搜档网
当前位置:搜档网 › 不同树种的木材物理力学性能汇编

不同树种的木材物理力学性能汇编

不同树种的木材物理力学性能汇编
不同树种的木材物理力学性能汇编

不同树种的木材物理力学性能

不同树种的木材物理力学性能包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗弯强度、抗剪强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。

树木是木材的原体,是由它本身生命生存与繁衍的整个生长过程,积累了成为不同木材的物质,直到生命自然终结,或被认为终结生命,而成为被利用的材料。树木是木质多年生植物,通常把它分为乔木和灌木两种。乔木是l.3米以上,只有一个直立主干的树木;灌木是直立的、具有丛生茎的树木。我国现有木本植物约7000多种,属乔木者约占1/3以上,但是作为工业用材而供应市场的只不过1000种,常见的约300种。

树木是人类繁衍延续到今天的必要条件。它靠空气、水和阳光存活,通过一系列化学反应,形成树木肢体的物理变化,为人类营造出了天然的乐园。

“碳”是形成木材物理力基础。树木在生长发育过程中,形成了高度发达的营养体。水分及营养液等流体的输运现象始终伴随着树木营养生长的生理过程。树木由树梢沿主轴向上生长(高生长),也在土壤深处向下生长(根生长),中间的树干部分沿着径向生长。前一年形成的树干部分到了次年不会再进行高生长。

树木从天上接受阳光的沐浴,到地下去寻觅水分,把原料从树根输送到叶片。由叶子制造养分,将养分向下输送,供给树木生长需要。这样,树木生长过程中,形成了非常协调完备的水分及养分的输送系统。

一株红杉(美)树高达112米,一株杏仁桉(奥)树竟高达156米,一株银杏(中)树龄达3000年,一株世界爷(美)树龄竟达7800年。那么对于如此高大、如此年久的树木,体内各种物质(水、矿物质、可溶性碳水化合物和激素等等)是它的最外层是树皮(外皮),树皮里边一层是韧皮部(也叫内皮),经它将营养液由叶部输送到树木的其他部分(包括根在内)。再向内一层是形成层,它的细胞不断分裂,使树木沿径向生长而不断加粗。再往里是边材和心材,即木质部,木质部中被叫做导管的细胞组织,它将树液输送到茎和叶部。这个过程,就是水分将土壤中的碳分子和空气中的碳分子,经过化学反应形成积累。

压力流动模型实验证明,树木营养液的流动动力是流体静压力。即净生产细胞(如一片成熟叶)由于光合作用制造大量糖而保持较高的溶质浓度,水便通过渗透作用不断进入净生产细胞,使胞内的流体静压力增加,迫使营养液经过胞间连丝进入韧皮部。而净消费细胞(可以是一个根细胞、一个有代谢作用的细胞,或一个果实细胞)由于呼吸、生长和储藏保持着较低的溶质浓度,胞内流体静压力较低。这样,

营养液便沿压力梯度向下运输到根部。韧度部转移营养液的最高速度在阔叶树中是0.4~0.7米/小时,在针叶树中是0.18~0.2米/小时。对于一株30米高的松树和杨树,营养液由树冠输送到树根的最短时间分别为7天和1.8天,而对于112米的红杉来说约需20多天的时间。

树木所需的水分几乎全部由根系(吸水器官)吸取,并沿木质部(从根部到叶部)向上长距离移动。那么,水分是靠什么动力来提升的呢?研究结果表明,动力有两种:一种是根压,另一种是蒸腾拉力。这两种力,在积累过程中,转化成木材的力。

木材力学是涉及木材在外力作用下的机械性质或力学性质的科学,它是木材学的一个重要组成部分。木材力学性质是度量木材抵抗外力的能力,研究木材应力与变形有关的性质及影响因素。

木材作为一种非均质的、各向异性的天然高分子材料,许多性质都有别于其它材料,而其力学性质和更是与其它均质材料有着明显的差异。例如,木材所有力学性质指标参数因其含水率(纤维饱和点以下)的变化而产生很大程度的改变;木材会表现出介于弹性体和非弹性体之间的黏弹性,会发生蠕变现象,并且其力学性质还会受荷载时间和环境条件的影响。

木材力学性质包括应力与应变、弹性、黏弹性(塑性、蠕

变)、强度(抗拉强度、抗压强度、抗弯强度、抗剪强度、扭曲强度、冲击韧性等)、硬度、抗劈力以及耐磨耗性等。

1.木材受到外压力时,能抵抗外力压缩变形破坏的能力,称为抗压强度.当外部的压力与木材纤维方向平行时的抗压强度被称为顺纹抗压强度.木材顺纹抗压强度是指木材沿纹理方向承受压力荷载的最大能力,主要用于诱导结构材和建筑材的榫接合类似用途的容许工作应力计算和柱材的选择等,如木结构支柱、矿柱和家具中的腿构件所承受的压力。

2.木材的顺纹抗拉强度,是指木材沿纹理方向承受拉力荷载的最大能力。木材的顺纹抗拉强度较大,各种木材平均约为117.7-147.1MPa,为顺纹抗压强度的2-3倍。木材在使用中很少出现因被拉断而破坏。木材顺纹拉伸破坏主要是纵向撕裂粗微纤丝和微纤丝间的剪切。微纤丝纵向的C-C、C-O 键结合非常牢固,所以顺拉破坏时的变形很小,通常应变值小于1%~3%,而强度值却很高。

3.木材密度是决定木材强度和刚度的物质基础,是判断木材强度的最佳指标。密度增大,木材强度和刚性增高;密度增大,木材的弹性模量呈线性增高;密度增大,木材韧性也成比例地增长。在通常的情况下,除去木材内含物,如树脂、树胶等,密度大的木材,其强度高,木材强度与木材密度二者存在着下列指数关系方程:σ=Kρn,式中:σ——木材强度;ρ——木材密度;K和n——常数,随强度的性质

而不同。

4.木材抗弯强度是指木材承受逐渐施加弯曲荷载的最大能力,可以用曲率半径的大小来度量。它与树种、树龄、部位、含水率和温度等有关。木材抗弯强度亦称静曲强度,或弯曲强度,是重要的木材力学性质之一,主要用于家具中各种柜体的横梁、建筑物的桁架、地板和桥梁等易于弯曲构件的设计。静力荷载下,木材弯曲特性主要决定于顺纹抗拉和顺纹抗压强度之间的差异。因为木材承受静力抗弯荷载时,常常因为压缩而破坏,并因拉伸而产生明显的损伤。对于抗弯强度来说,控制着木材抗弯比例极限的是顺纹抗压比例极限时的应力,而不是顺纹抗拉比例极限时应力。

5.木材抵抗剪切应力的最大能力,称为抗剪强度。木材抗剪强度视外力作用于木材纹理的方向,分为顺纹抗剪强度和横纹抗剪强度。在实际应用中发生横纹剪切的现象不仅罕见,而且横纹剪切总是要横向压坏纤维产生拉伸作用而并非单纯的横纹剪切,因此通常不作为材性指标进行测定。木材的横纹抗剪强度为顺纹抗剪强度的3-4倍。木材的顺纹抗剪强度视木材受剪面的不同,分为弦面抗剪强度和径面抗剪强度,如图。剪切面平行于年轮的弦面剪切,其破坏常出现于早材部分,在早材和晚材交界处滑行,破坏表面较光滑,但略有起伏,面上带有细丝状木毛。剪切面垂直于年轮的径面,剪切破坏时,其表面较为粗糙,不均匀而无明显木毛。在扩

大镜下,早材的一些星散区域上带有细木毛。

红松15.0 II II III II II III II I 广东

15.0 II II III II III III II II 马尾

15.0 II,III II,III IV II III II II II,III 樟子

15.0 III II III III I III II 云南

15.0 III IV IV II,III II,III II II,III 铁杉15.0 II II III II II,III III II II

1

陆均

15.0 III III III III III III IV III 鸡毛

15.0 II II III II II III IV III 杉木15.0 II II III II II III II 消极

15.0 I I II I I II I I 槭木15.0 III,IV III III,IV III,IV

IV,

V 刺楸15.0 II,III I,II II,III II,III II,III 江南

桤木

15.0 II II II II III 光皮

15.0 III II,III III,IV III,IV

III,I

V 树种

试验

时含

水率

/%

气干密

度/

(g/cm3

干缩率/%

(生材—气

干)

顺纹

抗压

强度

/MPa

抗弯

强度

/MPa

抗弯

弹性

模量

/GPa

顺纹

抗剪

强度

/MPa

/N

径向

白桦15.0 III II,III II,III II,III II,III 秋枫15.0 III II,III II,III II,III IV 青冈15.0 IV III,IV IV V

IV,

V 水青

15.0 IV III III IV III 麻栎15.0 IV III,IV III,IV III~V IV 白栎15.0 IV III III,IV IV V 柞木15.0 III,IV II,III III,IV III,IV IV 枫香15.0 III II,III II.III II,III III 山核

15.0 III,IV III III,IV III~IV IV 核桃15.0 II,III II,III II,III II III 枫杨15.0 II II II II

香樟15.0 II,III II II II II 铁刀15.0 III III III III IV 黄檀15.0 IV IV IV,V IV,V V

木材的力学性能参数分析整理

木材的力学性能参数

目录 木材的力学性质………………………………………………P3 木材力学基础理论……………………………………………P3~ P8 弹性和塑性 柔量和模量 极限荷载和破坏荷载 木材力学性质的特点…………………………………………P8~ P20 木材的各向异性 木材的正交对称性与正交异向弹性 木材的粘弹性 木材塑性 木材的强度、韧性和破坏 木材的各种力学强度及其试验方法………………………P20~ P28 木材力学性质的影响因素…………………………………P28~ P31 木材的允许应力…………………………………………P31~ P33 木材容许应力应考虑的因素 常用木材物理力学性能……………………………………P34~ P36 木材的力学性质 主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属

生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。 了解木材力学性质的意义:掌握木材的特性,合理选才、用材。 木材力学基础理论 (stress and strain) 定义:材料在外力作用下,单位面积上产生的内 力,包括压应力、拉应力、剪应力、弯应力等。 单位:N/mm2(=MPa) 压缩应力:短柱材受压或受拉状态下产生的正应 力称为压缩应力; 压应力:σ=-P/A 拉伸应:短柱材受压或受拉状态下产生的正应力称为拉伸应力; 拉应力:σ=P/A 剪应力:当作用于物体的一对力或作用力与反作用力不在同一条作用线上,而使物体产生平行于应力作用面方向被剪切的应力;τ=P/A Q 定义: 外力 作用 下, 物体单位长度上的尺寸或形状的变化; 应变:ε=±⊿L / L

木材力学性能

现浇箱梁模板与支架的设计及施工质量控制 ぷ风之酷╰☆发表于2007年11月23日 12:07 阅读(175) 评论(1) 分类:个人日记 举报 现浇箱梁模板与支架的设计及施工质量控制 菏泽市双河立交桥是220国道与327国道在菏泽交汇处的十字交通枢纽工程,该桥为3层全互通长条苜蓿叶立交,主要有主桥、引桥、人行桥等10座桥梁组成,其中主桥为 20+28+20=68m单箱双室现浇后张法预应力混凝土连续箱梁结构,梁高l.5m,两侧悬臂均为2m,主桥宽13m。设计荷载为:汽车—20级,挂车—100,设计行车速度80km/h。工程于2000年7月开工,2001年10月1日正式竣工通车。笔者在施工监理工作中,以控制关键工序为突破口,在提升总体工程质量上做了一些工作。本文将结合双河立交桥主桥的施工实践,介绍现浇箱梁模板与支架的设计方法和施工质量控制措施,以便同行们参考。 1 模板与支架的设计和验算 1.1 方案选定 根据以往施工经验;结合箱梁的实际尺寸,模板及支架施工方案选定如下。支架采用满布式碗扣支架。支架基础分层夯实整平,采用三七灰土处理50cm,横铺5cm厚、25cm 宽的方木,用砂浆座实。立杆纵向间距120cm、横向间距90cm,横杆步距120/90cm。碗扣支架立杆底部垫钢板,顶部加顶托。顶托上面横向分布10cm×10cm方木,间距20cm,方木上钉竹胶板(厚1cm)作为底模。翼板和侧模采用10cm×10cm方木钉成框架作为支撑;框架间距lm,钉5cm厚木板,其上再钉竹胶板作为侧模和翼板的底模。箱梁箱室空间较小,混凝土浇筑后内模拆除困难,采用3cm厚木板刨光配一定的方木作为内模,混凝土浇筑后不再拆除。考虑到横梁、边腹板处自重较大,立杆间距局部加密为60cm×90cm。考虑到支架的整体稳定性,在纵向每4.5m设通长剪刀撑1道,横向每隔3跨布置剪刀撑l道。为便于高度调节,每根立杆顶部配可调顶托,可调范围30cm。按照施工区处理后的地面高程与梁底声程之差,采用LG—300、LG—180、LG—150、LG—120、LG—90等规格的杆件进行组合安装。 1.2模板设计与验算模板必须能够正确地保证其形状和位置,因而设计模板时必须进行强度设计和刚度验算,确保模板具有足够的强度和刚度。 1.2.1底模板设计与验算 (1)荷载计算: 模板自重:a=0.0955kN/m2;钢筋混凝土自重:b=20.75kN/m2;施工荷载:c=2.5kN/m2(集中荷载P=2.5kN);振捣荷载:d=2.0kN/m2。 (2)强度验算当施工荷载均布时,可近似按5跨等跨连续梁计算,即:l=0.2mq1=[1.2(a+b)+1. 4(c+d)]×1.0=3l. 314kN/m Mmax=-0.105q1l=-0.132kN.m 当施工荷载集中于跨中时,按5等跨连续梁计算设计荷载:q2=[1.2(a+b)+1.4d]×1.0=27.814KN/m集中设计荷载P= 1.4( 2.5/5)=0.7kNMmax=-0.105q2l2-0.158Pl=-0.139kN.m可见,施工荷载集中于跨中时,弯距最大。σ=Mmax/Wx=0.139×103/(1×0.012/6) =8.34MPa<[σ0]=90MPa强度满足设计要求 (3)刚度验算按1m宽度计算,则q3=1.0×(a+b)×1.0=20.845KNE=7000MPaI=1.0×0.013/12=0.083333×10-6m4?=0.644q3l4/(100EI)=0.37mm<[?0] =(1/400)=2.5mm刚度满足要求 1.2.2 侧模板设计与验算侧模板采用5cm厚木版内钉1cm厚竹胶板。 (1)水平荷载计算①新浇混凝土对模板的侧压力。混凝土的浇注速度ν=1.5m/h,混凝土初凝时间t=4h.a=0.22γtβ1β2ν1/2=35.7KPaa=γh=36KPa取较大值:a=36KPa②振捣荷载:b=4.0KN/m2③倾倒荷载:c=2.0KN/m2 (2)强度验算近似按3跨连续梁计算: q=[1.2a+1.4(b+c)]×1.0=51.6KN/ml=1.0mMmax=-0.100ql2=-5.16KN.mσ=Mmax/Wx=5.16×103/(1.0×0.0602/6) =8.60MPa<[σ0]=98.6MPa强度满足要求。

不同树种的木材物理力学性能

不同树种的木材物理力学性能 不同树种的木材物理力学性能包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗弯强度、抗剪强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 树木是木材的原体,是由它本身生命生存与繁衍的整个生长过程,积累了成为不同木材的物质,直到生命自然终结,或被认为终结生命,而成为被利用的材料。树木是木质多年生植物,通常把它分为乔木和灌木两种。乔木是l.3米以上,只有一个直立主干的树木;灌木是直立的、具有丛生茎的树木。我国现有木本植物约7000多种,属乔木者约占1/3以上,但是作为工业用材而供应市场的只不过1000种,常见的约300种。 树木是人类繁衍延续到今天的必要条件。它靠空气、水和阳光存活,通过一系列化学反应,形成树木肢体的物理变化,为人类营造出了天然的乐园。 “碳”是形成木材物理力基础。树木在生长发育过程中,形成了高度发达的营养体。水分及营养液等流体的输运现象始终伴随着树木营养生长的生理过程。树木由树梢沿主轴向上生长(高生长),也在土壤深处向下生长(根生长),中间的树干部分沿着径向生长。前一年形成的树干部分到了次年不会再进行高生长。

树木从天上接受阳光的沐浴,到地下去寻觅水分,把原料从树根输送到叶片。由叶子制造养分,将养分向下输送,供给树木生长需要。这样,树木生长过程中,形成了非常协调完备的水分及养分的输送系统。 一株红杉(美)树高达112米,一株杏仁桉(奥)树竟高达156米,一株银杏(中)树龄达3000年,一株世界爷(美)树龄竟达7800年。那么对于如此高大、如此年久的树木,体内各种物质(水、矿物质、可溶性碳水化合物和激素等等)是它的最外层是树皮(外皮),树皮里边一层是韧皮部(也叫内皮),经它将营养液由叶部输送到树木的其他部分(包括根在内)。再向内一层是形成层,它的细胞不断分裂,使树木沿径向生长而不断加粗。再往里是边材和心材,即木质部,木质部中被叫做导管的细胞组织,它将树液输送到茎和叶部。这个过程,就是水分将土壤中的碳分子和空气中的碳分子,经过化学反应形成积累。 压力流动模型实验证明,树木营养液的流动动力是流体静压力。即净生产细胞(如一片成熟叶)由于光合作用制造大量糖而保持较高的溶质浓度,水便通过渗透作用不断进入净生产细胞,使胞内的流体静压力增加,迫使营养液经过胞间连丝进入韧皮部。而净消费细胞(可以是一个根细胞、一个有代谢作用的细胞,或一个果实细胞)由于呼吸、生长和储藏保持着较低的溶质浓度,胞内流体静压力较低。这样,

木材的力学性能参数分析整理

木 材 的 力学 性 能 参 数

目录 木材的力学性质………………………………………………P3 木材力学基础理论……………………………………………P3~ P8应力与应变 弹性和塑性 柔量和模量 极限荷载和破坏荷载 木材力学性质的特点…………………………………………P8~ P20木材的各向异性 木材的正交对称性与正交异向弹性 木材的粘弹性 木材的松弛 木材塑性 木材的强度、韧性和破坏 单轴应力下木材的变形与破坏特点

木材的各种力学强度及其试验方法………………………P20~ P28力学性质的种类 木材力学性质的影响因素…………………………………P28~ P31木材密度的影响 含水率的影响 温度的影响 木材的长期荷载 纹理方向及超微构造的影响 缺陷的影响 木材的允许应力…………………………………………P31~ P33木材强度的变异 荷载的持久性 木材缺陷对强度的影响 构件干燥缺陷的影响 荷载偏差的折减

木材容许应力应考虑的因素 常用木材物理力学性能……………………………………P34~ P36 木材的力学性质 主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。 木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因

木材的力学性能参数分析

木材的力学性 能 参 数

目录 1.1木材的力学性质………………………………………………P3 2.1木材力学基础理论……………………………………………P3~ P8 2.1.1应力与应变 2.1.2弹性和塑性 2.1.3柔量和模量 2.1.4极限荷载和破坏荷载 3.1木材力学性质的特点…………………………………………P8~ P20 3.1.1木材的各向异性 3.1.2木材的正交对称性与正交异向弹性 3.1.3木材的粘弹性 3.1.4木材的松弛 3.1.5木材塑性 3.1.6木材的强度、韧性和破坏 3.1.7单轴应力下木材的变形与破坏特点

4.1木材的各种力学强度及其试验方法………………………P20~ P28 4.1.1力学性质的种类 5.1木材力学性质的影响因素…………………………………P28~ P31 5.1.1木材密度的影响 5.1.2含水率的影响 5.1.3温度的影响 5.1.4木材的长期荷载 5.1.5纹理方向及超微构造的影响 5.1.6缺陷的影响 6.1木材的允许应力…………………………………………P31~ P33 6.1.1木材强度的变异 6.1.2荷载的持久性 6.1.3木材缺陷对强度的影响 6.1.4构件干燥缺陷的影响 6.1.5荷载偏差的折减

6.1.6木材容许应力应考虑的因素 7.1常用木材物理力学性能……………………………………P34~ P36 1.1木材的力学性质 主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。 1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。 1.1.4了解木材力学性质的意义:掌握木材的特性,合理选才、用材。

实木框架式家具结构的力学性能设计要素分析

实木框架式家具结构的力学性能设计要素分析 家具设计包括家具的造型设计、功能设计、比例尺度的设计、结构及力学性能的设计、加工工艺的设计等众多环节,对造型、功能等的设计一直以来人们探讨得很多。然而,在实际设计中家具的结构及力学性能的设计却常常被设计师容易忽视,且较难掌握的部分。家具的结构及力学设计涵盖家具结构及接合形式、构件的构成形式、材料的性能、家具的受力及力学特性等许多方面。与板式家具相比,实木框架式家具因材料、结构体系、家具构成类型等多方面的因素,其结构力学的设计更复杂,要综合考虑的因素也更多。本文就从实木家具的材料特性、使用中的受力情况等方面对实木框架式家具的结构及力学性能设计的几个基本要素进行了探讨。 1.木材的力学特性 1.1 实木框架式家具常用材料 (1)木材 中国传统实木框架式家具常采用木质坚硬、纹理细腻优美、具有独特色泽的硬木为主要材料,如紫檀、花梨、鸡翅木、乌木等。由于这类材料的色泽皆呈现出不同程度的红色,因而人们又习惯于把以这些优质硬木为材料的家具称为红木家具。 但现代对红木的概念与传统有所不同,根据红木国家标准18107-2000的规定,确定了2科5属8类的33个树种为红木。其隶属于紫檀属、黄檀属、柿属、崖豆属及铁刀木属,归为紫檀木、花梨木、香枝木、黑酸枝木、红酸枝木、乌木、条纹乌木和鸡翅木8类。这些木材绝大多数是从东南亚、热带非洲和拉丁美洲进口,材质坚实致密,具有优良的加工性和装饰性。 除了这些材质优良的硬木外,中国传统家具也采用如榉木、楠木、桦木、黄杨等非硬木。按照王世襄先生对明式家具非硬性木材的分类可分为十一类即榉木、楠木、桦木、黄杨、南柏、樟木、柞木、松木、杉木、楸木、椴木。这些材料在.美.林.家具中被广泛应用。 在现代实木框架式家具中,常采用的木材有榆木、榉木、水曲柳、楸木、核桃木、橡木、桦木、杉木、松木等。对这些木材的物理力学性能的了解是家具结构及力学设计的基础之一。 (2)附属用材除了木材以外,实木框架式家具也会采用一些非木材的附属用材,用于结构的连接、加固、装饰等构件。 传统实木框架式家具的附属用材主要包括石材、棕、藤、绒绳等编织物、铜铁饰件、髹漆材料、粘合材料以及染料等。石材一般为白地带青色或灰青或褐黄花纹的大理石,以及白石、紫石、绿石、青石、黄石及花斑石等。棕、藤和绒绳大量用在凳、椅、床、榻的软屉上。铜和铁一般用于家具的合页、面页、包角等连接和加固构件,也用于装饰构件。还有螺钿、珐琅、玛瑙等镶嵌装饰材料。胶黏剂多采用黄鱼鳔,染料主要有苏木、槐花、杏黄、黑矾等。 现代实木框架式家具除木材外,常采用的还有塑料、金属、玻璃、石材、皮革布艺等,用于家具的连结构件、装饰构件等的制作。 1.2 木材主要力学性能 木材抵抗外部机械力作用的能力称为木材的力学性质。对于家具的结构来说,木材的弹性、硬度、韧性、强度等性能直接影响家具结构的稳定性和强度。 (1)木材的弹性及弹性常数 木材的弹性是指在卸除发生变形的荷载后,木材恢复其原有形状、尺寸或位置的能力。木材在弹性区域内应力与应变的比值关系由木材的弹性模量来表示。 木材的弹性模量(E)是指木材产生单位应变所需要的应力,即应力/应变。它表征的是材料抵抗变形能力的大小,木材的弹性模量值愈大,说明在外力作用下愈不易变形,材料的强度也愈大。木材的抗压、抗拉、抗弯的弹性模量近似相等,但因木材的各向异性,木材三 1 / 4

木材的力学性能

1.化学性质 化学组成——纤维素、木质素和半纤维素是构成细胞壁的主要成分,此外还有脂肪、树脂、蛋白质、挥发油以及无机化合物等。 木材对酸碱有―定的抵抗力,对氧化性能强的酸,则抵抗力差;对强碱,会产生变色、膨胀、软化而导致强度下降。―般液体的浸透对木材的影响较小。 2.物理性质 1)含水量 木材中的含水量以含水率表示,指所含水的质量占干燥木材质量的百分比。 木材内部所含水分,可分为以下三种。 (1)自由水。存在于细胞腔和细胞间隙中的水分。自由水的得失影响木材的表观密度、保存性、燃烧性、抗腐蚀性、干燥性、渗透性。 (2)吸附水。被吸附在细胞壁内细纤维间的水分。吸附水的得失影响木材的强度和胀缩。 (3)化合水。木材化学成分中的结合水。对木材性能无大影响。 纤维饱和点——指当木材中无自由水,仅细胞壁内充满了吸附水时的木材含水率。树种不同,纤维饱和点随之不同,―般介于25%~35%,平均值约为30%。纤维饱和点是木材物理力学性质发生变化的转折点。 平衡含水率——木材长期处于―定温、湿度的空气中,达到相对稳定(即水分的蒸发和吸收趋于平衡)的含水率。平衡含水率是随大气的温度和相对湿度的变化而变化的。 木材的含水率:新伐木材常在35%以上;风干木材在15%~25%;室内干燥木材在8%~15%。 2)湿胀、干缩的特点 当木材从潮湿状态干燥至纤维饱和点时,自由水蒸发,其尺寸不变,继续干燥时吸附水蒸发,则发生体积收缩。反之,干燥木材吸湿时,发生体积膨胀,直至含水量达纤维饱和点为止。继续吸湿,则不再膨胀,见图10.7.1。―般地,表观密度大的,夏材含量多的,胀缩就较大。 因木材构造不均匀,其胀缩具有方向性,同―木材,其胀缩沿弦向最大,径向次之,纤维方向最小,见图10.7.1。这主要是受髓线的影响,其次是边材的含水量高于心材含水量。 图10.7.1含水量对松木胀缩变形的影响

木材的力学性能参数分析

木材的力学性能参数分 析 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

木材的力学性能参数

目录 1.1木材的力学性质………………………………………………P3 2.1木材力学基础理论……………………………………………P3~ P8 2.1.1应力与应变 2.1.2弹性和塑性 2.1.3柔量和模量 2.1.4极限荷载和破坏荷载 3.1木材力学性质的特点…………………………………………P8~ P20 3.1.1木材的各向异性 3.1.2木材的正交对称性与正交异向弹性 3.1.3木材的粘弹性 3.1.4木材的松弛 3.1.5木材塑性 3.1.6木材的强度、韧性和破坏 3.1.7单轴应力下木材的变形与破坏特点 4.1木材的各种力学强度及其试验方法………………………P20~ P28

5.1木材力学性质的影响因素…………………………………P28~ P31 5.1.1木材密度的影响 5.1.2含水率的影响 5.1.3温度的影响 5.1.4木材的长期荷载 5.1.5纹理方向及超微构造的影响 5.1.6缺陷的影响 6.1木材的允许应力…………………………………………P31~ P33 6.1.1木材强度的变异 6.1.2荷载的持久性 6.1.3木材缺陷对强度的影响 6.1.4构件干燥缺陷的影响 6.1.5荷载偏差的折减 6.1.6木材容许应力应考虑的因素 7.1常用木材物理力学性能……………………………………P34~ P36

主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。 1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。 1.1.4了解木材力学性质的意义:掌握木材的特性,合理选才、用材。 2.1木材力学基础理论 2.1.1应力与应变(stress and strain)

木材的力学性能参数分析

木材的力学性能参数分 析 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

木材的力学性能参数

目录 木材的力学性质………………………………………………P3 木材力学基础理论……………………………………………P3~ P8应力与应变 弹性和塑性 柔量和模量 极限荷载和破坏荷载 木材力学性质的特点…………………………………………P8~ P20木材的各向异性 木材的正交对称性与正交异向弹性 木材的粘弹性 木材的松弛 木材塑性 木材的强度、韧性和破坏 单轴应力下木材的变形与破坏特点 木材的各种力学强度及其试验方法………………………P20~ P28

力学性质的种类 木材力学性质的影响因素…………………………………P28~ P31木材密度的影响 含水率的影响 温度的影响 木材的长期荷载 纹理方向及超微构造的影响 缺陷的影响 木材的允许应力…………………………………………P31~ P33木材强度的变异 荷载的持久性 木材缺陷对强度的影响 构件干燥缺陷的影响 荷载偏差的折减 木材容许应力应考虑的因素 常用木材物理力学性能……………………………………P34~ P36

木材的力学性质 主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。 木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。 了解木材力学性质的意义:掌握木材的特性,合理选才、用材。 木材力学基础理论 应力与应变(stress and strain) 应力

木材的力学性能参数分析定稿版

木材的力学性能参数分 析 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

木材的力学性能参数

目录 1.1木材的力学性质………………………………………………P3 2.1木材力学基础理论……………………………………………P3~ P8 2.1.1应力与应变 2.1.2弹性和塑性 2.1.3柔量和模量 2.1.4极限荷载和破坏荷载 3.1木材力学性质的特点…………………………………………P8~ P20 3.1.1木材的各向异性 3.1.2木材的正交对称性与正交异向弹性 3.1.3木材的粘弹性 3.1.4木材的松弛 3.1.5木材塑性 3.1.6木材的强度、韧性和破坏 3.1.7单轴应力下木材的变形与破坏特点 4.1木材的各种力学强度及其试验方法………………………P20~ P28

4.1.1力学性质的种类 5.1木材力学性质的影响因素…………………………………P28~ P31 5.1.1木材密度的影响 5.1.2含水率的影响 5.1.3温度的影响 5.1.4木材的长期荷载 5.1.5纹理方向及超微构造的影响 5.1.6缺陷的影响 6.1木材的允许应力…………………………………………P31~ P33 6.1.1木材强度的变异 6.1.2荷载的持久性 6.1.3木材缺陷对强度的影响 6.1.4构件干燥缺陷的影响 6.1.5荷载偏差的折减 6.1.6木材容许应力应考虑的因素 7.1常用木材物理力学性能……………………………………P34~ P36

1.1木材的力学性质 主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。 1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。 1.1.4了解木材力学性质的意义:掌握木材的特性,合理选才、用材。 2.1木材力学基础理论 2.1.1应力与应变(stress and strain) 应力

木材的力学性能参数分析

木材的力学 性能参数

目录 1.1木材的力学性质………………………………………………P3 2.1木材力学基础理论……………………………………………P3~ P8 2.1.1应力与应变 2.1.2弹性和塑性 2.1.3柔量和模量 2.1.4极限荷载和破坏荷载 3.1木材力学性质的特点…………………………………………P8~ P20 3.1.1木材的各向异性 3.1.2木材的正交对称性与正交异向弹性 3.1.3木材的粘弹性 3.1.4木材的松弛 3.1.5木材塑性 3.1.6木材的强度、韧性和破坏 3.1.7单轴应力下木材的变形与破坏特点 4.1木材的各种力学强度及其试验方法………………………P20~ P28

5.1木材力学性质的影响因素…………………………………P28~ P31 5.1.1木材密度的影响 5.1.2含水率的影响 5.1.3温度的影响 5.1.4木材的长期荷载 5.1.5纹理方向及超微构造的影响 5.1.6缺陷的影响 6.1木材的允许应力…………………………………………P31~ P33 6.1.1木材强度的变异 6.1.2荷载的持久性 6.1.3木材缺陷对强度的影响 6.1.4构件干燥缺陷的影响 6.1.5荷载偏差的折减 6.1.6木材容许应力应考虑的因素 7.1常用木材物理力学性能……………………………………P34~ P36

主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。 1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。 1.1.4了解木材力学性质的意义:掌握木材的特性,合理选才、用材。 2.1木材力学基础理论 2.1.1应力与应变(stress and strain) 应力

相关主题