胡萝卜素分离成a 和b 两个同分异构体,并由所取得的纯胡萝卜素确定出了其分子式。Kuhn正是由于在维生素和胡萝卜素的离析与结构分析中取得了重大研究成果而获得了1938年诺贝尔化学奖. 1952年,Martin和James发表第一篇气液色谱论文,首次用气体作流动相,配合微量酸碱滴定,发明了气相色谱,它给挥发性化合物的分离测定带来了划时代的革命。 2.2层析法的原理 层析Chromatography(色谱),利用混合物中各组分的物理化学性质间的差异(溶解度、分子极性、分子大小、分子形状、吸附能力、分子亲合力等) ,使各组分在支持物上集中分布在不同区域,借此将各组分分离。 层析法进行时有两个相,一个相称为固定相(Stationary phase ),另一相称为流动相(Mobile phase )。由于各组分所受固定相的阻力和流动相的推力影响不同,各组分移动速度也各异,从而使各组分得到分离。 层析技术与待分离混合物中各组分的理化性质(分子自然形状、大小、获电状态、溶解度与选择性吸附剂或载体物的吸附能力,分配系数、酸碱环境(pH)、温度、极性以及分子的亲和能力等)有着直接关系[2]。除此,任何层析技术,均具有两相条件(即流动相和固定相),造成流动相对固定相作单向相对运动。这种流动相推动样品中各组分通过固定相向前迁移,其运动速率与两相物质和被分离物质状态有关。由于被分离物各组分中的理化性质

药品生产技术专业完整版

药品生产技术专业 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

专业概况 药品生产技术专业主要工作在大、中、小型生化制药、化学制药、生物等行业的生产技术管理、产品研发、分析检验、市场营销等部门,从事抗生素、维生素、激素、氨基酸等化学原料药生产,医药中间体合成及医药营销等职业岗位工作。培养目标 培养德、智、体、美、劳全面发展,具有爱岗敬业、诚实守信的职业素养,掌握化学制药技术、生物制药技术、药物制剂技术的相关理论和操作技能,能按照国家《药品生产质量管理规范》的要求,从事化学原料药及中间体生产、生物药生产操作、药物制剂生产操作、制药设备使用维护技术、产品开发、质量分析与管理和生产管理的高素质技术技能型专门人才。培养适应大、中、小型生化制药、化学制药、生物等行业生产第一线需要的,面向医药、生物等行业,从事生产操作、设备维护、质量管理及技术管理的高素质技术技能人才。 主干课程 实用药物学、生物药物生产技术、生物分离纯化技术、药物制剂生产技术、化学原料药生产操作、化学原料药小试技术、化学原料药中试工艺与反应器、药物检测技术与质量控制、制药生产设备运行与维护、药事法规与管理。 主要课程 生物化学、微生物基础、发酵技术、生物制药技术、化学制药技术、药物合成单元操作、药物分析、生化药物分离技术、药物制剂技术、生化制药机械与设备、制药企业管理与GMP实施、有机合成实习、化工仿真实训、认识实习、毕业实践等。 相关优秀院校 ,常州工程职业技术学院, 就业情况 药品生产技术专业的毕业生主要面向医药、生物等行业,从事抗生素、维生素、激素、氨基酸等化学原料药生产,医药中间体合成及医药营销等职业岗位工作。 就业岗位 生产操作与工艺控制岗位:原料药及中间体生产操作岗位、生物药品生产操作岗位、药物制剂生产操作岗位。 新产品开发试制岗位:原料药及中间体、生物药品、药物制剂的小试实验岗位。 产品检验岗位:药品原料、药品中间体、成品药的分析检验与质量管理岗位。 主要工作岗位:药物合成岗位、药物精制岗位、药物分析岗位

高效液相色谱在生物制药中的应用

高效液相色谱在生物制药中的应用 高效液相色谱法是近35年发展起来的一项高效、快速的分离分析技术,是现代分离测试的重要手段[1]。高效液相色谱法已经被广泛用在各种领域,它是以经典的液相色谱为基础,引入气相色谱的理论与实验方法,将流动相改为高压输送,并采用高效固定相及在线检测等手段,发展而成的分析、分离方法。以其灵敏度高、选择性好,可分析微量组成甚至痕量样品等特点,成为医药分析领域发展最快、应用最广的现代分析技术之一。于此同时,高效液相色谱法成为环境污染物检测技术及化工产品质量检验中的标准方法。鉴于其简便、快速、灵敏、准确的特点,目前,在医药、卫生、食品、环保等各个领域已得到广泛应用。随着色谱技术的不断发展,在世界许多科学领域中,色谱法已成为世界许多科学领域中普及的一种分离分析手段,色谱仪也呈多样化、高精化、自动化、联用技术化等方向发展。高效液相色谱仪具有柱效高、分析速度快、流动相和被测组分的体积流量小等特点,广泛应用于临床工作[2]。 1.高效液相色谱的介绍 高效液相色谱仪一般都具备贮液器、高压泵、梯度洗提装置(用双泵)、进样器、色谱柱、检测器、恒温器、记录仪等主要部件。高效液相色谱法有以下五个特点:①高压:流动相为液体,流经色谱柱受到的阻力比较大,为了能够快速的通过柱子,必须对流动相加很高的高压。②高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。③高灵敏度:紫外检测器可达0.01ng,进样量在uL数量级。④应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是强极性、热稳定性差、高沸点、大分子化合物的分离分析,显示出优势。⑤分析速度快、载液流速快:分析所需时间一般小于1小时,和传统经典液体色谱法相比速度快得多。高效液相色谱有5种类型: 1、吸附色谱(Adsorption Chromatography) 2、分配色谱(Partition Chromatography) 3、离子色谱(Ion Chromatography) 4、体积排阻色谱(Size Exclusion Chromatography)

现代生物制药技术

重点名词 1、生物工程:应用生物科学的理论、方法,按照人们设计的蓝图,改良加工生物或用生物及其制备物作为加工原料,以提供所需生物制品为人类社会服务的综合性科学技术。 2、第二代生物工程:以纯种微生物发酵工艺为标志的生物技术。 3第三代生物工程:以基因工程诞生为标志的生物技术。 4、基因工程:指在体外将核酸分子插入病毒、质粒或其它载体分子,构成遗传物质的新组合,并使之掺入到原先没有这类分子寄生的细胞内,而能持续稳定地繁殖,并通过工程化为人类提供有用产品及服务的技术。 5、分子克隆:在分子水平上按照人们设计的蓝图对基因进行人工操作的技术。 6、载体:携带外源基因进入受体细胞的工具即载体。 7、质粒:在细菌细胞内作为与宿主染色体有别的复制子而进行复制,并且在细胞分裂时能恒定地传递给子代细胞的独立遗传因子。 8、基因文库:利用基因工程方法将某生物的全部基因几乎都制备成克隆细胞系,这一组克隆的总全(无性繁殖系)叫该生物的基因文库。 9、感受态:就是细菌吸收转化因子(周围环境中的DNA 分子)生理状态。 10、转化:就是将携带某种遗传信息的DNA 分子引入宿主细胞;通过DNA 之间同源重组作用,获得具有新遗传信息并传递到另一个细胞的过程。 11、转导:通过噬菌体或病毒的感染作用将一个细胞的遗传信息传递到另一个细胞的过程。 12、基因表达:指结构基因在生物体中的转录、翻译以及所有加工过程。 13、微细胞:是某些细菌的突变株在生长期间产生的一类微小的圆形的无核细胞,它具细胞壁及细胞膜、核糖体及能量产生系统,但不含有染色体DNA 。 14、HBsAg :即乙肝表面抗原,是乙型肝炎病毒表面包被的抗原。 15、微生物:指一切形体微小,结构简单的低等生物的总称。 16、病毒:一类比细菌还小,没有细胞结构,不能营独立生活的微生物。 17、培养基:人工按一定比例配制的供微生物生长繁殖和合成各种代谢产物所需营养物质的混合物。 18、氮源:是指构成微生物细胞和代谢产物中的氮素营养物质。 19、生长因素:指某些微生物在生命活动过程中必须从外界环境中摄取的某些微量有机化合物。 20、防腐:一种抑菌作用,使物体内外的微生物暂时处于不生长,不繁殖但又未死亡的状态。 21、消毒:杀死或消除所有病原微生物的措施。 22、灭菌:用物理或化学因子,使存在于物体内外的所有生活微生物,永久性地丧失其生活力,包括最耐热的芽孢。 23、死亡:对微生物而言,不可逆地丧失了生长繁殖的能力,即使再放到合适的环境中也不再繁殖。 24、干热灭菌:指的高温条件下,微生物细胞内的各种与温度有关的化学反应速度增加,使微生物的致死率迅速增高的过程。 25、自然选育:根据菌种自发突变而进行的菌种筛选的过程。 26、原生质体融合育种:指用人工方法强制两个亲本细胞发生融合,从而可能导致遗传重组,产生新型的遗传后代的技术。 27、基因工程育种:指用人工方法在离体条件下得到所需的外源基因,然后把这个外源基因连在载体DNA 上,并引入受体细胞,从而可使受体细胞获得外源基因的遗传信息,并进行正常的复制,表达和遗传。 28、分批补料培养法:在分批式操作基础上,不全部取出反应系,剩余部分重新补充新的营养成分,再按分批式操作的方式进行的培养方法。 29、种子制备:指将固体培养基上培养的孢子或菌体转到液体培养基中培养,使其大量繁殖成菌丝或菌体的过程。 30、平板培养法:分散的植物细胞接种于含薄层固体培养基器皿内培养的方法。 31、细胞突变:指遗传物质在一级结构上发生永久而能遗传的变化。 32、复苏:深冻冷藏细胞经化冻再培养的过程。 33、植物原生质体:除去纤维素外壁且具有生活力的裸体植物细胞。 34、遗传互补筛选法:利用每一亲本贡献一个功能正常等位基因,纠正另一亲本的缺陷,令杂种细胞表现正常功能的原理选择杂种细胞的方法。 35、抗性互补筛选法:利用亲本原生质体对抗生素、除草剂及其它有毒物质抗性差异选择杂种细胞的方法。 36、植物细胞大规模培养:在人工控制下高密度大量培养有益植物细胞即植物细胞大规模培养。 37、动物细胞工程:根据细胞生物学及工程学原理定向改造动物细胞遗传性、创造新物种,通过工程化为人类提供名贵药品服务的技术,称为动物细胞工程。 38、细胞块培养法:将动物组织切成直径1~2mm 小块,进行培养的方法,称为组织块培养法。 39、细胞单层培养法:动物组织块经消化分散成单个细胞或细胞团块后,粘附于培养容器表面培养成新生细胞单层的培养法,称为细胞单层培养法。 40、动物体细胞杂交技术:在外力作用下,令两个或两个以上异源细胞合并为一个多核细胞的过程,称为动物体细胞杂交技术。 41、核体:细胞核连同其外表薄层细胞质构成的颗粒称为核体。 42、胞质体:不具有细胞核的细胞称为胞质体。 43、微核杂种细胞:按完整细胞之间的融合方式,将微核与另一完整细胞融合,使后者获得另一种细胞中的若干个染色体,所获融合子称为微核杂种细胞。 44、抗药性筛选系统:利用生物细胞对药物敏感性差异筛选杂种细胞的方 法。 45、营养缺陷型细胞:在一些营养物 质的合成能力上出现缺陷,因此必须在基本培养基中加入相应的有机成分 才能正常生长的变异细胞。 46、营养互补选择法:利用两种亲本细胞营养互补作用原理筛选杂种细胞 的方法称为营养互补选择法。 47、杂交瘤技术:骨髓瘤细胞与免疫 淋巴细胞融合制备的杂种细胞称为杂 合瘤。 48、微载体培养法:将细胞吸附于微 载体表面的培养方法。 49、酶工程:应用酶的特异性催化功 能并通过工程化为人类生产有用产品及提供有益服务的技术为酶工程。 50、酶:生物体内具有特殊催化功能 的蛋白质称为酶。 51、固定化细胞:被限制或定位于特定空间位置的细胞称为固定化细胞。 52、载体结合法:将细胞悬浮液直接 与水不溶性载体相结合的固定化方法。 53、包埋法:将细胞定位于凝胶网格 内的技术称为包埋法。 54、偶联效率:偶联固定化反应过程中载体结合蛋白质的能力称为偶联效 率。 55、酶活力:酶类催化特定化学反应的能力称为酶活力。 56、固定化反应的酶活力回收率:固 定酶所显示的活力与加入偶联液中酶总活力的比值称为固定化反应的酶活 力回收率。 57、酶试剂盒:将酶、反应试剂、稳 定剂、激活剂、填充剂、及缓冲剂等 配成检测用的混合制剂称酶试剂盒。 58、细胞因子:是人类或动物的各类 细胞分泌的具有多样生物活性的因子,是可溶性物质,是一组不均一的 蛋白质分子,能调节细胞的生长与分化。 59、白细胞介素:由白细胞或其它体 细胞产生的又在白细胞间起调节作用 和介导作用的因子。 60、IL-10:由TH2细胞产生,能抑

相关主题