搜档网
当前位置:搜档网 › 石墨烯的化学气相沉积法制备_图文(精)

石墨烯的化学气相沉积法制备_图文(精)

石墨烯的化学气相沉积法制备_图文(精)
石墨烯的化学气相沉积法制备_图文(精)

收稿日期:2010 12 31; 修回日期:2011 02 14

基金项目:国家自然科学基金(50872136,50972147,50921004、中国科学院知识创新项目(K J CX 2 YW 231.

通讯作者:任文才,研究员.E m ai:l w cren@i m r .ac .cn;成会明,研究员.E m ai:l chen g @i m r .ac .cn ;高力波.E m ai:l l bgao @i m r .ac .cn 作者简介:任文才(1973-,男,山东东营人,博士,研究员,主要研究方向为石墨烯和碳纳米管的制备、物性和应用.

E m ai:l w cren @i m r .ac .cn

文章编号: 1007 8827(201101 0071 10

石墨烯的化学气相沉积法制备

任文才, 高力波, 马来鹏, 成会明

(中国科学院金属研究所沈阳材料科学国家(联合实验室,辽宁沈阳110016

摘要: 化学气相沉积(CVD 法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、S i C 外延生长法和CV D 方法的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CV D 法制备石墨烯及其转移技术的研究进展,并展望了未来CVD 法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等。关键词: 石墨烯;制备;化学气相沉积法;转移中图分类号: TQ 127.1+1

文献标识码: A

1 前言

自从1985年富勒烯[1]

和1991年碳纳米管[2]

被发现以来,碳纳米材料的研究一直是材料研究领域的热点,引起了世界各国研究人员的极大兴趣。虽然碳的三维(石墨和金刚石、零维(富勒烯和一维(碳纳米管同素异形体都相继被发现,但作为二维同素异形体的石墨烯长期以来被认为由于热力学上的不稳定性而难以独立存在,在实验上难以获得足够大的高质量样品,因此石墨烯的研究一直处于理论探索阶段。直到2004年,英国曼彻斯特大学的科学家利用胶带剥离高定向热解石墨(HOPG 获得了独立存在的高质量石墨烯

[3],并提出了表征石墨烯

的光学方法,对其电学性能进行了系统研究,发现石墨烯具有很高的载流子浓度、迁移率和亚微米尺度的弹道输运特性,从而掀起了石墨烯研究的热潮。石墨烯是由单层碳原子紧密堆积成的二维蜂窝状结构,是构成其他维数碳材料的基本结构单元。石墨烯可以包覆成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨

[4]

。由于独特的二维结

构特征和极佳的晶体学质量,石墨烯的载流子表现

出类似于光子的行为,为研究相对论量子力学现象提供了理想的实验平台

[5 8]

,此外石墨烯还具有优异

的电学[9]

、光学[10]

、热学[11]

、力学[12]

等特性,因此在场效应晶体管、集成电路、单分子探测器、透明导

电薄膜、功能复合材料、储能材料、催化剂载体等方面有广阔的应用前景

[4,7]

。关于石墨烯的能带结构

以及特殊的物理性能,已经在本刊其他评述论文[13]中介绍,本文就不再重复。

材料的制备是研究其性能和探索其应用的前提和基础。尽管目前已经有多种制备石墨烯的方法,石墨烯的产量和质量都有了很大程度的提升,极大促进了对石墨烯本征物性和应用的研究,但是如何针对不同的应用实现石墨烯的宏量控制制备,对其质量、结构进行调控仍是目前石墨烯研究领域的重要挑战。本文首先简要介绍了石墨烯的几种主要制备方法的原理和特点,继而详细地评述了近两年发展起来的化学气相沉积(CVD 制备方法及其相应的石墨烯转移技术的研究进展,并展望了未来CVD 法制备石墨烯的可能发展方向。

2 石墨烯的主要制备方法

胶带剥离法(或微机械剥离法:2004年由英国曼彻斯特大学的G ei m 研究组发展的一种制备石墨烯的方法,它利用胶带的粘合力,通过多次粘贴将HO P G 、鳞片石墨等层层剥离,然后将带有石墨薄片的胶带粘贴到硅片等目标基体上,最后用丙酮等溶剂去除胶带,从而在硅片等基体上得到单层和少层

的石墨烯[3,14]

。该方法具有过程简单,产物质量高

第26卷第1期2011年2月新型炭材料NE W CARBON MATER I AL S V o.l 26 N o .1

F eb .2011

的优点,所以被广泛用于石墨烯本征物性的研究,但产量低,难以实现石墨烯的大面积和规模化制备。化学剥离法:利用氧化反应在石墨层的碳原子上引入官能团,使石墨的层间距增大,从而削弱其层间相互作用,然后通过超声或快速膨胀将氧化石墨层层分离得到氧化石墨烯,最后通过化学还原或高温还原等方法去除含氧官能团得到石墨烯[15 16]。该方法是目前可以宏量制备石墨烯的有效方法,并且氧化石墨烯可很好地分散在水中、易于组装,因此被广泛用于透明导电薄膜、复合材料以及储能等宏量应用研究。然而,氧化、超声以及后续还原往往会

造成碳原子的缺失,因此化学剥离方法制备的石墨烯含有较多缺陷、导电性差。

碳化硅(S i C外延生长法:利用硅的高蒸汽压,在高温(通常>1400 和超高真空(通常<10-6 Pa条件下使硅原子挥发,剩余的碳原子通过结构重排在S i C表面形成石墨烯层[17]。采用该方法可以获得大面积的单层石墨烯,并且质量较高。然而,由于单晶S i C的价格昂贵,生长条件苛刻,并且生长出来的石墨烯难于转移,因此该方法制备的石墨烯主要用于以S i C为衬底的石墨烯器件的研究。

CVD法:利用甲烷等含碳化合物作为碳源,通过其在基体表面的高温分解生长石墨烯。从生长机理上主要可以分为两种(图1所示[18]:(1渗碳析碳机制:对于镍等具有较高溶碳量的金属基体,碳源裂解产生的碳原子在高温时渗入金属基体内,在降温时再从其内部析出成核,进而生长成石墨烯;(2表面生长机制:对于铜等具有较低溶碳量的金属基体,高温下气态碳源裂解生成的碳原子吸附于金属表面,进而成核生长成石墨烯岛!,并通过石墨烯岛!的二维长大合并得到连续的石墨烯薄膜。由于CVD方法制备石墨烯简单易行,所得石墨烯质量很高,可实现大面积生长,而且较易于转移到各种基体上使用,因此该方法被广泛用于制备石墨烯晶体管和透明导电薄膜,目前已逐渐成为制备高质量石墨烯的主要方法。

3 石墨烯的CVD法制备

CVD方法是上世纪60年代发展起来的一种制备高纯度、高性能固体材料的化学过程,早期主要用于合金刀具的表面改性,后来被广泛应用于半导体工业中薄膜的

制备,如多晶硅和氧化硅膜的沉积。近年来,各种纳米材料尤其是碳纳米管、氧化锌纳米结构、氮化镓纳米线等的制备,进一步推动了CVD

图1 CVD法生长石墨烯的(a渗碳析碳机制与

(b表面生长机制示意图[18]

Fig.1 (aS egregati on and/or p recipitation m echan is m and (bs u rface ads o rpti on m echanis m o f CVD grow t h o f graphen e[18]

方法的发展[19]。

CVD法制备石墨烯早在20世纪70年代就有报道[20 21],当时主要采用单晶N i 作为基体,但所制备出的石墨烯主要采用表面科学的方法表征,其质量和连续性等都不清楚。随后,人们采用单晶C o、Pt、Pd、Ir、Ru等基体[22]在低压和超高真空中也实现了石墨烯的制备。但直到2009年初,麻省理工学院的J.K ong研究组[23]与韩国成均馆大学的B.H.

H ong研究组[24]才利用沉积有多晶N i膜的硅片作为基体制备出大面积少层石墨烯,并将石墨烯成功地从基体上完整地转移下来,从而掀起了CVD法制备石墨烯的热潮。

石墨烯的CVD生长主要涉及三个方面:碳源、生长基体和生长条件(气压、载气、温度等。

碳源:目前生长石墨烯的碳源主要是烃类气体,如甲烷(CH4、乙烯(C2H4、乙炔(C2H2等。最近,也有报道使用固体碳源S i C生长石墨烯[25]。选择碳源需要考虑的因素主要有烃类气体的分解温度、分解速度和分解产物等。碳源的选择在很大程度上决定了生长温度,采用等离子体辅助等方法也可降低石墨烯的生长温度。

生长基体:目前使用的生长基体主要包括金属箔或特定基体上的金属薄膜。金属主要有N i[23 24,26 28]、C u[29 34]、Ru[35 41]以及合金[42]等,选择的主要依据有金属的熔点、溶碳量以及是否有稳定的金属碳化物等。这些因素决定了石墨烯的

生长温度、生长机制和使用的载气类型。另外,金属的晶体类型和晶体取向也会影响石墨烯的生长质量。除金属基体外,M gO[43]等金属氧化物最近也被用来生长

?

72

?新型炭材料第26卷

石墨烯,但所得石墨烯尺寸较小(纳米级,难以实际应用。

生长条件:从气压的角度可分为常压、低压(105Pa~10-3Pa和超低压(<10-3Pa;据载气类型不同可分为还原性气体(H2、惰性气体(A r、H e以及二者的混合气体;据生长温度不同可分为高温(>800 、中温(600 ~800 和低温(<600 ,主要取决于碳源的分解温度。

下面就上述三个方面着重分析一下目前CVD 法制备石墨烯的主要进展。

石墨烯的CVD法制备最早采用多晶N i膜作为生长基体。麻省理工学院的J.Kong研究组[23]通过电子束沉积的方法,在硅片表面沉积500n m的多晶N i膜作为生长基体,利用CH4为碳源、H2为载气的CVD法生长石墨烯,生长温度为900 ~ 1000 。韩国成均馆大学的 B.H.H ong研究组[24]采用类似的CVD法生长石墨烯:生长基体为电子束沉积的300nm的N i膜,碳源为CH4,生长温度为1000 ,载气为H2和A r的混合气,降温速度为10 /s。图2为采用该生长条件制备的石墨烯的形貌图。由于N i生长石墨烯遵循渗碳析碳生长机制,因此所得石墨烯的层数分布很大程度上取决于降温速率。采用N i膜作为基体生长石墨烯具有以下特点:石墨烯的晶粒尺寸较小,层数不均一且难以控制,在晶界处往往存在较厚的石墨烯,少层石墨烯呈无序堆叠。此外,由于N i与石墨烯的热膨胀率相差较大,因此降温造成石墨烯的表面含有大量褶皱。

图2 N i膜上生长的石墨烯[24].(a在300nm厚的N i膜和1mm厚(插图的镍箔上生长的石墨烯的SEM照片;(b不同层数石墨烯的TEM 照片;(c转移到300nm S i O

2

/S i基体表面的石墨烯的光学显微镜照片,插图给出了石墨烯褶皱的AF M像;(d 与c对应的拉曼光谱面扫描图Fig.2 G raph ene grow n on N i fil m s[24].(aSE M i m ages o f as grow n graph ene fil m s on300nm th i ck nickel l ayers and1mm th i ck N i fo il(i nset;

(bTEM i m ages of graphen e fil m s o f d ifferen t t h i ckn esses;(cAn opti ca lm icro s cop e i m age o f t he graph ene fil m s t ransferred to a S i sub strate capped w it h300nm t h ick S i O2l ayer,w it h t he i nset AF M i m age s how i n g typical ri pp led structures;(dA confocal scann i ng Ram an i m age corre s pond i n g t o c

图3 铜箔上生长的石墨烯[29].(a,(b分别为铜箔上生长的石墨烯的低倍和高倍SEM照片;

(c,(d分别为转移到S i O2/S i基体和玻璃表面的石墨烯[29]

Fig.3 G raphene g row n on C u fo il s[29].(aLow m agn i fication and(bh igh m agn ifi cati on SEM i m ages of graphene grow n on C u foils;

(c,(dThe g raphene fil m s t ransferred on to a S i O

2

/S i s ub strat e and a glass plat e,res pecti vely

由于采用N i膜生长的石墨烯存在晶粒尺寸小、在晶界处存在多层石墨烯、层数难以控制等问题,美国德州大学奥斯汀分校的R.S.Ruo ff研究组提出了利用C u箔生长单层为主的大面积石墨烯[29]。他

?

73

?

第1期任文才等:石墨烯的化学气相沉积法制备

们采用CH4为碳源,用25 m厚的铜箔制备出尺寸可达厘米级的石墨烯(图3。与N i不同,C u具有较低的溶碳量,石墨烯的生长遵循表面生长机制[18],所得石墨烯中单层石墨烯的含量达95%以上,其余为双层和三层石墨烯。他们还发现,单层石墨烯具有大的晶粒尺寸,并可以连续地跨过铜箔表面的台阶和晶界,而其中双层和三层石墨烯的尺寸不会随反应时间的延长而增大。韩国成均馆大学的B.H.H ong研究组进一步发展了该方法,他们利用铜箔柔韧可卷曲的特点,将30英寸的铜箔通过卷曲的方式放置到直径为8英寸的CVD反应炉中,结合热释放胶带的连续滚压转移方法制备出30英寸的石墨烯膜,其透光率可达97.4%[31],非常接近于单层石墨烯的

97.7%[10]。目前大部分以C u为基体生长石墨烯的研究,均采用了低压(50Pa~5kPa 条件[29 31,34],温度在900 以上,基体为较高纯度的C u箔(纯度>99%,载气为还原气体H2。采用该方法制备石墨烯,由于具有可控性好、铜箔价格低廉及易于转移和规模化制备等优点,有望在透明导电薄膜应用方面首先取得突破[31]。

由于低压CVD对反应设备及体系压力要求高,一定程度上限制了石墨烯的低成本、规模化生产。最近,中国科学院金属研究所的成会明、任文才研究组[32]和麻省理工学院的J.K ong研究组[33]提出了利用铜箔作为基体的常压CVD法制备石墨烯,并发现通过调节载气的成分,可以有效地提高石墨烯的质量。图4是常压条件下在铜箔基体上生长的石墨烯。可以发现,通过降低生长过程中还原气体H2的比例,能够有效减少石墨烯岛的数量,显著加快石墨烯的生长速度和提高石墨烯的质量。在不添加H2的条件下,石墨烯的生长可在1m in之内完成,并且制备出的石墨烯薄膜在550nm时的透光率为96.3%,平均表面电阻小于350 /#,除最近报道的采用改进转移

方法及HNO3掺杂得到的超大石墨烯薄膜外[31],该结果优于采用N i为基体的常压CVD以及采用C u为基体的低压CVD制备的石墨烯薄膜的性能。他们认为:一方

面,H2的存在可有效抑制甲烷的分解,进而影响石墨烯的成核、最初形成的石墨烯岛的数量以及最终得到的石墨烯薄膜中不同石墨烯岛间连接形成的缺陷的数量;另一方面,高温时溶入的H2在降温过程中会释放,进一步加剧了石墨烯褶皱的生成[32]。总之,采用C u基体生长石墨烯,目前仍然是生长均匀单层石墨烯的最佳方法,对石墨烯的应用研究起到了极大的推动作用。

图4 常压下在铜箔上生长的石墨烯[32].(a转移到S i O2/S i表面的石墨烯(不添加氢气的条件下制备;(b石墨烯的拉曼光谱(不同载气

成分配比条件下制备,图中数字代表H

2流量/总气流量;(c石墨烯的光学照片(150mL/m i n H

2

/150m L/m i n A r条件下制备;(d石墨烯的

光学照片(不添加氢气的条件下制备

Fig.4 G raphene g row n on Cu fo ils und er a m b i en t pressure[32].(aPhotograph of a graphene fil m prepared w it hou tH2and t ransferred on t o a S i O2/ S i s ub st rat e,w it h a si z e o f~10mm;(bRa m an s pect ra of graphen e fil m s grow n by d ifferen tH2fl ow rat es(0,5,30,90,and150m L/m i nbut a con stant total fl ow rat e(300mL/m i n;(cand(dTyp i cal op tical i m ages of t he graph ene fil m s grow n by a H2fl ow rat e

of150mL/m i n(cand 0mL/m i n(d

为了深入理解C u上生长的石墨烯的质量,美国阿贡国家实验室的N.P.G uisi n ger研究组近期研究了在C u(111单晶表面生长的石墨烯的形貌[44]。他们采用

C2H4为生长碳源,温度为1000 ,生长气压为10-3Pa。研究结果表明:石墨烯的生长始于大量离散的单晶石墨烯岛,随着生长过程的进行,这些石墨烯岛逐渐长大,并最终相互连接成连续的石墨烯薄膜。这种生长模式是典型的表面生长过程,与在多晶铜箔上采用同位素标记的方法研究得到的结论相同[18]。图5给出了在单晶Cu基片上

生长的石墨烯的扫描隧道显微镜(STM表征结果。对莫尔条纹和原子分辨率的STM 像分析表明,形核

?

74

?新型炭材料第26卷

在C u单晶上的单晶石墨烯岛具有不同的晶体取向,从而导致片层的结合处形成线缺陷。这类似于三维材料中的晶界结构,因此有学者将此类石墨烯称为多晶石墨烯![25,45]。从提高石墨烯质量的角度来说,进一步改进制备方法以增大单晶石墨烯岛的尺寸和减少晶界结构,具有极为重要的意义。

图5 单晶C u基体上生长的多晶石墨烯[44].(a晶界处的STM像,晶界两侧表现出不同的莫尔条纹;(b晶界处原子分辨率的STM像,给出了石墨烯的蜂窝结构;(c观察到最多的周期为~6.6nm的C u(111表面上石墨烯莫尔条纹;(d周期为~2.0nm的C u(111表面上石墨烯的莫尔条纹

Fig.5 Po l ycrystalli ne graphene grow n on si ng le cry st alC u s ub strat

e[44].(aSTM i m age at a dom ai n boundary s how i n g t w o differen tM o ir patt ern s i n t he t w o do m ai n s;(bA to m ic res o l u ti on STM i m age at a dom ai n boundary,s how i n g the honeycom b s t ru cture of graph ene;(cThe m ost ob s erved (~30%M oir patt ern of graph ene on Cu(111w it h a peri od i city o f~6.6nm;(dAno t her typicalM o i r pattern o f graphene on Cu(111w it h a peri od i city o f~2.0nm

相比于表面生长机制,目前的渗碳析碳机制在制备单晶石墨烯方面更具优势。中国科学院物理研究所的高鸿钧研究组[39],采用单晶Ru(0001作为基体,在超高真空(10-7Pa和1000 的生长条件下,制备出毫米级的单晶石墨烯(图6。由于单晶Ru中存在固溶碳,因此该研究仅利用了析碳过程生长石墨烯。但因该方法需要采用昂贵的单晶金属作为基体,而且石墨烯与基体的结合较强,难以转移,从而限制了该方法的进一步应用。

图6 R u(0001表面上生长的单晶石墨烯的STM像[39]. (a跨过Ru(0001表面台阶的原子级平整的石墨烯;

(b由石墨烯和Ru基体叠加形成的六角莫尔条纹像;(c莫尔条纹晶胞的原子分辨率的STM像

F i g.6 ST M i m ages of t he graphen e grow n on Ru(0001s urface[39].(aT he at om icall y fl at graphene fl ake extended over enti re Ru terraces;

(bTh e h exagonalM o i r patt ern fo r m ed by t h e sup erpo siti on of graphene and t he R u s ub st rat e;

(cA tom i c res o l uti on i m age o f one un it cell o f t h eM o ir patter n

尽管CVD法制备石墨烯的研究时间很短,但其飞速的发展使笔者可以大胆预测:CVD法制备的石墨烯在未来两三年内很有可能获得应用。然而,采用CVD法制备高质量石墨烯的工作才刚刚起步。虽然目前CVD石墨烯的质量较高,有望满足在透明导电薄膜等方面的应用要求,但是对电子器件而言,与硅材料相比,现有的CVD 法制备的石墨烯在电子迁移率等方面并不具有显著优势。因此,

?

75

?

第1期任文才等:石墨烯的化学气相沉积法制备

基于CVD方法的大面积、高质量单晶石墨烯的制备有可能成为近期的研究热点。此外,如何实现石墨烯带以及石墨烯宏观体的制备,进而扩展石墨烯的性能和应用;如何实现石墨烯在聚合物等基体上的低温生长等,也是CVD方法的未来发展方向。

4 石墨烯的转移技术

石墨烯的转移技术是指根据研究的需要,将石墨烯在不同基体之间转移的方法,通常是将石墨烯从制备基体转移到目标基体之上。由于一般需要将石墨烯放置在特定的基体上进行表征、物性测量以及应用研究,因此石墨烯转移技术的研究在一定程度上决定了石墨烯的发展前景。从某种意义上讲,石墨烯的发现正是得益于石墨烯转移技术的发明,即把石墨烯从胶带转移到硅片上[3,14]。

石墨烯与金属基体间的电荷转移,掩盖了石墨烯的本征性能。在上世纪70年代用过渡族金属生长单层石墨的研究中[20 21],由于没有将生长出的单层石墨转移下来,因此其奇特的性能一直未被发现。如果当时能够从金属基体上将石墨烯转移下来,那么石墨烯的发现或许会提前30年。近期CVD方法制备石墨烯的快速发展与石墨烯转移技术的发展息息相关。

理想的石墨烯转移技术应具有如下特点:(1保证石墨烯在转移后结构完整、无破损;(2对石墨烯无污染(包括掺杂;(3工艺稳定、可靠,并具有高的适用性。对于仅有原子级或者数纳米厚度的石墨烯而言,由于其宏观强度低,转移过程中极易破损,因此与初始基体的无损分离是转移过程所必须解决的首要问题。

腐蚀基体法!是解决上述问题的一个有效方法,它最初被用于转移胶带剥离法制备的石墨烯,即将石墨烯从硅片表面转移到其他基体上。如图7所示[46],研究者使用聚甲基丙烯酸甲酯(P MM A作为转移介质,1m o l/L的N a OH作为腐蚀液,腐蚀温度为90 ,在把粘附有石墨烯的P MM A薄膜从原始硅基底上分离后,室温下将其粘贴到目标基体上,最后利用丙酮清洗掉P MM A,实现了石墨烯的转移。图7(b、(c分别是转移前后的石墨烯样品的光学显微镜照片。可以看到,转移前后石墨烯的形貌并未发生很大变化,石墨烯基本可以完整地从硅片表面转移到另一个硅片表面。该方法由于使用了转移介质(即P MM A薄膜,确保了其转移的可靠性和稳定性,之后被广泛用于转移CVD石墨烯。

图8是腐蚀基体法转移CVD生长石墨烯的示意图。首先,利用旋涂、滚压等方法在石墨烯上涂覆转移介质,如P MM A[23,29 30,33,46]、聚二甲基硅氧烷(PDM

S[24,32]、胶带[31 32]等。然后,将带有转移介质和石墨烯的金属基片放入合适的腐蚀液中将金属腐蚀掉,得到漂浮在溶液表面的转移介质/石墨烯的薄膜。选用的腐蚀液有Fe C l3溶液(腐蚀金属Cu 等[29 33]、酸溶液(腐蚀金属N i等[23 24]、碱溶液(腐蚀硅片[46]等。随后,将转移介质/石墨烯的薄膜从腐蚀液中捞出,清洗后,粘贴到

目标基体上。为了表征石墨烯的结构和制作电子器件,通常需要将石墨烯放置在硅片上;而为了测试石墨烯的透光性,需要将其放置在玻璃等透明基体上;为了透射电子显微镜观察,则需将之放置在微栅上;而如要制作石墨烯柔性透明导电薄膜,则需要将石墨烯放置在聚对苯二甲酸乙二醇酯(PET等柔性透明基体上。最后,将转移介质用适当的方式去除,从而实现CVD石墨烯到目标基体的转移。P MM A可以采用高温热分解或者有机溶剂清洗去除,P DM S可直接揭下,而胶带则需根据具体类型采用不同方法去除。

以硅片表面沉积的N i膜为基体,可以通过CVD方法生长出少层的石墨烯[23 24]。腐蚀基体法首先在转移此类CVD生长的石墨烯方面取得了成功[23]。然而,使用P MM A薄膜作为转移介质的工艺流程较为复杂,并且由于涂覆的P MM A薄膜的厚度小(~300n m、易于破损,因此在转移大面积石墨烯时具有局限性。美国德州大学奥斯汀分校的R. S.Ruo ff研究组在利用P MM A转移Cu箔生长的石墨烯时发现,由于CVD生长的石墨烯复制了C u箔表面的台阶状结构,加之P MM A具有一定强度和硬度,转移过程中P MM A表面上起伏的石墨烯难以与平整的硅片充分接触,可导致裂痕等缺陷。因此他们采用二次溶解的方法将转移到硅片后的P MM A 薄

膜用原溶液重溶,以促进石墨烯与硅片的接触,从而减少了石墨烯的破损[30]。此外,韩国成均馆大学的B.H.H ong研究组开展了采用PDM S薄片作为转移介质的研究工作[24]。如图9所示,他们首先将制作好的PDM S片的光滑面粘贴在石墨烯的表面,静置去除气泡。然后将带有P DM S的生长有石墨烯的N i基体放入腐蚀液中(Fe C l3溶液或者酸溶液。腐蚀完成后,带有石墨烯的PDM S片会漂浮在液面上。用水清洗P DM S片后,将其粘贴在目标

图7 石墨烯从S i O

2

/S i基体到其他任意基体的转移[46].(a转移过程示意图;

(b和(c分别为原始S i O2/S i基体上和转移后S i O2/S i基体上石墨烯的光学照片

F i g.7 Transfer of graphene from a S i O2/S i s ubstrate t o an arb it rary s ubstrate[46].(aS che m atic d i ag ra m of t he tran sferri ng process;(band (cO pti cal i m ages o fm acroscop i c reg i ons h av i ng graph ite and graphen e fl ak es on(bt h e ori g i nal and(ct he tran sferred S i O2/S i s ubstrates

基体上,静置去除气泡后再揭下PDM S,即可将石墨烯转移到目标基体之上。这种方法利用了PDM S 与常见材料的结合力非常小的特性,可以将石墨烯转移到多种基体上,如硅片、玻璃、PET等。但是,由于PDM S具有弹性,在操作过程中产生的拉伸易于使石墨烯产生一定量的微裂纹。所以,该方法对操作技能具有较高要求,因而并未得到广泛使用。

热释放胶带是最近采用的新型石墨烯转移介质。其特点是常温下具有一定的粘合力,在特定温度以上,粘合力急剧下降甚至消失,表现出热释放!特性。基于热释放

胶带的转移过程与上述的P MM A转移方法类似,主要优点是可实现大面积石墨烯向柔性目标基体的转移(如PET,工艺流程易于标准化和规模化,有望在透明导电薄膜的制备方面首先获得应用,如韩国成均馆大学的研究者采用该方法成功实现了30英寸石墨烯的转移[31](图10。该方法中的热滚压!技术是实现完整转移关键步骤,相比于热平压!具有更佳的转移效果。然而,热滚压!技术目前不适用于脆性基体上的转移,例如硅片、玻璃等,因此限制了该方法的应用范围。

此外,无转移介质的腐蚀基体法!由于其工艺

图8 腐蚀基体法转移CVD生长的石墨烯的示意图F i g.8 Sche m atic d iagram of transferring CVD g row n

graphene by et ch i n g s ubstrat e 过程更简单,也得到了一定的发展。由于少层石墨烯的强度相比于单层石墨烯更高,因此可以采用该方法对CVD生长的少层石墨烯

进行转移[24]。此外,这种方法还适用于小面积、单层石墨烯向特定基体的转移,比如转移到TE M的铜微栅上作为碳膜[47]。但是,其转移的完整度和可靠性还无法与典型的腐蚀基体法!相比,应用的局限性也很大。尽管石墨烯的转移技术有了很大的发展,但目前采用的腐蚀基体法!以牺牲生长基体作为代价,对石墨烯的规模化应用不利,并且在转移大面积石墨烯的结构完整、无污染、工艺稳定等方面仍待提高。另外,除近期发展的采用多晶N i、C u作为基体CVD生长石墨烯外,单晶N i、Co、Pt、Ir、Ru等很早就被用作CVD生长石墨烯的基体,并且采用这些基体有可能得到大尺寸的单晶石墨烯。由于单晶基体价格昂贵,加之Ru、Pt等贵金属比较难于腐蚀,因此腐蚀基体法!并不适用转移此类石墨烯。实现单晶表面石墨烯的完整转移具有更大的难度,极具

图9 采用PDM S从N i膜上转移石墨烯的示意图[24]

Fi g.9 The s chem atic ill ustrati on of t ransferri ng graphene fro m N i fil m s by P DM S[24]

挑战性。而相应的研究目前仍缺乏进展,这也制约了单晶石墨烯的研究。

5 结语

石墨烯是在2004年发现的炭材料家族中的新成员,具有独特的物理性质和广阔的应用前景。由于在石墨烯方面的开创性实验研究,其发现者A. K.G ei m和K.S.N ovo se l o v荣获了2010年度诺贝尔物理学奖。作为石墨烯研究的基础,石墨烯的制备一直备受关注,其研究的进展也非常迅速。从最早的胶带剥离法,到随后的S i C单晶外延生长法、化学剥离法,直至CVD方法,始终围绕着实现石墨烯这一奇特材料的应用而不断地改进和发展。从早期的物性研究,到现在作为能源材料在锂离子电池、超级电容器,作为电子学材料在晶体管、射频器件,作为力性、电性增强体在复合材料,尤其是透明导电薄膜中的使用,石墨烯愈发焕发出迷人的魅力。在未来实现石墨烯应用的过程中,CVD方法将会发挥越

来越重要的作用,不仅仅局限于目前二维石墨烯薄膜的制备,而且还可以用于一维石墨烯带和三维石墨烯宏观体的制备,从而大大拓宽石墨烯的应用领域。有理由相信,在不久的将来基于CVD法制备的石墨烯的微处理器、电池、显示器及柔性电子器件将走进人们的生活[7]。

图10 利用热释放胶带从C u箔上转移石墨烯的示意图[31]

Fig.10 The s che m ati c ill ustrati on of t ransferri ng g raphene from

C u fo ils by ther m al rel ease t ape[31]

参考文献

[1] K ro t o H W,H eat h J R,O?B ri en S C,et a.l C60:Bu ck m inster

fu ll erene[J].N at ure,1985,318(6042:162 163.

[2] Iiji m a S.H eli cal m i crotubules of g raph iti c carbon[J].Nature,

1991,354(6348:56 58.

[3] N ovosel ov K S,G ei m A K,M o rozov S V,et a.l E lectri c fi el d

effect in atom i ca ll y th i n carbon fil m s[J].Sc i ence,2004,306

(5296:666 669.

[4] G ei m A K,Novosel ov K S.T he ri se o f graph ene[J].Nature

M ateri als,2007,6(3:183 191.

[5] Zhan g Y B,T an Y W,S tor m erH L,et a.l E xp eri m ental obser

vati on of t he quan t um H all effect and B erry's phas e i n graphene

[J].Nature,2005,438(7065:201 204.

[6] N ovosel ov K S,G ei m A K,M orozov S V,et a.l Tw o d i m en

si onal gas o f m assl ess D i rac fer m i ons i n graph ene[J].Nature,

2005,438(7065:197 200.

[7] Gei m A K.G raphen e:st atus and pro s pects[J].Science,2009,

324(5934:1530 1534.

[8] K ats ne l son M I.G raph ene:carbon i n t w o d i m ens i ons[J].M a

terials Today,2006,10(1 2:20 27.

[9] M o rozov S V,N ovosel ov K S,K ats ne l son M I,et a.l G ian t in

tri n si c carri erm ob iliti es i n graphen e and its bil ayer[J].Ph ysical Rev i ew L ett ers,2008,100(1:016602.

[10] Nair R R,B lake P,G ri gorenko A N,et a.l Fi ne struct ure con

stan t d efi n es v is ual trans p arency o f graphene[J].S ci ence,

2008,320(5881:1308 1308.

[11] B aland i n A A,G hos h S,B ao W Z,et a.l S up eri o r t h er m a l

conductivity o f si ng l e l ayer graph ene[J].N ano L etters,2008,

8(3:902 907.

[12] L ee C,W eiX D,K ys ar JW,et a.l M eas ure m en t of the el astic

properties and intri n sic strength of m ono l ayer graphen e[J].

Sc i ence,2008,321(5887:385 388.

[13] 杨全红,吕伟,杨永岗,等.自由态二维碳原子晶体%%%

单层石墨烯[J].新型炭材料,2008,23(2:97 103.

(Y ang Q H,Lu W,Y ang Y G,et a.l Free t w o d i m ensiona l

carbon cry st al%s i ngle l ay er graphen e[J].N e w C arbon M at eri

als,2008,23(2:97 103.

[14] N ovo s elov K S,J i ang D,Sch ed i n F,et a.l Tw o d i m ensiona l

ato m ic cry st als[J].Proceed i ng s of t h e N ation alA cade m y of

S ci ences of t h e Un ited S t ates o f Am erica,2005,102(30:

10451 10453.

[15] S t ankov i ch S,D i k i n D A,P i ner R D,et a.l S yn t h esis of g ra

ph ene bas ed n anos h eets v i a che m ical reducti on of exfo li ated

graph ite oxide[J].C arbon,2007,45(7:1558 1565. [16] Park S,Ruoff R S.C he m ical m ethod s fo r t h e p roducti on of

graphen es[J].N at u re N anotechno l ogy,2009,4(4:217

224.

[17] B erger C,Song Z M,L iX B,et a.l E l ectron ic con fi ne m ent

and coherence i n patterned ep it axial graphene[J].S ci ence,

2006,312(5777:1191 1196.

[18] L iX S,C aiW W,C o l om bo L,et a.l Evo l u ti on of graphen e

grow th on N iand C u by carbon is o t ope l ab eli ng[J].Nano L et ters,2009,9(12:4268 4272.

[19] 徐如人,庞文琴.无机合成与制备化学[M].北京:高等教

育出版社,2005:257 262.

(X u R R,Pan g W Q.Inorgan ic Syn t h esis and Preparative

C he m istry[M].B eiji n g:H i gher Educati on Press,2005:257

262.

[20] E i zenb erg M,B l akely J M.C arbon m ono l ayer phase condensa ti on on N i(111[J].Surface Science,1979,82(1:228

236.

[21] Is ett L C,B l akely J M.S egregati on is o st eres for carbon at (100s u rface o f n ickel[J].S urface Science,1976,58(2:

397 414.

[22] W i n tterli n J,B ocquetM L.G raphen e on m etal surfaces[J]. Surface Sc i ence,2009,603(10 12:1841 1852.

[23] Rei na A,J i a X T,H o J,et a.l L arge area,few l ayer graphen e

fil m s on arb it rary s ubstrates by che m ical vapor depo siti on[J]. Nano Letters,2009,9(1:30 35.

[24] K i m K S,Zhao Y,J ang H,et a.l Large s cal e patt ern g row t h of

graph ene fil m s for stretchab le trans paren t el ectrodes[J].N a ture,2009,457(7230:706 710.

[25] Ho frichter J,S zafranek B N,O tt o M,et a.l S yn t h es i s of g ra ph ene on silicon d i ox i de by a s o li d carbon s ource[J].N ano

L ett ers,2010,10(1:36 42.

[26] Yu Q K,L i an J,S i ripong lert S,et a.l G raph ene segregat ed on N i s urfaces and t ransferred to i nsu l at o rs[J].App li ed Phy si cs Letters,2008,93(11:113103.

[27] Chae S J,Gunes F,K i m K K,et a.l Syn t hesis of large area

g raphene layers on poly n i ck el sub strate by che m ical vapo r d ep o siti on:w ri nk l e for m ation[J].A dvanced M aterials,2009,21 (22:2328 2333.

[28] Ch en Z P,R enW C,L i u B L,et a.l Bu l k grow t h of m ono to few l ayer g raphene on n i ck elparti c l es by che m ical vapor d eposi tion from m et h ane[J].C arbon,2010,48(12:3543 3550.

[29] L iX S,C aiW W,An J H,et a.l L arge area syn t h es i s o f h i gh quali ty and un ifor m g raphene fil m s on copper fo ils[J].Sci

en ce,2009,324(5932:1312 1314.

[30] L iX S,Zhu Y W,C aiW W,et a.l Transfer of large area gra

化学气相沉积法制备石墨烯材料

化学气相沉积法新材料的制备 1 化学气相沉积法 化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。 1.1 化学气相沉积法的原理 化学气相沉积法是利用气相反应,在高温、等离子或激光辅助灯条件下,控制反应器呀、气流速率、基板材料温度等因素,从而控制纳米微粒薄膜的成核生长过程;或者通过薄膜后处理,控制非晶薄膜的晶化过程,从而或得纳米结构的薄膜材料。 CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,同时让高熔点物质可以在较低温度下制备。 1.2 分类 用化学气相沉积法可以制备各种薄膜材料,包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件—基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜才来。 通过反应类型或者压力来分类,可以将化学气相沉积法分为:低压CVD(LPCVD),常压CVD(APCVD),亚常压CVD(SACVD),超高真空CVD(UHCVD),等离子体增强CVD(PECVD),高密度等离子体CVD(HDPCVD)以及快热CVD(RTCVD),以及金属有机物CVD(MOCVD) 化学气相沉积的化学反应形式,主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。具体表现如下表: 表1-1 化学气相沉积的各种反应形式

论述物理气相沉积和化学气相沉积地优缺点

论述物理气相沉积和化学气相沉积的优缺点 物理气相沉积技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。 溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。 离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。 物理气相沉积技术基本原理可分三个工艺步骤: (1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。 (2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。 (3)镀料原子、分子或离子在基体上沉积。 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。 随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。 化学气相沉积是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。 化学气相沉积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。目前,化学气相

电化学法制备石墨烯

电化学法制备石墨烯 石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。 电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。根据电化学原理主要有两种路线制备石墨。 1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实 现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。 2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。 电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。 一、石墨阳极氧化剥离制备石墨烯 阳极氧化剥离制备石墨烯就是将石墨作为阳极,电源在工作时电解质中的阴离子向阳极移,进而进入阳极石墨导致石墨被插层而体积膨胀,当阳极石墨的体积增加到一定程度时,就会由于层间范德华作用力的减小而最终从块体上脱落下来,形成层状具有一定含氧官能团的石墨烯或氧化石墨烯(包括单层和2~10层的少层氧化石墨烯)。石墨由于电化学氧化和酸性阴离子的插层导致表面体积剧烈膨胀,这种现象在很早之前就有报道。近年来提出了电化学法阳极氧化石墨制备石墨烯的机理,在进行电化学反应时电解液中的阴离子会向阳极迁移,由于石

化学气相沉积法

化学气相沉积法 摘要:本文从化学气相沉积法的概念出发,详细阐述了利用化学气相沉积法制备石墨烯以及薄膜,并展望了未来化学气相沉积法可能的发展方向。 关键词:化学气相沉积法;制备;应用 一、前言 近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS 的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。 二、化学气相沉积法概述 1、化学沉积法的概念 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。 2、化学气相沉积法特点 (1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。 (2) 可以在常压或者真空条件下负压“进行沉积、通常真空沉积膜层质量较好

化学气相沉积技术的应用与发展

化学气相沉积技术的应用与进展 一、化学气相沉积技术的发展现状 精细化工是当今化学工业中最具活力的新兴领域之一,是新材料的重要组成部分,现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯度材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。 化学气相沉积技术(Chemical vapor deposition,简称CVD)是近几十年发展起来的制备无机材料的新技术。化学气相沉积法已经广泛用于提纯物质、研制新晶体、沉积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的沉积过程精确控制。目前,用CVD技术所制备的材料不仅应用于宇航工业上的特殊复合材料、原子反应堆材料、刀具材料、耐热耐磨耐腐蚀及生物医用材料等领域,而且还被应用于制备与合成各种粉体料、新晶体材料、陶瓷纤维及金刚石薄膜等。 二、化学气相沉积技术的工作原理 化学气相沉积是指利用气体原料在气相中通过化学反应形成基本粒 子并经过成核、生长两个阶段合成薄膜、粒子、晶须或晶体等个主要

阶段:反应气体向材料表面5固体材料的工艺过程。它包括 扩散;反应气体吸附于材料的表面;在材料表面发生化学反应;生成物从材料的表面脱附;(5)产物脱离材料表面。 目前CVD技术的工业应用有两种不同的沉积反应类型即热分解反应和化学合成反应。它们的共同点是:基体温度应高于气体混合物;在工件达到处理温度之前气体混合物不能被加热到分解温度以防止在 气相中进行反应。 三、化学气相沉积技术的特点 化学气相沉积法之所以得以迅速发展,是和它本身的特点分不开的,与其他沉积方法相比,CVD技术除了具有设备简单、操作维护方便、灵活性强的优点外,还具有以下优势: (1)沉积物众多,它可以沉积金属、碳化物、氮化物、氧化物和硼化物等,这是其他方法无法做到的; (2)能均匀涂覆几何形状复杂的零件,这是因为化学气相沉积过程有高度的分散性; (3)涂层和基体结合牢固; (4)镀层的化学成分可以改变, 从而获得梯度沉积物或者得到混合镀层; (5)可以控制镀层的密度和纯度; (6)设备简单,操作方便。 随着工业生产要求的不断提高,CVD的工艺及设备得到不断改进,但是在实际生产过程中CVD技术也还存在一些缺陷:

石墨烯的化学气相沉积法制备_图文(精)

收稿日期:2010 12 31; 修回日期:2011 02 14 基金项目:国家自然科学基金(50872136,50972147,50921004、中国科学院知识创新项目(K J CX 2 YW 231. 通讯作者:任文才,研究员.E m ai:l w cren@i m r .ac .cn;成会明,研究员.E m ai:l chen g @i m r .ac .cn ;高力波.E m ai:l l bgao @i m r .ac .cn 作者简介:任文才(1973-,男,山东东营人,博士,研究员,主要研究方向为石墨烯和碳纳米管的制备、物性和应用. E m ai:l w cren @i m r .ac .cn 文章编号: 1007 8827(201101 0071 10 石墨烯的化学气相沉积法制备 任文才, 高力波, 马来鹏, 成会明 (中国科学院金属研究所沈阳材料科学国家(联合实验室,辽宁沈阳110016 摘要: 化学气相沉积(CVD 法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、S i C 外延生长法和CV D 方法的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CV D 法制备石墨烯及其转移技术的研究进展,并展望了未来CVD 法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等。关键词: 石墨烯;制备;化学气相沉积法;转移中图分类号: TQ 127.1+1 文献标识码: A 1 前言 自从1985年富勒烯[1] 和1991年碳纳米管[2]

利用CVD化学气相沉积法制备石墨烯的研

厦门工学院 本科生毕业设计(论文) 题目:利用CVD化学气象沉积法制备石墨烯的研究姓名:闫建林 学号:1205101033 系别:材料科学与工程系 专业:材料专业 年级:2012级 指导教师:杨凤娟 2016 年月日

独创性声明 本毕业设计(论文)是我个人在导师指导下完成的。文中引用他人研究成果的部分已在标注中说明;其他同志对本设计(论文)的启发和贡献均已在谢辞中体现;其它内容及成果为本人独立完成。特此声明。 论文作者签名:日期: 关于论文使用授权的说明 本人完全了解厦门工学院有关保留、使用学位论文的规定,即:学院有权保留送交论文的印刷本、复印件和电子版本,允许论文被查阅和借阅;学院可以公布论文的全部或部分内容,可以采用影印、缩印、数字化或其他复制手段保存论文。保密的论文在解密后应遵守此规定。 论文作者签名:指导教师签名:日期:

利用CVD化学气象沉积法制备石墨烯的研究 摘要 石墨烯是最新被研发出来的具有单层二维结构的纳米材料,石墨烯具有许多独特的性质,例如室温下体现出来的反常量子效应、高电子迁移速率、抗热传导率以及良好的机械性能,使其具有广泛的应用空间,2010年诺贝尔物理学奖说明曾指出,由石墨烯这种新型碳材料所引发的全球性的材料革命正在发生着。这就是石墨烯为什么被称为材料界未来之星的原因。但是我们要研究新材料的应用前景就必须从怎样制备出高质量的石墨烯入手,只有制备出具有较高质量的石墨烯,我们才能够对于他的特性进行分析。现在使用的制备石墨烯的主要方法,就是CVD化学气相沉积法,这种方法所生产出来的石墨烯有极大的质量和极大地生长面积。本文内容主要介绍了制备石墨烯的化学气象沉积法,并且通过改变载气氮气和甲烷的浓度,总结出了对于制备出具有质量高、面积大的石墨烯所需要达到的工艺条件和工艺要求,又利用氧化还原法做了对比试验,比较了两种工艺的优点和缺点。并且设想了以后石墨烯的发展方向。 关键词:石墨烯,化学气象沉积,红外光谱,制备,氧化还原法,拉曼光谱,扫描电子显微镜

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

比较三种化学方法制备石墨烯

一、利用液氨作为还原剂,还原氧化石墨。 工艺: 1、将60 g的颗粒状天然石墨,硝酸钠30 g加入l0L的双层玻璃反应釜中冷却至0℃;再将2500 mL浓硫酸缓慢加入反应釜中充分搅拌3 0 min,保持反应体系的温度不高于4℃;然后,将180 g高锰酸钾加入反应釜中并充分搅拌60 min,同时保持反应体系温度不高于8℃,此阶段为低温反应。 2、撤走冷浴,用高温恒温循环泵将反应体系加热至35℃,并充分搅拌3h,得到褐色悬浮液,再缓慢加入90 g高锰酸钾反应12h,保持反应体系的温度不高于

40℃,此阶段为中温反应。 3、撤走高温恒温循环泵,用低温冷却循环泵将反应系统温度控制在5℃以下,将7L去离子水缓慢滴加入褐色悬浮液中,体系温度骤然升高,并伴有大量气体生成,稀释的悬浮液在此温度下搅拌60 min。 4、向悬浮液中加入50 mL的H202(30%),室温下搅拌60 min,得到亮黄色氧化石墨 分散液。 5、将上述分散液静置2 h,分层,去除上清液后,加入一定量的去离子水,过滤,得到黄褐色滤饼。用5000 mL稀盐酸(10%)将滤饼洗涤2次后,再分散于5000 mL 去离子水中,过滤,用大量去离子水洗涤至溶液中无氯离子(可用AgN03溶液检测),且接近中性。然后将剩余固体产物在60 ℃的真空干燥箱中干燥24 h,研磨过筛后得到的氧化石墨。 石墨烯的制备 用低温冷却循环泵在一定温度下将高纯氨在密封容器中液化,加入一定量干燥的氧化石墨用超声细胞粉碎机超声剥离1h,将一定量的金属铿放入液氨中,溶液变成蓝色,继续保持超声30 min溶液变黑,停止冷却自然升温使液氨挥发,向得到的黑色固体中加入乙醇超声分散,过滤用去离子水洗涤至中性,真空60℃干燥12h,得到黑色的石墨烯。在其他实验条件相同的条件下,将铿用金属钠和金属钾代替,得到对应的碱金属还原的石墨烯。 小结:采用液氨作为溶剂超声剥离氧化石墨,利用液氨一碱金属强还原性,碱金属进一步插层剥离氧化石墨同时将其还原。实验结果表明,低温的还原体系有效避免了热还原过程中重新团聚的产生,从透射电镜观察得到的石墨烯片层厚度在2-5 nm,红外和XPS证实大部分含氧基团被去除。 还原剂锂不易存放,石墨烯制备时所使用的试剂腐蚀性强。 二、用抗坏血酸(L-AA)(维生素)作还原剂,还原氧化石墨,所得到的是化学还原氧化石墨(CRG) 工艺: 1.在室温下,将30 μm的颗粒状天然石墨2 g,硝酸钠1g加入250 mL三口瓶中冷却至0 ℃;再将_50 mL浓硫酸缓慢加入三口瓶中充分搅拌30 min,并保持反应体系的温度不高于5 ℃;然后,将0.3 g高锰酸钾加入三口瓶中并充分搅拌30 min,同时保持反应体系温度不高于10 ℃;在1h内,再将7g高锰酸钾分3批加入三口瓶中,保持反应体系温度不高于20 ℃,此阶段为低温反应。 2.撤走冷浴,用水浴将反应体系加热至3 5士3 ℃,并充分搅拌2h,得到褐色悬浮液,此阶段为中温反应。 3.将90 mL水缓慢滴加入褐色悬浮液中,体系温度骤然升高至90 ℃,并伴有大量气体生成,稀释的悬浮液在此温度下反应15 min,此阶段对高温反应。 4.向悬浮液中加入H2O2 (30%, 7 mL)与超纯水(55 mL, 45 ℃)的混合溶液, 并得到亮黄色氧化石墨分散液。

化学气相沉积法制备碳纳米管

化学气相沉积法制备碳纳米管 材料化学专业 制备原料 碳源多为乙烯或者乙炔;催化剂颗粒多为亲碳的、过渡金属的纳米粒子如铁、镍、镁、钼等。 制备工艺 在高温条件下碳源气体在过渡金属纳米颗粒的催化作用下分解,碳原子在催化剂例粒子中熔解、饱和。在催化剂粒子中饱和并析出碳形成了小管状的碳固体即碳纳米管。 碳纳米管的性能 力学性能: 碳纳米管中碳原子采取SP2杂化S轨道成分比较大,使其具有高模量、高强度,具有优异的力学性能。理想的碳纳米管的抗拉强度可高达100GPa。一般碳纳米管的抗拉强度可达50-200GPa,是钢的100倍,密度却只有钢的1/6,弹性模量高达1TPa,与金刚石的弹性模量相当,约为钢的5倍。不同的SP2和SP3杂化几率使碳纳米管其表现出优良的弹性,柔韧性,易拉伸,十分柔软,同时它还具有与金刚石相当的硬度和极大的长径比,可以作为理想的高强度纤维材料,被称为未来的“超级纤维”。 导电性能: 碳原子最外层有4个电子,碳纳米管具有类石墨结构,石墨的每个碳原子最外层的三个电子与三个最邻近的碳原子以SP2杂化,呈现层状结构。碳原子的另一个未成对电子位于垂直于层片的π轨道上,碳纳米管具有石墨的良好导电性能。碳纳米管由石墨片卷曲而来,其导电性能由石墨片的卷曲方式决定,即导电性能取决于它的管径和手性。不同手性的碳纳米管可分别呈现金属性、半导体性。给定的碳纳米管的手性矢量Ch=na1+ma2,若n.m=3k(k为整数),那么该方向碳纳米管呈现金属性,可视为良好的导体。其中,若n=m,碳纳米管电导率可高达铜的l万倍,导电性极好。当n.m不等于3k(k为整数)时,该方向碳纳米管视

为半导体。另外,在碳纳米管的管壁上往往有成对的五元环和七元环出现,这些缺陷会导致新的导电行为,为碳纳米管的导电性做贡献。 传热性能: 碳纳米管的类石墨结构使得其具有良好的传热性能,另外,准一维结构使得沿着碳纳米管轴向方向的热交换极易进行,由此,可以通过制备定向的碳纳米管阵列从而获得某个方向热传导性能极好的产品。要想获得某些特定方向上热传导性能优异的产品,需要在制备碳纳米管时通过适当地改变实验条件或调整各项参数等来控制产物的取向。 吸附性能:碳纳米管是一种强吸附剂,吸附容鞋极大,比活性炭的吸附性高十倍之多。碳纳米管对多种会属(如Au,Cd,Co,Cu,Cr,Fe,Mn,Ni,Pb,Zn)、稀土元素(如Sm,Gd,Yb)等有很强的吸附fl:J1j。作为吸附剂,碳纳米管的制备成本低、吸附分离效果好受到广泛关注。 化学性能: 碳纳米管的化学性能非常稳定,同时它具有较好的催化作用。碳纳米管尺寸为纳米级别,具有极大的比表面积,并且表面的键念和电子态与颗粒内部不同,表面的原子配位不全,从而导致表面的活性位置增加,这些条件为碳纳米管的催化性奠定了基础。它的主要催化作用为:提高反应速率,决定反应路径,有优良的选择性(如只进行氢化脱氢反应,不发生氢化分解和脱水反应),降低反应温度。对碳纳米管进行处理可改善其催化活性,引入新的官能团,例如用硝酸、浓硫酸处理碳纳米管,不仅能够对样品进行提纯、切断,还可以在其表面引入羟基。碳纳米管在催化领域的潜力引起了广大科研者的关注,相关催化性能的研究与应用也日趋成熟。 场发射性能: 碳纳米管是良好的电导体,载流能力特别大,能够承受较大的场发射电流。相关测试表明,碳纳米管作为阴极能够产生4A/cm2的电流密度。碳纳米管机械强度高、韧性好,在场发射过程中不易发生折断或者变形,化学性质稳定,不易与其他物质反应,在2000℃的真空环境中也不会烧损。呈现金属性的碳纳米管表面功函数要比一般的金属低0.2.0.4ev,呈现半导体性的碳纳米管表面功函数要比一般金属高0.6ev。因而通过选择金属性的碳纳米管作为场发射阴极材料,可进而获取低能耗、轻便、性能更加优异的平板显示。 碳纳米管的应用前景 碳纳米管在微电子、生物、医学、仪器等领域显示了广阔的应用前景。显示技术方面为人们展示着丰富多彩的世界,在教育、工业、交通、通讯、军事、医疗、航空航天、卫星遥感等各个领域被广泛应用。FED集合了高亮度、真彩色、体积小、重量轻等众多优点,成为21世纪最具潜力的显示器。对于高附加值的显示器件方面的应用如平板显示器和纳米集成电路,碳纳米管在汽车用燃料电池储氢材料方面。在材料科学领域碳纳米管可以制成高强度碳纤维材料利用碳纳米管制成的复合材料在土木、建筑等方面具有广阔前景。 参考文献 李世胜,侯鹏翔,刘畅.超疏水叠杯状碳纳米管薄膜的制备[J]新型炭材料,2013,28(4)韩立静,多壁碳纳米管薄膜的制备及其场发射性能研究[C]浙江大学硕士学位论文2011,5 张秉檐,漆昕,生长温度对TCVD法制备定向碳纳米管薄膜影响[J]制造业自动化,2010,32(12)

化学气相沉积法合成石墨烯的转移技术研究进展 (1)

化学气相沉积法合成石墨烯的转移技术研究进展 黄 曼1郭云龙2*武 斌2刘云圻2付朝阳1*王 帅1* (1华中科技大学化学与化工学院 武汉 4300742中国科学院化学研究所有机固体重点实验室 北京 100190) 摘 要化学气相沉积(CVD)法合成石墨烯已为人们广泛研究采用。其中,如何将生长的石墨烯材料转移到与各种器件匹配的基底上是十分重要的科学问题。本文从方法、特点和结果等方面综述了由CVD法合成石墨烯的几种主要转移技术的研究进展,并对转移技术的未来做出了展望。 关键词化学气相沉积法 石墨烯 转移技术 Progress in Transfer Techniques of Graphene Synthesized by Chemical Vapor Deposition Huang Man1,Guo Yunlong2*,Wu Bin2,Liu Yunqi2,Fu Chaoyang1*,Wang Shuai1* (1School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074;2Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190) Abstract The growth of graphene by chemical vapour deposition (CVD) is being widely studied. The transfer of graphene grown by CVD onto a substrate for making devices is a very important area of research. In this paper, six main transfer techniques of CVD-grown graphene were analyzed. Also, the advances in the methods, characteristics and results of the transfer techniques of CVD-grown graphene were discussed. Finally, the future of transfer techniques was briefly introduced. Keywords Chemical vapor deposition,Graphene,Transfer techniques 自2004年Geim等[1]发现石墨烯(graphene)以来,石墨烯的研究已为世界各国科学家所高度重视。石墨烯是由单层碳原子紧密堆积而成的二维蜂窝状晶体,同时也是构建不同维度结构碳材料的基本结构单元,它可以卷曲成零维富勒烯、一维碳纳米管和三维石墨[2]。石墨烯作为一种有独特电子性能的理想二维材料,引起了研究者们对于探索凝聚态物理学中的基本问题(例如,量子霍尔效应)以及开发各种应用(例如,透明电极等)的广泛兴趣[1~6]。此外,石墨烯在晶体管、超级电容器和传感器等方面广泛的应用[6~9]也得到了产业界的广泛关注。石墨烯已经成为材料科学、凝聚态物理学及高科技产品生产领域中一颗冉冉升起的“明星”[2]。 可控制备高质量、大面积单层、单晶石墨烯是石墨烯合成的趋势。目前,石墨烯的主要制备方法有机械剥离法[1]、化学剥离法[10,11]、SiC外延生长法[12~14]、化学气相沉积(CVD)法[7,15~17]等。其中,CVD 法是目前获得大面积高质量、层数可控的石墨烯的主要方法。由于Cu极溶碳率低[15],以Cu为基体的CVD法已经发展成迄今为止最具前景的大面积单层石墨烯合成法[18~23]。另外,近年来,科学家们也对无需转移的CVD法合成的石墨烯做了相关研究[24,25],它的突出优点是去除了传统转移 黄 曼女,25岁,硕士,从事石墨烯的制备、表征及性能研究。*联系人,E-mail: cyfu@https://www.sodocs.net/doc/2314713843.html,;samuel19741203@https://www.sodocs.net/doc/2314713843.html,; guoyunlong@https://www.sodocs.net/doc/2314713843.html, 国家自然科学基金项目(51173055)和跨世纪优秀人才和国家青年千人项目资助 2012-03-25收稿,2012-09-25接受

化学还原法制备石墨烯的研究进展

化学还原法制备石墨烯的研究进展近年来,研究人员利用多种方法开展了石墨烯的制备工作,主要包括化学剥离法、金属表面外延法、SiC表面石墨化法和化学还原法等[1]。目前应用最广泛的合成方法是化学还原法。石墨烯在氧化的过程中会引入一些化学基团,如羧基(-COOH)、羟基(-OH)、羰基(-C = O)和环氧基(-C-O-C)等,这些基团的生成改变了C-C之间的结合方式,导致氧化石墨烯的导电性急剧下降,并且使具有的各种优异性能也随之消失。因此,对氧化石墨烯进行还原具有非常重要的意义,主要是先将氧化石墨烯分散(借助高速离心、超声等)到水或有机溶剂中形成稳定均相的溶胶,再按照一定比例用还原剂还原,得到单层或者多层石墨烯。还原得到的石墨烯有望在电子晶体管、化学传感器、生物基因测序以及复合材料等众多领域广泛应用。 目前,制备氧化石墨烯的技术已经相当成熟,其层间距(0.7~1.2 nm)较原始石墨烯层间距大,更有利于将其他物质分子插入。研究表明氧化石墨烯表面和边缘有大量的羟基、羧基等官能团,很容易与极性物质发生反应,得到改性氧化石墨烯。氧化石墨烯的有机改性可使其表面由亲水性变为亲油性,表面能降低,从而提高与聚合物单体或聚合物之间的相容性,增强氧化石墨烯与聚合物之间的粘接性。如果使用适当的剥离技术(如超声波剥离法、静电斥力剥离法、热解膨胀剥离法、机械剥离法、低温剥离法等),那么氧化石墨烯就能很容易的在水溶液或有机溶剂中分散成均匀的单层氧化石墨烯溶液,使利用其反应得到石墨烯成为可能。氧化还原法最大的缺点是制备的石墨烯有一定的缺陷,因为经过强氧化剂氧化得到的氧化石墨烯,并不一定能被完全还原,可能会损失一部分性能,如透光性、导热性,尤其是导电性,所以有些还原剂还原后得到的石墨烯在一定程度上存在不完全性,即与严格意义上的石墨烯存在差别。但氧化还原方法价格低廉,可以制备出大量的石墨烯,所以成为目前最常用制备石墨烯的方法。

石墨烯的化学气相沉积法制备 2

石墨烯的化学气相沉积法制备

摘要:化学气相沉积(CVD)法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨 烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、SiC外延生长法和CVD方法)的原理和特点,重点 从结构控制、质量提高以及大面积生长等发面评述了CVD法制备石墨 烯及其转移技术的研究进展,并展望了未来CVD法制备石墨烯的可能 发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与 无损转移等。 关键词:石墨烯制备化学气相沉积法转移 Abstract chemical vapor deposition(CVD) is an effective way for the preparation of preparation of graphene with large area and high quality.In this review,the echanism and characteristics of the four main preparation methods of graphene are briefly introduced ,including microm echanical Cleavage,chemical exfoliation,SiC epitaxial growth and CVD. The recent advances in the CVD growth of graphene and the related transfer techniques in term of structure contral, quality improvement and large area graphene synthesis were discussed .Other possible methods single crystalline graphene ,graohene nanoribbons and graphene avrostructures. Keywords : Graphene,Preparation, Chemical vapor deposition; transfe

hummers法制备石墨烯

主要原材料:石墨粉(粒度小于30μm的粒子。含量大于95%,碳含量99.85%), 浓硫酸(95%—98%),高锰酸钾,硝酸钠,双氧水30%,盐酸,氯化钡,水合肼80% 氧化石墨(GO)的制备 采用Hummers 方法[12]制备氧化石墨。具体的工艺流程:在冰水浴中装配好250 mL 的反应瓶,加入适量的浓硫酸,搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物,再分次加入6 g 高锰酸钾,控制反应温度不超过20℃,搅拌反应一段时间,然后升温到35℃左右,继续搅拌30 min,再缓慢加入一定量的去离子水,续拌20 min 后,并加入适量双氧水还原残留的氧化剂,使溶液变为亮黄色。趁热过滤,并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥,保存备用。 石墨烯的制备 将100 mg 氧化石墨分散于100 g 水溶液中,得到棕黄色的悬浮液,再在超声条件下分散1 h,得到稳定的分散液。然后移入四口烧瓶中,升温至80℃,滴加2 mL 的水合肼,在此条件下反应24 h 后过滤,将得到的产物依次用甲醇和水冲洗多次,再在60℃的真空干燥箱中充分干燥,保存备用。 具体实验步骤: 一:氧化石墨烯的制备 1:一只大烧杯250Ml,里面放冰块,提供冰水浴 2:用试管量取23mlH2SO4,再用电子天平称取1g石墨,0.5g硝酸钠,3g高锰酸钾 3:用镊子企业一直转自放到锥形瓶,之后把浓硫酸轻轻倒入锥形瓶,然后放到电磁搅拌器中。 4:将石墨和硝酸钠混合加入锥形瓶,搅拌反应三分钟,然后将高锰酸钾加入锥形瓶 5:控制温度小于20℃,搅拌反应2个小时 6:升温至35℃,继续搅拌30分钟 7:将水和蒸馏水配置46mL的去离子水(14摄氏度) 8反应到30分钟后,将去离子水加入锥形瓶,然后将温度升高至98℃,持续加热20min,溶液呈棕黄色,冒出红烟 9:取出5g双氧水(30%),加入锥形瓶 10:取下锥形瓶趁热过滤,并用HCL和去离子水洗涤,待剩余固体在滤纸稳定后,用镊子把滤纸取出,再用一块干净的滤纸衬在底部,一块放到60℃的干燥箱中充分干燥。 二:石墨烯的制备 1:干燥后的氧化石墨烯,取出100mg分散于100g水溶液中,得到棕黄色悬浮液 2:把悬浮液放到超声波洗涤箱中,在超声波条件分散1小时 3:取出溶液放到四口烧杯中,升温到80℃,再滴加20ml水合肼,反应24小时过滤 4:得到的产物以此用甲醇和水冲洗 5:得到的固体在60℃干燥箱中充分干燥,保存备用。 三:实验原材料的作用 浓硫酸:强质子酸,进入石墨层间。高锰酸钾:强氧化剂氧化,生成氧化石墨(GO)经过超声剥离得到氧化石墨烯。水合肼:还原剂,出去氧化石墨烯表面的含氧官能团,得到石墨烯。硝酸钠:在强酸环境下,硝酸根具有强氧化性。双氧水:除去氧化中多余的高锰酸钾,氧化成2价锰离子除去。稀盐酸:洗去其中的金属离子,硫酸根离子,氯化钡:检测其中的硫酸根离子。

溶剂热法制备石墨烯及其复合物的电化学性能研究

题目:溶剂热法制备石墨烯及其复合物的电化学性能研究 一、前言 1.研究意义 石墨烯是近几年的研究热门之一,关于石墨烯的理论研究已有60多年的历史,并且被广泛用来描述不同结构的碳质材料的性能。以往一直认为只能在绝对零度下才能稳定存在石墨烯,但是在2004年英国曼彻斯特大学的Novoselov[1]等利用胶带剥离高定向裂解石墨的方法获得了室温环境下能够真正独立存在的二维石墨烯晶体。在这一被科学家们描述为与“削铅笔”相似的过程中,石墨爆裂成单独的原子面既是石墨烯。这些原子碎片异常的稳定,具有很高的弹性且十分坚固,同时传导性也极好。石墨烯的发现无疑在科学界引起了极大关注。虽然石墨烯发现至今只有短短6年时间,但是由于其独特的结构和性质,世界各国,包括美国,欧洲各国,日本,中国等国家都给予了足够的重视,关于石墨烯的报道也如雨后春笋般层出不穷。我国石墨矿产的资源储量大,质量好,产量和出口均居世界首位,这为我国石墨烯的基础和应用研究提供了极为有利的条件。目前,国内外有大量石墨烯/聚合物复合材料以及氧化石墨烯/聚合物复合材料的相关报道,其应用前景十分广泛:从能源行业的燃料电池用储氢材料到合成化学工业的微孔催化剂载体;从导电塑料、导电涂料到建筑行业的防火阻燃材料等方面。因此,加大对石墨烯的研究与开发力度,使石墨烯及其复合材料能尽早应用于我国国民经济的各部门,提高国民生产力。 石墨烯具有优良的电学、力学、光学和热学性质。现有石墨烯的制备方法在一定程度上都存在不足,限制了石墨烯材料的应用。石墨烯的传统制备方法有机械剥离法、加热SiC法、化学气相沉积法以及氧化石墨法。但是传统方法制备的石墨烯成本高,产量少,一直制约了石墨烯产业发展。本文研究用溶剂热法大量制备石墨烯,使其制备成本大幅降低,具有广阔的工业化价值。 2. 国内外研究现状和发展趋势 石墨烯的应用前景 2.1良好的物理实验平台 石墨烯独特的电子结构为粒子物理中不易观察到的相对论量子电动力学效应的验证提供了更为方便的手段。例如,对爱因斯坦相对论的验证往往需要昂贵的实验设备或通过遥远的星系来完成,石墨烯的出现使相关研究变得简单、方便。量子力学和相对论的量子电动力学使人类清楚地了解从粒子到宇宙产生的各种现象。半导体中电子的能量和动量之间具有二次方关系,但在石墨烯中,这一关系却是线性的。石墨烯更多的新特性正引起凝聚态物理学界的极大关注。 2.2纳米电子器件——高频晶体管 石墨烯具有很好的导电性,其廉价大规模生产可能会极大地促进石墨烯在高传导率集成电路方面的研究。石墨烯很有可能成为组建纳米电子器件的最佳材料,可能是下一代电子器件的替代品——用它制成的器件可以更小,消耗的能量更低,电子传输速度却更快。由于其高的电子传输速度和优异的电子传输特性(无散射),石墨烯可以制作高频

化学气相沉积法制备石墨烯,金刚石,富勒烯

CVD 制备石墨烯: 1、采用方法的原理:以甲烷作为碳源,以铂作为生长基底。通入H2将有缺陷的核刻蚀掉, 降低石墨烯的密度。由于石墨烯的生长和刻蚀过程是可逆的,所以经过生长刻蚀,再生长再刻蚀再生长(反复生长刻蚀生长)的方法制备出高产量,无缺陷的单晶石墨烯。 2、典型过程:将180um厚,10mm*20mm的铂箔首先用丙酮和酒精分别冲洗1h,然后放 入熔融石英管中。适应管中通入体积流为700摩尔每分的H2。退火十分钟后将残留的碳和有机物移除。生长从通入甲烷并维持一段时间后开始,在CVD生长后将甲烷的流速降低,其他参量保持不变来促使刻蚀石墨烯的过程发生。在刻蚀了一段时间后,增加甲烷的流速使石墨烯生长。随着生长刻蚀次数的增加逐渐减少甲烷的流速。经过三轮的刻蚀生长,大约3mm的单晶石墨烯就生成了。反应停止后将铂箔迅速从高温环境中取出,关火,在温度降到800度以下后停止通甲烷。 3、设备示意图 Scheme depicting the G_rE_RG process. (a) CVD growth of graphene domains on a substrate. (b) Hydrogen etching to reduce domain density. (c) Regrowth of the etched graphene domains. (d) New nuclei appear on the substrate during regrowth. (e) Hydrogen etching to remove the new nuclei generated during regrowth. (f) Large-size single-crystal graphene domains obtained by the G_rE_RG method. (g) Schematic of the G_rE_RG process used for fabricating ~3 mm single-crystal graphene domains, with the flow rates of CH4 and H2 used. The reaction temperature was 1060℃ during the whole process. The error bars show the size range of the single-crystal graphene domains obtained under the same conditions, and the blue dots in the middle of the error bars represent the average size of graphene domains. 4、产物的形貌或性能 用这种方法在铂衬底上制备出了大约3mm的单晶石墨烯,在常温常压下载流子迁移率达到了大约13 000 cm2 V-1 s-1。 5、典型制备参数的归纳对比

相关主题