搜档网
当前位置:搜档网 › 木材的力学性能参数分析

木材的力学性能参数分析

木材的力学性能参数分析
木材的力学性能参数分析

木材的力学性能参数分

GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

木材的力学性能参数

目录

1.1木材的力学性质………………………………………………P3

2.1木材力学基础理论……………………………………………P3~ P8 2.1.1应力与应变

2.1.2弹性和塑性

2.1.3柔量和模量

2.1.4极限荷载和破坏荷载

3.1木材力学性质的特点…………………………………………P8~ P20 3.1.1木材的各向异性

3.1.2木材的正交对称性与正交异向弹性

3.1.3木材的粘弹性

3.1.4木材的松弛

3.1.5木材塑性

3.1.6木材的强度、韧性和破坏

3.1.7单轴应力下木材的变形与破坏特点

4.1木材的各种力学强度及其试验方法………………………P20~ P28

5.1木材力学性质的影响因素…………………………………P28~ P31 5.1.1木材密度的影响

5.1.2含水率的影响

5.1.3温度的影响

5.1.4木材的长期荷载

5.1.5纹理方向及超微构造的影响

5.1.6缺陷的影响

6.1木材的允许应力…………………………………………P31~ P33 6.1.1木材强度的变异

6.1.2荷载的持久性

6.1.3木材缺陷对强度的影响

6.1.4构件干燥缺陷的影响

6.1.5荷载偏差的折减

6.1.6木材容许应力应考虑的因素

7.1常用木材物理力学性能……………………………………P34~ P36

主要介绍:木材力学性质的基本概念、木材的应力—应变关系;

木材的正交异向弹性、木材的黏弹性、木材的塑性;

木材的强度与破坏、单轴应力下木材的变形与破坏特点;

基本的木材力学性能指标;

影响木材力学性质的主要因素等。

1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。

1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。

1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。

1.1.4了解木材力学性质的意义:掌握木材的特性,合理选才、用材。

2.1木材力学基础理论

2.1.1应力与应变(stress and strain)

应力

定义:材料在外力作用下,单位面积上产生的内

力,包括压应力、拉应力、剪应力、弯应力等。

单位:N/mm2(=MPa)

压缩应力:短柱材受压或受拉状态下产生的正应力称为压缩应力;

压应力:σ=-P/A

拉伸应:短柱材受压或受拉状态下产生的正应力称为拉伸应力;

拉应力:σ=P/A

剪应力:当作用于物体的一对力或作用力与反作用力不在同一条作用线上,而使物

体产生

平行于

应力作

用面方

向被剪

切的应

力;τ=P/A

Q

应变

定义:外力作用下,物体单位长度上的尺寸或形状的变化;

应变:ε=±⊿L / L

应力与应变的关系

应力—应变曲线:曲线的终点M表示物体的破坏点。

比例极限与永久变形:

比例极限应力:直线部分的上端点P对应的应力;

比例极限应变:直线部分的上端点P对应的应变;

塑性应变(永久应变):应力超过弹性限度,这时如果除去应力,应变不会完全回复,其中一部分会永久残留。

破坏应力与破坏应变

);

破坏应力、极限强度:应力在M点达到最大值,物体产生破坏(σ

M

)。

破坏应变:M点对应的应变(ε

M

屈服应力

当应力值超过弹性限度值并保持基本上一定,而应变急剧增大,这种现象叫屈服,

)。

而应变突然转为急剧增大的转变点处的应力叫屈服应力(σ

Y

2.1.2弹性和塑性(elasticity and plasticity)

弹性:物体在卸除发生变形的荷载后,恢复其原有形状、尺寸或位置的能力;

塑性:物体在外力作用下,当应变增长速度大于应力增长速度,外力消失后木材产生永久残留变形部分,为塑性变形,木材的这一性质叫塑性;

塑性应变(永久应变):应力超过弹性限度,这时如果除去应力,应变不会完全回复,其中一部分会永久残留。

弹性变形实际上是分子内的变形和分子间键距的伸缩;塑性变形实际上是分子间相对位置的错移。

2.1.3柔量和模量(compliance and modulus)

在弹性限度范围内,大多数材料应力与应变间有如下关系:σ= Eε,(胡克定律)

弹性模量( E ):物体产生单位应变所需要的应力,它表征材料抵抗变形能力的大小,E=应力/应变,物体的弹性模量值愈大,在外力作用下愈不易变形,材料的强度也愈大, E = σ / ε叫弹性模量。

柔量:弹性模量的倒数,表征材料在荷载状态下产生变形的难易程度, a= E-1

=ε/σ为柔量.

弹性模量的意义:在弹性范围内,物体抵抗外力使其改变形状或体积的能力。是材料刚性的指标。

2.1.4极限荷载和破坏荷载(maximum loading and destroy loading)

极限荷载:试件达到最大应力时的荷载。

破坏荷载:试件完全破坏时的荷载。

气干材上述两个值相同;而湿木材两者不同,破坏荷载常低于极限荷载。

3.1木材力学性质的特点

3.1.1木材的各向异性

表现在木材的物理性质,如干缩、湿胀、扩散、渗透等。在力学性能上,如弹性、强度和加工性等方面。从强度上来看,木材的压缩、拉伸、弯曲及冲击韧性等均为当应力方向与纤维方向平行时,强度值最大,随着两者之间的倾角变大,强度锐减。前述木材物理性质(干缩性、热、电、声学等)构造性质各向异性,同样木材力学性质亦存在着各向异性。木材大多数细胞轴向排列,仅少量木射线径向排列。木材为中空的管状细胞组成,其各个方向施加外力,木材破坏时产生的极限应力不同。例如顺纹抗拉强度可达120.0-150.0Mpa,而横纹抗拉强度仅3.0-

5.0Mpa(C-H,H-O),这主要与其组成分子的价键不同所致。轴向纤维素链状分子是以C-C、 C-O键连接,而横向纤维素链状分子是以C-H、H-O连接,二者价键的能量差异很大。

木材力学性质各向异性原因:

木材宏观上呈层次状:同心圆状年轮

木材有纵向和横向组织:大多数细胞和组织呈轴向,射线组织呈径向。胞壁结构:细胞壁各层微纤丝排列方向不同

胞壁的成分:以纤维素为骨架。

纤维素的结构、晶胞有关:单斜晶体。

3.1.2木材的正交对称性与正交异向弹性

弹性常数

弹性模量( E ):物体产生单位应变所需要的应力,它表征材料抵抗变形能力的大小,E=应力/应变

剪切弹性模量G:剪切应力τ与剪切应变γ之间在小的范围内符合:

τ=Gγ或G=γ/τ

G 为剪切弹性模量,或刚性模量。

泊松比μ:物体的弹性应变在产生应力主轴方向收缩(拉伸)的同时还伴随有垂直于主轴方向的横向应变,将横向应变与轴向应变之比称为泊松比( ? )。

正交异向弹性:木材为正交异性体。弹性的正交异性为

正交异向弹性。

木材的正交对称性:木材具有圆柱对称性,使它成为近

似呈柱面对称的正交对称性物体。符合正交对称性的材

料,可以用虎克定律来描述它的弹性。

方程中有3个弹性模量、3个剪切弹性模量和3个泊松比。不同树种间的这9个常数值是存在差异。

木材是高度各向异性材料,木材三个主方向的弹性模量即E L>>E R>E T

几种木材的弹性常数

材料密度

g/cm3

率%

E

L

MPa

E

R

MPa

E

T

MPa

G

LT

MPa

G

LR

MPa

G

TR

MPa

μ

RT

μ

LR

μ

LT

针叶树材

3.1.3木材的粘弹性

流变学:讨论材料荷载后的弹性和黏性的科学。(讨论材料后荷载应力---应变之间关系随时间变化的规律)

蠕变和松弛是黏弹性的主要内容。木材的黏弹性同样依赖于温度、负荷时间、加荷速率和应变幅值等条件,其中温度和时间的影响尤为明显。

木材的蠕变

概念(creep):指在恒定外力作用下(应力不变), 应变随时间的增加而逐渐增大的现象。

由于木材的粘弹性而产生三种变形:瞬时弹性变形、粘弹性变形、塑性变形。

蠕变:在恒定应力下,木材应变随时间的延长而逐渐增大的现象。瞬时弹性变形:与加荷速度相适应的变形,它服从于胡克定律;

黏弹性变形:加荷过程终止,木材立即产生随时间递减的弹性变形 塑性变形:最后残留的永久变形。

差异:黏弹性变形是纤维素分子链的卷曲或伸展造成的,变形是可逆的,但较弹性变形它具有时间滞后性。塑性变形是纤维素分子链因荷载而彼此滑动,变形是不可逆转的。 蠕变曲线:

OA-----加载后的瞬间弹性变形,AB-----蠕变过程,(t 0→t 1)t ↗→ε↗ BC 1 ----卸载后的瞬间弹性回复,BC 1==OA , C 1D----蠕变回复过程,t↗→ε缓慢回复,故蠕变AB 包括两个组分:弹性的组分C 1C 2——初次蠕变(弹性后效变形),剩余永久变形C 2C 3=DE ——二次蠕变(塑性变形), 木材蠕变曲线变化表现的正是木材的黏弹性质。 蠕变规律:

(1)对木材施载产生瞬时变形后,变形有一随时间推移而增大的蠕变过程; (2)卸载后有一瞬时弹性恢复变形,在数值上等于施载时的瞬时变形; (3)卸载后有一随时间推移而变形减小的蠕变恢复,在此过程中的是可恢复蠕变部分;

(4)在完成上述蠕变恢复后,变形不再回复,而残留的变形为永久变形,即蠕变的不可恢复部分;

(5)蠕变变形值等于可恢复蠕变变形值和不可恢复蠕变变形值之和。

单向应力循环加载时的蠕变特点

能量的损耗随着每个周期增大,意味着在变形中做了更多的功,同时造成材料蠕变的不可恢复部分越来越大。

蠕变的消除

对木材施加一荷载,荷载初期产生应

力—应变曲线OA′,卸载产生曲线

A ′

B ′,残留了永久变形OB ′。

为了使永久变形消失而重新获得物体

的原来形状,必须施加与产生曲线应

力符号相反的应力OC ′,而形成这段曲线B′ C ′;当OC ′继续增大到等于A ′P ′, B ′C′将延至C ′ D ′;卸去这个符号相反的应力,产生应力—应变曲线D ′ E ′,也不能恢复到原形,残留负向的永久变形E ′ O ′。再次通过反向应力OF ′,材料才能恢复原形。如果再继续增大应力,则产生曲线F ′ A ′,与原曲线构成一个环状闭合。 A ′ B ′ D ′ F′封闭曲线所包围的面积相当于整个周期中的能量损耗。

蠕变的影响因素

(1)时间:(2)木材的含水率:水分在木材内,从一吸着处到另一吸着处,其中包括氢键的松散或破坏,木材这一暂时的削弱便导致在荷载下的微小变形,变形的累积可能最终导致破坏。

(3)载荷(4) 温度:当空气的温度和湿度增加时,木材的总变形量和变形速度也增加。

3.1.4木材的松弛

松弛:在恒定应变条件下应力随时间的延长而逐渐减少的现象。

松弛与蠕变的区别在于:在蠕变中,应力是常数,应变是随时间变化的可变量;而在松弛中,应变是常数,应力是随时间变化的可变量。

松弛曲线:应力—时间曲线

Kitazawa松弛公式:σ

t = σ

1

(1-m log t)

m为松弛系数,松弛系数随树种和应力种类而有不同,但更受密度和含水率影响,m 值与密度成反比,与含水率成正比。

木材蠕变特性研究简介:

木材的蠕变特性曲线是一粘弹性曲线

木材蠕变特性曲线

木材的蠕变变形由三部分组成:

第一部分是由木材内部高度结晶的微纤丝构架而引起的弹性变形,这种变形是瞬间完成;

第二部分是链段的伸展而引起的延迟弹性变形,这种变形是随时间而变化的;

第三部分是高分子的相互滑移引起的粘性流动。

力学模型:

数学模型

根据流变学理论,其任一瞬时的蠕变柔量J(t)为:

3.1.5木材塑性

塑性与塑性变形

塑性变形:当施加于木材的应力超过木材的弹性限度时,去除外力后,木材仍会残留一个当前不能恢复的变形,将这个变形称为塑性变形。塑性:木材所表现出的这一性质称为塑性。

木材的塑性是由于在应力作用下,高分子结构的变形及相互间相对移动的结果。木材属于塑性较小的材料。

木材塑性的影响因素

影响木材塑性的重要因素有木材的多孔性、木材的含水率和温度,其中含水率和温度的影响十分显着。含水率:随含水率增加而增大。

温度:随温度升高而加大,这种性质往往被称为热塑性。

木材塑性的应用

干燥时,木材由于不规则干缩所产生的内应力会破坏其组织的内聚力,而塑性的产生可以抵消一部分木材的内应力。木材的塑性在木材的软化、人造板成型等工艺中有利。

3.1.6木材的强度、韧性和破坏

木材的强度

强度是指材料抵抗其受施应力而不致破坏的能力,表示单位截面积上材料的最大承载能力。单位:N/mm2=Mpa。

木材是各向异性的高分子材料,根据所施加应力的方式和方向的不同,木材具有顺纹抗拉强度、顺纹抗压强度、横纹抗压强度、抗弯强度等多项力学强度指标参数。

木材的韧性

韧性是指材料在不致破坏的情况下所能抵御的瞬时最大冲击能量。单位:KJ/m2 韧性材料往往是强度大的材料,但也有不符合这个关系的。

木材的破坏

(1) 破坏木材结构破坏是指其组织结构在外力或外部环境作用下发生断裂、扭曲、错位,而使木材宏观整体完全丧失或部分丧失原有物理力学性能的现象。(2) 木材破坏的原因

纤维素赋予木材弹性和强度;木质素赋予木材硬度和刚性;半纤维素起填充作用,它赋予木材剪切强度。从细胞壁结构和细胞壁结构物质的性质来看,木材发生破坏的原因是微纤丝和纤维素骨架的填充物的撕裂,或纤维素骨架的填充物的剪切,或纤维被压溃所引起。任何条件对木材破坏的决定性作用都取决于应力状态的类型。

3.1.7单轴应力下木材的变形与破坏特点

顺纹压缩*

顺纹压缩破坏的宏观征状:最初现象是横跨侧面的细线条,随着作用力加大,变形随之增加,材面上开始出现皱褶。

破坏形状和破坏部位常取决于木材含水率和硬度等因素。湿材和软材以端部压溃破坏最为常见,破坏出现在应力集中的地方。干的木材通常产生劈裂而破坏,这是由于纤维或木射线的撕裂,而非木射线与邻接的构造分子之间的分离。

横纹压缩

木材横纹压缩是指作用力方向与木材纹理方向相垂直的压缩。木材进行压缩时,应力—应变关系是一条非线性的曲线:常规型是散孔材横压时的特征,为不具平台的连续曲线。

三段型是针叶树材和阔叶树材环孔材径向受压时的特征曲线:横纹压缩应力-应变曲线OA-早材的弹性曲线AB-早材压损过程曲线BC-晚材弹性曲线而当弦向压缩时不出现三段式曲线。

顺纹拉伸

木材顺纹拉伸破坏主要是纵向撕裂和微纤丝之间的剪切。微纤丝纵向结合非常牢固,所以顺纹拉伸时的变形不大,通常应变值小于1%~3%,强度值却很高。即使在这种情况下,微纤丝本身的拉伸强度也未能充分发挥,因为木材的纤维会在微纤丝之间撕开。木材顺纹剪切强度特别低,通常只有顺纹抗拉强度的6%~10%。破坏断面通常呈锯齿状、细裂片状或针状撕裂。其断面形状的不规则程度,取决于木材顺拉强度和顺剪强度之比值。一般健全材该比值较大,破坏常在强度较弱的部位剪切开,破坏断面不平整,呈锯齿状木茬。

横纹拉伸

木材的力学性能参数分析整理

木材的力学性能参数

目录 木材的力学性质………………………………………………P3 木材力学基础理论……………………………………………P3~ P8 弹性和塑性 柔量和模量 极限荷载和破坏荷载 木材力学性质的特点…………………………………………P8~ P20 木材的各向异性 木材的正交对称性与正交异向弹性 木材的粘弹性 木材塑性 木材的强度、韧性和破坏 木材的各种力学强度及其试验方法………………………P20~ P28 木材力学性质的影响因素…………………………………P28~ P31 木材的允许应力…………………………………………P31~ P33 木材容许应力应考虑的因素 常用木材物理力学性能……………………………………P34~ P36 木材的力学性质 主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属

生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。 了解木材力学性质的意义:掌握木材的特性,合理选才、用材。 木材力学基础理论 (stress and strain) 定义:材料在外力作用下,单位面积上产生的内 力,包括压应力、拉应力、剪应力、弯应力等。 单位:N/mm2(=MPa) 压缩应力:短柱材受压或受拉状态下产生的正应 力称为压缩应力; 压应力:σ=-P/A 拉伸应:短柱材受压或受拉状态下产生的正应力称为拉伸应力; 拉应力:σ=P/A 剪应力:当作用于物体的一对力或作用力与反作用力不在同一条作用线上,而使物体产生平行于应力作用面方向被剪切的应力;τ=P/A Q 定义: 外力 作用 下, 物体单位长度上的尺寸或形状的变化; 应变:ε=±⊿L / L

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

木材力学性能

现浇箱梁模板与支架的设计及施工质量控制 ぷ风之酷╰☆发表于2007年11月23日 12:07 阅读(175) 评论(1) 分类:个人日记 举报 现浇箱梁模板与支架的设计及施工质量控制 菏泽市双河立交桥是220国道与327国道在菏泽交汇处的十字交通枢纽工程,该桥为3层全互通长条苜蓿叶立交,主要有主桥、引桥、人行桥等10座桥梁组成,其中主桥为 20+28+20=68m单箱双室现浇后张法预应力混凝土连续箱梁结构,梁高l.5m,两侧悬臂均为2m,主桥宽13m。设计荷载为:汽车—20级,挂车—100,设计行车速度80km/h。工程于2000年7月开工,2001年10月1日正式竣工通车。笔者在施工监理工作中,以控制关键工序为突破口,在提升总体工程质量上做了一些工作。本文将结合双河立交桥主桥的施工实践,介绍现浇箱梁模板与支架的设计方法和施工质量控制措施,以便同行们参考。 1 模板与支架的设计和验算 1.1 方案选定 根据以往施工经验;结合箱梁的实际尺寸,模板及支架施工方案选定如下。支架采用满布式碗扣支架。支架基础分层夯实整平,采用三七灰土处理50cm,横铺5cm厚、25cm 宽的方木,用砂浆座实。立杆纵向间距120cm、横向间距90cm,横杆步距120/90cm。碗扣支架立杆底部垫钢板,顶部加顶托。顶托上面横向分布10cm×10cm方木,间距20cm,方木上钉竹胶板(厚1cm)作为底模。翼板和侧模采用10cm×10cm方木钉成框架作为支撑;框架间距lm,钉5cm厚木板,其上再钉竹胶板作为侧模和翼板的底模。箱梁箱室空间较小,混凝土浇筑后内模拆除困难,采用3cm厚木板刨光配一定的方木作为内模,混凝土浇筑后不再拆除。考虑到横梁、边腹板处自重较大,立杆间距局部加密为60cm×90cm。考虑到支架的整体稳定性,在纵向每4.5m设通长剪刀撑1道,横向每隔3跨布置剪刀撑l道。为便于高度调节,每根立杆顶部配可调顶托,可调范围30cm。按照施工区处理后的地面高程与梁底声程之差,采用LG—300、LG—180、LG—150、LG—120、LG—90等规格的杆件进行组合安装。 1.2模板设计与验算模板必须能够正确地保证其形状和位置,因而设计模板时必须进行强度设计和刚度验算,确保模板具有足够的强度和刚度。 1.2.1底模板设计与验算 (1)荷载计算: 模板自重:a=0.0955kN/m2;钢筋混凝土自重:b=20.75kN/m2;施工荷载:c=2.5kN/m2(集中荷载P=2.5kN);振捣荷载:d=2.0kN/m2。 (2)强度验算当施工荷载均布时,可近似按5跨等跨连续梁计算,即:l=0.2mq1=[1.2(a+b)+1. 4(c+d)]×1.0=3l. 314kN/m Mmax=-0.105q1l=-0.132kN.m 当施工荷载集中于跨中时,按5等跨连续梁计算设计荷载:q2=[1.2(a+b)+1.4d]×1.0=27.814KN/m集中设计荷载P= 1.4( 2.5/5)=0.7kNMmax=-0.105q2l2-0.158Pl=-0.139kN.m可见,施工荷载集中于跨中时,弯距最大。σ=Mmax/Wx=0.139×103/(1×0.012/6) =8.34MPa<[σ0]=90MPa强度满足设计要求 (3)刚度验算按1m宽度计算,则q3=1.0×(a+b)×1.0=20.845KNE=7000MPaI=1.0×0.013/12=0.083333×10-6m4?=0.644q3l4/(100EI)=0.37mm<[?0] =(1/400)=2.5mm刚度满足要求 1.2.2 侧模板设计与验算侧模板采用5cm厚木版内钉1cm厚竹胶板。 (1)水平荷载计算①新浇混凝土对模板的侧压力。混凝土的浇注速度ν=1.5m/h,混凝土初凝时间t=4h.a=0.22γtβ1β2ν1/2=35.7KPaa=γh=36KPa取较大值:a=36KPa②振捣荷载:b=4.0KN/m2③倾倒荷载:c=2.0KN/m2 (2)强度验算近似按3跨连续梁计算: q=[1.2a+1.4(b+c)]×1.0=51.6KN/ml=1.0mMmax=-0.100ql2=-5.16KN.mσ=Mmax/Wx=5.16×103/(1.0×0.0602/6) =8.60MPa<[σ0]=98.6MPa强度满足要求。

材料力学性能-考前复习总结(前三章)

金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。 材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR 材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性 第一章单向静拉伸力学性能 应力和应变:条件应力条件应变 = 真应力真应变 应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。其中必有一主平面,切应力为零,只有主应力,且 ,满足胡克定律。 应力软性系数:最大切应力与最大正应力的相对大小。 1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。ae=1/2σeεe=σe2/2E。取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。需通过合金强化及组织控制提高弹性极限。 2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。 ①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。金属中点缺陷的移动,长时间回火消除。 弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。吸收变形功 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。 ②包申格效应: 定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。(反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了) 解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。卸载后同向拉伸,位错线不能显著运动。但反向载荷使得位错做反向运动,阻碍

不同树种的木材物理力学性能

不同树种的木材物理力学性能 不同树种的木材物理力学性能包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗弯强度、抗剪强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 树木是木材的原体,是由它本身生命生存与繁衍的整个生长过程,积累了成为不同木材的物质,直到生命自然终结,或被认为终结生命,而成为被利用的材料。树木是木质多年生植物,通常把它分为乔木和灌木两种。乔木是l.3米以上,只有一个直立主干的树木;灌木是直立的、具有丛生茎的树木。我国现有木本植物约7000多种,属乔木者约占1/3以上,但是作为工业用材而供应市场的只不过1000种,常见的约300种。 树木是人类繁衍延续到今天的必要条件。它靠空气、水和阳光存活,通过一系列化学反应,形成树木肢体的物理变化,为人类营造出了天然的乐园。 “碳”是形成木材物理力基础。树木在生长发育过程中,形成了高度发达的营养体。水分及营养液等流体的输运现象始终伴随着树木营养生长的生理过程。树木由树梢沿主轴向上生长(高生长),也在土壤深处向下生长(根生长),中间的树干部分沿着径向生长。前一年形成的树干部分到了次年不会再进行高生长。

树木从天上接受阳光的沐浴,到地下去寻觅水分,把原料从树根输送到叶片。由叶子制造养分,将养分向下输送,供给树木生长需要。这样,树木生长过程中,形成了非常协调完备的水分及养分的输送系统。 一株红杉(美)树高达112米,一株杏仁桉(奥)树竟高达156米,一株银杏(中)树龄达3000年,一株世界爷(美)树龄竟达7800年。那么对于如此高大、如此年久的树木,体内各种物质(水、矿物质、可溶性碳水化合物和激素等等)是它的最外层是树皮(外皮),树皮里边一层是韧皮部(也叫内皮),经它将营养液由叶部输送到树木的其他部分(包括根在内)。再向内一层是形成层,它的细胞不断分裂,使树木沿径向生长而不断加粗。再往里是边材和心材,即木质部,木质部中被叫做导管的细胞组织,它将树液输送到茎和叶部。这个过程,就是水分将土壤中的碳分子和空气中的碳分子,经过化学反应形成积累。 压力流动模型实验证明,树木营养液的流动动力是流体静压力。即净生产细胞(如一片成熟叶)由于光合作用制造大量糖而保持较高的溶质浓度,水便通过渗透作用不断进入净生产细胞,使胞内的流体静压力增加,迫使营养液经过胞间连丝进入韧皮部。而净消费细胞(可以是一个根细胞、一个有代谢作用的细胞,或一个果实细胞)由于呼吸、生长和储藏保持着较低的溶质浓度,胞内流体静压力较低。这样,

木材的力学性能参数分析整理

木 材 的 力学 性 能 参 数

目录 木材的力学性质………………………………………………P3 木材力学基础理论……………………………………………P3~ P8应力与应变 弹性和塑性 柔量和模量 极限荷载和破坏荷载 木材力学性质的特点…………………………………………P8~ P20木材的各向异性 木材的正交对称性与正交异向弹性 木材的粘弹性 木材的松弛 木材塑性 木材的强度、韧性和破坏 单轴应力下木材的变形与破坏特点

木材的各种力学强度及其试验方法………………………P20~ P28力学性质的种类 木材力学性质的影响因素…………………………………P28~ P31木材密度的影响 含水率的影响 温度的影响 木材的长期荷载 纹理方向及超微构造的影响 缺陷的影响 木材的允许应力…………………………………………P31~ P33木材强度的变异 荷载的持久性 木材缺陷对强度的影响 构件干燥缺陷的影响 荷载偏差的折减

木材容许应力应考虑的因素 常用木材物理力学性能……………………………………P34~ P36 木材的力学性质 主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。 木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因

工程材料力学性能-第 版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

衡量金属材料力学性能的指标名称 符 基本单位及其含义说明

指标 法定计量单位 计算公式 试验仪器 含义说明 名称 符号 名称 单位 弹性 弹性是指金属在外力作用下产生变形,当外力取消后又恢复到原来的形状和大小的一种特性 弹性指标 正弹性模量 E 兆帕〔斯卡〕 MPa 式中 σ──应力 ε──应变 P ──垂直应力(N ) l 0──试样原长(mm ) F 0──试样原来的横截面积(mm 2) Δl ──绝对伸长量(mm ) 拉伸试验机或万能材料试验机 金属在弹性范围内,外力和变形成比例地增长,即应力与应变成正比例关系时(符合虎克定律),这个比例系数就称为弹性模数或弹性模量。根据应力,应变的性质通常又分为:正弹性模数(E )和剪切弹性模数(G ),弹性模数的大小,相当于引起物体单位变形时所需应力之大小,所以,它在工程技术上是衡量材料刚度的指标,弹性模数愈大,刚度也愈大,亦即在一定应力作用下,发生的弹性变形愈小 切变弹性模量 G 兆帕〔斯卡〕 MPa 式中 ──切应力 ──相应的扭转滑移 M ──扭转力矩 l 0──试样计算长度(mm ) ──计算长度l 0两端的扭 转角度(经度) ──扭转时试样截面相对于轴线的极惯性矩(对圆截面 )(mm 4) 扭转试验机或万能材 料试 验机 比例极限 σp 兆帕 〔斯卡〕 MPa 式中 ──比例极限载荷(N ) F ──试样横截面积 (mm 2) 拉伸试验机 或万 能材 料试验机 指伸长与负荷成正比地增加,保持直线关系,当开始偏离直线时的应力称比例极限,但此位置很难精确测定,通常把能引起材料试样产生残余变形量为试样原长的0.001%或0.003%、0.005%、0.02%时的应力,规定为比例极限 弹性极限 σe 兆帕〔斯卡〕 MPa 式中 ──弹性极限载荷(N ) F ──试样横截面积(mm 2) 拉伸试验机或万 能材 料试 验机 这是表示金属最大弹性的指标,即在弹性变形阶段,试样不产生塑性变形时所能承受的最大应力,它和σp 一样也很难精确测定,一般多不进行测定,而以规定的σp 数值代替之 强度 强度指金属在外力作用下,抵抗塑性变形和断裂的能力 强度极限 σ 兆帕〔斯卡〕 MPa 式中 ──最大载荷(N ) F ──试样横截面积(mm 2) 指金属受外力作用,在断裂前,单位面积上所能承受的最大载荷 抗拉强度 σb 兆帕〔斯卡〕 MPa 式中 ──最大拉力(N ) F ──试样横截面积(mm 2) 拉伸试验机 或万 能材 料试验机 指外力是拉力时的强度极限,它时 衡量金属材料强度的主要性能指标

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

金属材料力学性能

常见的金属材料力学性能 一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破 坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 1.1 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位 面积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 1.2 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 1.3 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。

几种常用金属材料力学性能一览表 注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]=σu n ,σu={ σs σb 式中,n为大于1的因数,称为安全因数。对于塑性材料n为1.5-2.5,σu=σs;对于脆性材料n为3.0-7.0,σu=σb。 2.1 强度条件

木材的力学性能参数分析

木材的力学性 能 参 数

目录 1.1木材的力学性质………………………………………………P3 2.1木材力学基础理论……………………………………………P3~ P8 2.1.1应力与应变 2.1.2弹性和塑性 2.1.3柔量和模量 2.1.4极限荷载和破坏荷载 3.1木材力学性质的特点…………………………………………P8~ P20 3.1.1木材的各向异性 3.1.2木材的正交对称性与正交异向弹性 3.1.3木材的粘弹性 3.1.4木材的松弛 3.1.5木材塑性 3.1.6木材的强度、韧性和破坏 3.1.7单轴应力下木材的变形与破坏特点

4.1木材的各种力学强度及其试验方法………………………P20~ P28 4.1.1力学性质的种类 5.1木材力学性质的影响因素…………………………………P28~ P31 5.1.1木材密度的影响 5.1.2含水率的影响 5.1.3温度的影响 5.1.4木材的长期荷载 5.1.5纹理方向及超微构造的影响 5.1.6缺陷的影响 6.1木材的允许应力…………………………………………P31~ P33 6.1.1木材强度的变异 6.1.2荷载的持久性 6.1.3木材缺陷对强度的影响 6.1.4构件干燥缺陷的影响 6.1.5荷载偏差的折减

6.1.6木材容许应力应考虑的因素 7.1常用木材物理力学性能……………………………………P34~ P36 1.1木材的力学性质 主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。 1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。 1.1.4了解木材力学性质的意义:掌握木材的特性,合理选才、用材。

聚四氟乙烯材料力学性能参数表

1.聚四氟乙烯 聚四氟乙烯是用于密封的氟塑料之一。聚四氟乙烯以碳原子为骨架,氟原子对称而均匀地分布在它的周围,构成严密的屏障,使它具有非常宝贵的综合物理机械性能(表14—9)。聚四氟乙烯对强酸、强碱、强氧化剂有很高的抗蚀性,即使温度较高,也不会发生作用,其耐腐蚀性能甚至超过玻璃、陶瓷、不锈钢以至金、铂,所以,素有“塑料王”之称。除某些芳烃化合物能使聚四氟乙烯有轻微的溶胀外,对酮类、醇类等有机溶剂均有耐蚀性。只有熔融态的碱金属及元素氟等在高温下才能对它起作用。 聚四氟乙烯的介电性能优异,绝缘强度及抗电弧性能也很突出,介质损耗角正切值很低,但抗电晕性能不好。聚四氟乙烯不吸水、不受氧气、紫外线作用、耐候性好,在户外暴露3年,抗拉强度几乎保持不变,仅伸长率有所下降。聚四氟乙烯薄膜与涂层由于有细孔,故能透过水和气体。 表14-9聚四氟乙烯性能

聚四氟乙烯在200℃以上,开始极微量的裂解,即使升温到结晶体熔点327℃,仍裂解很少,每小时失重为万分之二。但加热至400℃以上热裂解速度逐渐加快,产生有毒气体,因此,聚四氟乙烯烧结温度一般控制在375~380℃。 聚四氟乙烯分子间的范德华引力小,容易产生键间滑动,故聚四氟乙烯具有很低的摩擦系数及不粘性,摩擦系数在已知固体材料中是最低的。 聚四氟乙烯的导热系数小,该性能对其成型工艺及应用影响较大。其不但导热性差,且线膨胀系数较大,加入填充剂可适当降低线膨胀系数。在负荷下会发生蠕变现象,亦称作“冷流”,加入填充剂可减轻蠕变程度。 聚四氟乙烯可以添加不同的填充剂,选择的填充剂应基本满足下述要求:能耐380℃高温即四氟制品的烧结温度;与接触的介质不发生反应;与四氟树脂有良好的混入性;能改善四氟制品的耐磨性、冷流性、导热性及线膨胀系数等。常用 的填充剂有无碱无蜡玻璃纤维、石墨、碳纤维、MoS 2、A1 2 3 、CaF 2 、焦炭粉及各 种金属粉。如填充玻璃纤维或石墨,可提高四氟制品的耐磨、耐冷流性,填充MoS 2 可提高其润滑性,填充青铜、钼、镍、铝、银、钨、铁等,可改善导热性,填充聚酰亚胺或聚苯酯,可提高耐磨性,填充聚苯硫醚后能提高抗蠕变能力,保证尺寸稳定等。在相同的温度条件下,填充后的聚四氟乙烯其抗压强度(表 14-10)、压缩弹性模量(表14-11)、抗弯强度(表14-12)、硬度(表14-13)、摩擦系数和耐磨耗性(表14-14)、热导率(表14-15)均比纯四氟乙烯高。但抗拉强度和伸长率则有所下降,线膨胀系数(表14-15)也减小。 表14-10不同温度下加填充剂前后聚四氟乙烯的抗压强度① (Pa) ①5%变形。 表14-ll 不同温度下加填充剂前后聚四氟乙烯的压缩弹性模量 (×103 Pa)

金属材料机械性能的指标及意义(优.选)

金属材料机械性能的指标及意义 材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等。 (1)强度强度是指金属材料在外力作用下对变形或断裂的抗力。强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2(国外用Re表示)和抗拉强度σb(国外用Rm表示),高温下工作时,还要考虑蠕变极限σn和持久强度σD。 (2)塑性塑性是指金属材料在断裂前发生塑性变形的能力。塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度。 (3)韧性韧性是指金属材料抵抗冲击负荷的能力。韧性常用冲击功Ak和冲击韧性值αk表示。Αk值或αk 值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化。而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性。 表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力。 (4)硬度硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 在断裂力学基础上建立起来的材料抵抗裂纹扩展断裂的韧性性能称为断裂韧性。(Kic,Gic) 常用的35CrMo在850℃油淬,550℃回火后,机械性能如下: σb≥980MPa;σs≥835 MPa;δ5≥12%;ψ≥45%;AK≥63J; 而高级优质的35CrMoA的性能应该更加优良稳定。 最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改 1 / 1word.

木材的力学性能

1.化学性质 化学组成——纤维素、木质素和半纤维素是构成细胞壁的主要成分,此外还有脂肪、树脂、蛋白质、挥发油以及无机化合物等。 木材对酸碱有―定的抵抗力,对氧化性能强的酸,则抵抗力差;对强碱,会产生变色、膨胀、软化而导致强度下降。―般液体的浸透对木材的影响较小。 2.物理性质 1)含水量 木材中的含水量以含水率表示,指所含水的质量占干燥木材质量的百分比。 木材内部所含水分,可分为以下三种。 (1)自由水。存在于细胞腔和细胞间隙中的水分。自由水的得失影响木材的表观密度、保存性、燃烧性、抗腐蚀性、干燥性、渗透性。 (2)吸附水。被吸附在细胞壁内细纤维间的水分。吸附水的得失影响木材的强度和胀缩。 (3)化合水。木材化学成分中的结合水。对木材性能无大影响。 纤维饱和点——指当木材中无自由水,仅细胞壁内充满了吸附水时的木材含水率。树种不同,纤维饱和点随之不同,―般介于25%~35%,平均值约为30%。纤维饱和点是木材物理力学性质发生变化的转折点。 平衡含水率——木材长期处于―定温、湿度的空气中,达到相对稳定(即水分的蒸发和吸收趋于平衡)的含水率。平衡含水率是随大气的温度和相对湿度的变化而变化的。 木材的含水率:新伐木材常在35%以上;风干木材在15%~25%;室内干燥木材在8%~15%。 2)湿胀、干缩的特点 当木材从潮湿状态干燥至纤维饱和点时,自由水蒸发,其尺寸不变,继续干燥时吸附水蒸发,则发生体积收缩。反之,干燥木材吸湿时,发生体积膨胀,直至含水量达纤维饱和点为止。继续吸湿,则不再膨胀,见图10.7.1。―般地,表观密度大的,夏材含量多的,胀缩就较大。 因木材构造不均匀,其胀缩具有方向性,同―木材,其胀缩沿弦向最大,径向次之,纤维方向最小,见图10.7.1。这主要是受髓线的影响,其次是边材的含水量高于心材含水量。 图10.7.1含水量对松木胀缩变形的影响

工程材料力学性能

工程材料力学性能 第一章 退火低碳钢在拉伸力作用下的变形过程可分为如下五个阶段: 1、弹性变形; 2、不均匀屈服塑性变形(屈服阶段) 3、均匀塑性变形阶段; 4、不均匀集 中塑性变形;5、断裂。 弹性变形:是一种可逆变形,实质:晶格中原子自平衡位置产生可逆位移的反映。弹性变形物理本质:原子间距几何参数随外力的可逆变化。 弹性模量:弹性模量是产生100%弹性变形所需的应力。 物理意义:表征金属材料对弹性变形的抗力,其值大小反映了金属弹性变形的难易程度。其值越大,表示在相同应力下产生的弹性变形就越小。 影响因素一一主要取决于金属原子本性和晶格类型(原子间作用力)。 金属的弹性模量是一个组织不敏感的力学性能指标,合金化、热处理(显微组织)、冷塑性变 形对E值影响不大。 弹性比功:又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力(即材料吸收变形 功而不发生永久变形的能力,是一个韧度 指标。)。 物理意义:试样或实际机器零件的体积越大,则可吸收的弹性功越多,可储备的弹性能越多。滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象,称为滞弹性。 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性,也叫做金属 的内耗、消振性。 包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,弹性极限和屈服强 度就会升高;如果反向加载,弹性极限和屈服强度都下降,这种现象叫做包申格效应。 包申格效应的消除:预先进行较大的塑性变形,或在第二次反向受力之前使金属材料于回复或再结晶温度下退火。 塑性变形:外力移去后不能恢复的变形。 金属材料常见的塑性变形方式为滑移和孪生。 滑移系越多,塑性越好,但滑移系的数量不是决定塑性的唯一因素。如fee金属滑移系比bee 金属少,但因前者晶格阻力低,位错容易运动,故塑性却优于后者。 塑性变形具有一些特点: 1.各晶粒变形的不同时性和不均匀性:(a )材料表面优先(b )与切应力取向最佳的滑移系优 先 2 ?各晶粒变形的相互协调性:(a )晶粒间塑性变形的相互制约(b)晶粒间塑性变形的相互 协调(e )晶粒内不同滑移系滑移的相互协调 屈服现象与下述三个因素有关: ① 材料在变形前可动位错密度很小(或虽有大量位错但被钉扎住,如钢中的位错被杂质原子或 第二相质点所订扎):② 随塑性变形发生,位错能快速增殖;③位错运动速率与外加应力有强 烈依存关系。 p ):试样在加载过程中,标距部分的非比例伸长达到规定的原始规定非比例伸长应力(b 标

木材的力学性能参数分析

木材的力学性能参数分 析 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

木材的力学性能参数

目录 1.1木材的力学性质………………………………………………P3 2.1木材力学基础理论……………………………………………P3~ P8 2.1.1应力与应变 2.1.2弹性和塑性 2.1.3柔量和模量 2.1.4极限荷载和破坏荷载 3.1木材力学性质的特点…………………………………………P8~ P20 3.1.1木材的各向异性 3.1.2木材的正交对称性与正交异向弹性 3.1.3木材的粘弹性 3.1.4木材的松弛 3.1.5木材塑性 3.1.6木材的强度、韧性和破坏 3.1.7单轴应力下木材的变形与破坏特点 4.1木材的各种力学强度及其试验方法………………………P20~ P28

5.1木材力学性质的影响因素…………………………………P28~ P31 5.1.1木材密度的影响 5.1.2含水率的影响 5.1.3温度的影响 5.1.4木材的长期荷载 5.1.5纹理方向及超微构造的影响 5.1.6缺陷的影响 6.1木材的允许应力…………………………………………P31~ P33 6.1.1木材强度的变异 6.1.2荷载的持久性 6.1.3木材缺陷对强度的影响 6.1.4构件干燥缺陷的影响 6.1.5荷载偏差的折减 6.1.6木材容许应力应考虑的因素 7.1常用木材物理力学性能……………………………………P34~ P36

主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。 1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。 1.1.4了解木材力学性质的意义:掌握木材的特性,合理选才、用材。 2.1木材力学基础理论 2.1.1应力与应变(stress and strain)

木材的力学性能参数分析

木材的力学性能参数分 析 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

木材的力学性能参数

目录 木材的力学性质………………………………………………P3 木材力学基础理论……………………………………………P3~ P8应力与应变 弹性和塑性 柔量和模量 极限荷载和破坏荷载 木材力学性质的特点…………………………………………P8~ P20木材的各向异性 木材的正交对称性与正交异向弹性 木材的粘弹性 木材的松弛 木材塑性 木材的强度、韧性和破坏 单轴应力下木材的变形与破坏特点 木材的各种力学强度及其试验方法………………………P20~ P28

力学性质的种类 木材力学性质的影响因素…………………………………P28~ P31木材密度的影响 含水率的影响 温度的影响 木材的长期荷载 纹理方向及超微构造的影响 缺陷的影响 木材的允许应力…………………………………………P31~ P33木材强度的变异 荷载的持久性 木材缺陷对强度的影响 构件干燥缺陷的影响 荷载偏差的折减 木材容许应力应考虑的因素 常用木材物理力学性能……………………………………P34~ P36

木材的力学性质 主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。 木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。 了解木材力学性质的意义:掌握木材的特性,合理选才、用材。 木材力学基础理论 应力与应变(stress and strain) 应力

木材的力学性能参数分析定稿版

木材的力学性能参数分 析 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

木材的力学性能参数

目录 1.1木材的力学性质………………………………………………P3 2.1木材力学基础理论……………………………………………P3~ P8 2.1.1应力与应变 2.1.2弹性和塑性 2.1.3柔量和模量 2.1.4极限荷载和破坏荷载 3.1木材力学性质的特点…………………………………………P8~ P20 3.1.1木材的各向异性 3.1.2木材的正交对称性与正交异向弹性 3.1.3木材的粘弹性 3.1.4木材的松弛 3.1.5木材塑性 3.1.6木材的强度、韧性和破坏 3.1.7单轴应力下木材的变形与破坏特点 4.1木材的各种力学强度及其试验方法………………………P20~ P28

4.1.1力学性质的种类 5.1木材力学性质的影响因素…………………………………P28~ P31 5.1.1木材密度的影响 5.1.2含水率的影响 5.1.3温度的影响 5.1.4木材的长期荷载 5.1.5纹理方向及超微构造的影响 5.1.6缺陷的影响 6.1木材的允许应力…………………………………………P31~ P33 6.1.1木材强度的变异 6.1.2荷载的持久性 6.1.3木材缺陷对强度的影响 6.1.4构件干燥缺陷的影响 6.1.5荷载偏差的折减 6.1.6木材容许应力应考虑的因素 7.1常用木材物理力学性能……………………………………P34~ P36

1.1木材的力学性质 主要介绍:木材力学性质的基本概念、木材的应力—应变关系; 木材的正交异向弹性、木材的黏弹性、木材的塑性; 木材的强度与破坏、单轴应力下木材的变形与破坏特点; 基本的木材力学性能指标; 影响木材力学性质的主要因素等。 1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。 1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。 1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。 1.1.4了解木材力学性质的意义:掌握木材的特性,合理选才、用材。 2.1木材力学基础理论 2.1.1应力与应变(stress and strain) 应力

相关主题