搜档网
当前位置:搜档网 › 第三讲 柯西积分公式与解析函数的高阶导数

第三讲 柯西积分公式与解析函数的高阶导数

第三讲 柯西积分公式与解析函数的高阶导数
第三讲 柯西积分公式与解析函数的高阶导数

工程数学II 课程教案

授课时间:第 周 周 第 节 课时安排 课次__ 授课方式(请打√):理论课□ 讨论课□ 实验课□ 习题课□ 综合课□ 其他□ 授课题目(教学章、节或主题):

§3.5 柯西积分公式;§3.6 解析函数的高阶导数.

教学目的、要求(分掌握、熟悉、了解三个层次):

1.熟练掌握柯西积分公式;

2.熟练掌握高阶导数公式.

教学重点及难点:

重点: 柯西积分公式;高阶导数公式.

难点: 柯西积分公式.

教学基本内容(要体现出教学方法及手段):

§3.5 柯西积分公式

一、问题的提出

0 , .B z B 设为一单连通域为中一点 () , f z B 如果在内解析那末

()f z z z -在

0.z 不解析0

() d ,C

f z z z z -?

所以一般不为零0.C B z 为内围绕的闭曲线根据闭

路变形原理知, 该积分值不随闭曲线 C 的变化而改变, 求这个值. C 积分曲线取作以 00 , ,z z z δδ-=为中心半径为很小的的正向圆周 () ,f z 由的连续性 C 在上

0 () ,

f z z δ函数的值将随着的缩小而逐渐接近于它在圆心处的值0

()d C

f z z z z -?

00

() d .()C

f z z z z δ-?

将接近于缩小,

00

()d C

f z z z z -?

000

1()d 2().C

f z z if z z z π==-?

二、柯西积分公式

定理 () , f z D C D 如果函数

在区域内处处解析为内的任何一条正向简单闭 0, , , D z C 曲线它的内部完全含于为内任一点那末

00

1()()d .2πC

f z f z z i

z z =

-?

证 0 () , f z z 因为在连续0,ε?>则()0,δε?>0

,z z δ-<当时 0()() .f z f z ε-<0 , ():z R R K δ<设以为中心半径为的正向圆周 0 ,z z R C -=全在的内部则

()d C

f z z z z -?

()d K

f z z z z =

-?

000

()()()

d d K

K

f z f z f z z z z z z z -=

+

--?

?

000

()()

2()d K

f z f z if z z z z π-=+

-?

00

()()d K

f z f z z z z --?

00

()()

d K

f z f z s z z -≤

-?

d 2π.K

s R

ε

ε<

=?

上不等式表明, 只要 R 足够小, 左端积分的模就可以任意小,根据闭路变形原理知, 左端积分的值与 R 无关, 所以只有在对所有的 R 积分值为零时才有可能.

[证毕]

柯西积分公式:00

1

()()d 2C

f z f z z i

z z π=

-?

关于柯西积分公式的说明:

(1) 把函数在C 内部任一点的值用它在边界上的值表示.

(2) 公式不但提供了计算某些复变函数沿闭路积分的一种方法, 而且给出了解析函数的一个积分表达式.

(3) 一个解析函数在圆心处的值等于它在圆周上的平均值.

2π000

1

()()d .2π

i f z f z R e θ

θ=

+??

三、典型例题

例1 4

41sin 1

2 (1)

d ;(2)

d .213z z z z z i

z

z z π==??+

?+-?

??

? 求下列积分 解 4

1

s i n (1)

d 2z z z i

z

π=?

()s i n f z z =因为在复平面内解析 ()s i n f z z =因为在

,复平面内解析由柯西积分公式

4

1sin d 2z z z i

z π=?

12sin 2z i z

i

ππ==

??0;=

412(2)

d .13z z z z =??+

?+-?

?? 4

4

12d d 1

3

z z z z z z ===+

+-?

?

2122i i ππ=?+?6.i π=

例2 2

d .

1

z

z e

z z =-?

计算积分 解 () , z

f z e =因为在复平面内解析1

2 , z z =<位于内由柯西积分公式

1

2

d 21

z

z z z e

z i e

z π===?-?

2.e i π=

例3 2

12

1

d .

(1)

z i z z z -=

+?

计算积分 解

2

1

(1)z z =+1

()()

z z i z

i +-1

()z z i z i

+=

-()f z =,1 () , 2

f z z i -≤

因为在内解析由

柯西积分公式

2

12

1

d (1)

z i z z z -=

+?

12

1

()

d z i z z i z z i

-=

+=

-?

12()

z i

i z z i π==?

+2

122i i

π=?

.i π=-

例4 2

22

371

3, ()d , (1)C

C x y f z f i z

ξξξξ++'+==

+-?

设表示正向圆周求

解 根据柯西积分公式知, ,z C 当在内时2

()2π(371)

z

f z i ξξξ==?++

2

2(371),i z z π=++ ()2(67),f z i z π'=+故 1 , i C +而在内所以

(1)2(613).f i i π'+=-+

例5 2

sin

14 d , :(1) 1;12

C

z

z C z z π

+=-?

计算积分其中1(2) 1;2z -=(3) 2.z =

解 2

112

s i n 4(1)

d 1

z z

z z π

+=

-?

112

s i n 41d 1

z z

z z z π

+=

-=+?

1

s i n 421z z i z ππ=-=?

-;2

i =

(2)

2

112

sin

4d 1

z z

z z π

-=

-?

112

sin

41d 1

z z

z z z π

-=

+=

-?

1

sin 421z z

i z ππ==?

+;2

i =

(3) 由闭路复合定理, 得

2

2

sin

4d 1

z z z z π

==

-?

2

112

sin

4d 1

z z z z π

+=

-?

2

112

π

sin

4d 1z z

z z -=

+

-?

22

i i =

+.i =

课堂练习 2

3

d .

(1)

z

z e

z z z =-?

计算积分 答案 0,1,1z z z ===-有三个奇点 1

2

3

d (2).(1)

z

z e

z i e e

z z π-==+--?

§3.6 解析函数的高阶导数.

一、问题的提出

问题: (1) 解析函数是否有高阶导数?

(2) 若有高阶导数, 其定义和求法是否与实变函数相同?

回答:

(1) 解析函数有各高阶导数.

(2) 高阶导数的值可以用函数在边界上的值通过积分来表示, 这与实变函数完全不同. 解析函数高阶导数的定义是什么? 二、主要定理

定理 () , f z n 解析函数的导数仍为解析函数它的阶:导数为

()

01

!()

()d (1,2,)2π()

n n C

n f z f

z z n i z z

+=

=-?

0 () C f z D z 其中为在函数的解析区域内围绕的任何一条正向简, 单闭曲线

D 而且它的内部全含于

证 0 ,

z D 设为内任一点根据导数的定义, 0000

()()

()lim

z f z z f z f z z

?→+?-'=?

从柯西积分公式得 00

1()()d ,2C

f z f z z i

z z π=

-? 001

()()d ,

2C

f z f z z z i

z z z

π+?=

--?? 00()()

f z z f z z

+?-?00

1

()

()

d d ,2C C

f z f z z z zi z z z

z z π??

=

-???--?-??

??

001()

d 2()()C

f z z i z z z z z π=

---??

2

2

0001

()1()

d d 2()

2()()

C

C

f z zf z z z i

z z i

z z z z z ππ?=

+

----???

2

001()

d 2()()

C

zf z I z z z z z z π

?=

---??

2

0()1d 2C

z f z s z z z z z

π

?≤

---??

() , f z C 因为在上解析,C 所以在上连续 () , f z C 故在上有界 0,M ?>于是

(),f z M ≤使得0 ,d z C 设为从到曲线上各点的最短距离 ,z ?并取适当地小

1 , 2

z d ?<

满足0 ,

z z d -≥则0

11 , z z d

-00z z z z z z --?≥--?,

012,z z z

d

--?3

,M L

I z

d

π

,M L

I z

d

π

0,I →那末

0000

()()

()lim

z f z z f z f z z

?→+?-'=?2

01()d ,2()

C

f z z i

z z π=

-?

再利用以上方法求极限 000

()()

lim z f z z f z z

?→''+?-?可得

03

02!()()d .2()

C

f z f z z i

z z π''=

-?

至此我们证明了一个解析函数的导数仍然是解析函数.

依次类推, 利用数学归纳法可

()

01

0!()()d .2()

n n C

n f z f

z z i

z z π+=

-? [证毕]

高阶导数公式的作用: 不在于通过积分来求导, 而在于通过求导来求积分.

三、典型例题

例1 , : 1. C z r =>计算下列积分其中为正向圆周

5

2

2

cos (1)

d ;(2)

d .(1)

(1)

z

C

C

z e

z z z z π-+?

?

解 5

c o s (1) 1 ,(1)

z

C z z π=-函数在内处不解析 c o s z C π但在内处处解析 ()

01

0!() ()d 2()

n n C

n f z f

z z i

z z π+=

-?

根据公式

5

cos d (1)

C

z z z π-?

(4)

1

2(cos )

(51)!

z i z ππ==

-5

;12

i π=-

2

2

(2)

,(1)

z

e

C z i z =±+函数在内的处不解析 C i 在内以为中心作一个

1 ,C 正向圆周

2 ,i C -以为中心作一个正向圆周122

2

,,(1)

z

e

C C C z +则函数在由

根据复合闭路定理

2

2

d (1)

z

C

e

z z +?

1

2

2

2

2

2

d d (1)

(1)

z

z

C C e

e

z z z z =

+

++?

?

1

2

2

d (1)

z

C e

z z +?

1

2

2

()

d ()

z

C e

z i z z i +=

-?

22(21)!()z z i

i

e z i π='

??=??-+??(1),2

i

i e π-=

同理可得 2

2

2

d (1)

z

C e

z z +? (1)

,2

i

i e π--+=

于是

2

2

d (1)

z

C

e

z z +?

(1)2

i

i e π-=

(1)2

i

i e

π--++

(1)()2

i i

i e ie π

-=

--

2

(1)(cos1sin 1)2

i π

=

-

-1.4i ππ

?

?=- ??

?

例2 3

4

2

2

1

1cos (1)

d ;(2)

d (1)

z

z z z e

z z z z z

-==++?

?

求积分

解 3

(1) 1 ,z +

函数在复平面内解析0

1 2 ,z z =-≤在内3,n =

()

01

0!() ()d 2()

n n C

n f z f

z z i

z z π+=

-?

根据公式

3

4

2

1

d (1)z z z z =++?

3

1

2[1]3!

z i z π=-'''

=

+2;i π=

2

1

cos (2)

d z

z e

z z z

-=?

cos ,z

e

z -函数在复平面内解析00 1 ,z z =≤在内1,n =

2

1

cos d z

z e

z z z

-=?

2(cos )1!

z

z i e

z π-='

=

2[cos sin ]

z

z

z i e

z e

z π--==--2.i π=-

?

例3 1

d .( )

z n

z e z n z

=?

求积分为整数 解 (1)0,n ≤

1 , z n e

z z ≤在上解析由柯西-古萨基本定理得1

d 0;z

n z e z z ==? (2)1,n =由柯西积分公式得

1

d z n

z e z z

==?

2()

z

z i e π=?2;i π=

(3)1,n >()

01

0!() ()d 2()

n n C

n f z f

z z i

z z π+=

-?

根据公式

1

d z n

z e z z

=?

(1)

2()

(1)!

z n z i e n π-==

-2.(1)!

i n π=

-

例4 2

3

1 d .(2)C

z z z

-?

求积分:(1)32;(2)13.

C z z -=-=其中 解 2

3

1

2 0,(2)z z z z

==-函数有两个奇点和

(1)32,z -= 2, z =仅包含奇点3

1 (),f z z

=

231

d (2)C z z z -? 3

2

1

d (2)C

z z z =-? 32

211!z i z π='

??= ???3;8

i π=-

(2)13z -= 2 0 ,z z C ==两个奇点和都含在内

12 0 2,C C 作简单闭曲线和分别包含和12 ,C C 和互不包含且互不相交

根据复合闭路定理和高阶导数公式,

2

3

1

d (2)

C

z z z

-? 1

2

2

3

2

3

11

d d (2)(2)

C C z z z z

z z

=+

--?

?

1

2

2

3

3

21

1

(2) d d (2)C C

z z

z z z

z -=+

-?

? 232

21

21 2!(2)1!z z i i z z ππ=="

'

????=+????-??

??

338

8

i i ππ=

-

0.=

作业和思考题:

第三章习题 82),4) ,6);92),4) ,5).

课后小结:(1)柯西积分公式是复积分计算中的重要公式,它的证明基于柯西–古萨基本定

理, 它的重要性在于: 一个解析函数在区域内部的值可以用它在边界上的值通过积分表示, 所以它是研究解析函数的重要工具.柯西积分公式:

00

1()()d .2C

f z f z z i

z z π=

-?

(2)高阶导数公式是复积分的重要公式. 它表明了解析函数的导数仍然是解析函数这一异常重要的结论, 同时表明了解析函数与实变函数的本质区别.高阶导数公式

()

01

0!()()d 2()

n n C

n f z f

z z i

z z π+=

-?

高阶、隐函数的导数和微分练习题

高阶导数 1. 填空题. (1)x y 10=,则()()=0n y . (2)y x =sin2,则()()y x n = .. 2. 选择题. (1)设f x ()在()-∞+∞,内为奇函数且在()0,+∞内有'>f x ()0,''>f x ()0,则f x ()在()-∞,0内是( ) A. 'f x ()0; C.'>f x ()0且''f x ()0 且''>f x ()0. (2)设函数()y f x =的导数'f x ()与二阶导数''f x ()存在且均不为零,其反函数为()x y =?,则()''=?y ( ) A .()1''f x ; B. ()()[] -'''f x f x 2;C. ()[]()'''f x f x 2; D. ()()[].3x f x f '''- 3. 求下列函数的n 阶导数. (1) .)1(αx y += (2) .5x y = 4.计算下列各题. (1)() y x x =-11,求()().24y (2)()y e x x =-21,求().20y (3)y x x =-+132 2,求()y n . (4)x y 2sin =,求().n y (5),2sin 2x x y = 求()..50y 5. 设x x f 2cos )(cos '=,求).(''x f 6. 已知)(''x f 存在,)(ln x f y =,求'.'y

隐函数及由参数方程所确定的函数的导数 1. 设y e y x x sin 22=-,求.dx dy 2. 设063sin 33=+-+y x y x ,求.0 =x dx dy 3.求曲线??? ????+=+=222 1313t t y t t x 在2=t 处的切线方程和法线方程. 4.利用对数求导法求导数. (1).1sin x e x x y -= (2)().sin ln x x y =

几个常用函数的导数(教案)

3.2.1几个常用函数导数 教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式; 2、能利用导数公式求简单函数的导数。 教学重难点:能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用 教学过程: 【合作探究】 探究任务一:函数() ==的导数. y f x c 问题:如何求函数() y f x c ==的导数 新知:0 y'=表示函数y c=图象上每一点处的切线斜率为 . 若y c=表示路程关于时间的函数,则y'=,可以解释为 即一直处于静止状态. 试试:求函数() ==的导数 y f x x 反思:1 y'=表示函数y x=图象上每一点处的切线斜率为 . 若y x=表示路程关于时间的函数,则y'=,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4 y x y x y x ===的图象,并根据导数定义,求它们的导数.

(1)从图象上看,它们的导数分别表示什么 (2)这三个函数中,哪一个增加得最快哪一个增加得最慢 (3)函数(0)y kx k =≠增(减)的快慢与什么有关 【典型例题】 1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x ?+?--===??? 所以0 0lim lim 00x x y y x ?→?→?'===? 函数 导数 y c = 0y '= 0y '=表示函数y c =图像上每一点处的切线的斜率都为0. 若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数()y f x x ==的导数 因为()()1y f x x f x x x x x x x ?+?-+?-===??? 所以00 lim lim11x x y y x ?→?→?'===?

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、 =n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b ,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b ,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15= (2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23 =0 ( (6)y x 5=

(7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 1 4= ,x =16 (2)sin y x = ,x π =2 (3)cos y x = ,x π=2 (4)sin y x x = ,x π =4 (5)3y x = ,11 28(,) (6)+x y x 2=1 ,x =1 (7)y x 2 = ,,24()

几个常见函数的导数1

几个常见函数的导数制作人:徐凯精讲部分: 年级:高三科目:数学类型:同步难易程度:易建议用时:20-25min 一.知识点: 知识点一几个常用函数的导数 知识点二基本初等函数的导数公式

二.典例分析: 题型一 利用导数公式求出函数的导数 例1 求下列函数的导数: (1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x ;(6)y =1-2sin 2x 2 . 解 (1)y ′=0;(2)y ′=(5x )′=5x ln 5;(3)y ′=? ?? ??1x 3′=(x -3)′=-3x -4 ; (4)y ′=(4 x 3 )′=(x 34)′=1 434x -=344 x ;(5)y ′=(log 3x )′=1 x ln 3; (6)y =1-2sin 2 x 2 =cos x ,y ′=(cos x )′=-sin x . 反思与感悟 若给出函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化指数幂的形式求导. 题型二 利用导数公式解决切线有关问题 例2 (1)已知P ,Q 为抛物线y =12x 2 上两点,点P ,Q 横坐标分别为4,-2,过P ,Q 分别 作抛物线的切线,两切线交于点A ,则点A 的坐标为________. 答案 (1,-4) 解析 y ′=x ,k PA =y ′|x =4=4,k QA =y ′|x =-2=-2. ∵P (4,8),Q (-2,2),∴PA 的直线方程为y -8=4(x -4),

即y =4x -8, QA 的直线方程为y -2=-2(x +2),即y =-2x -2,联立方程组??? ? ? y =4x -8,y =-2x -2,得 ????? x =1, y =-4. ∴A (1,-4). (2)已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处两条曲线的切线互相垂直并说明理由. 解 设存在一个公共点(x 0,y 0)使两曲线的切线垂直, 则在点(x 0,y 0)处的切线斜率分别为k 1=y ′|0x x ==cos x 0,k 2=y ′|0x x ==-sin x 0, 要使两切线垂直,必须k 1k 2=cos x 0(-sin x 0)=-1, 即sin 2x 0=2,这是不可能的. ∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直. 反思与感悟 1.利用导数的几何意义解决切线问题的两种情况 (1)若已知点是切点,则在该点处的切线斜率就是该点处的导数. (2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. 2.求过点P 与曲线相切的直线方程的三个步骤 题型三 利用导数公式求最值问题 例3 求抛物线y =x 2 上的点到直线x -y -2=0的最短距离. 解 设切点坐标为(x 0,x 2 0),依题意知与直线x -y -2=0平行的抛物线y =x 2 的切线的切点到直线x -y -2=0的距离最短.

2-10高阶导数的概念及常见高阶导数公式

2-10高阶导数的概念及常见高阶导数公式

模块基本信息 一级模块名称 微分学 二级模块名称 基础模块 三级模块名称 高阶导数的概念及常见高阶导数 公式 模块编号 2-10 先行知识 导数的概念 模块编号 2-2 知识内容 教学要求 掌握程度 1、高阶导数的概念 1、理解高阶导的概念 一般掌握 2、常见初等函数的高阶导数 2、熟记常见初等函数的高阶导 3、莱布尼兹公式 3、掌握隐函数高阶导的求解(一般 是二阶) 4、隐函数的高阶导数 4、掌握参数方程高阶导的求解(一 般是二阶) 5、参数方程的高阶导数 5、熟记正弦、余弦等常见函数的n 阶导数公式 能力目标 1、提高学生的观察分析能力 2、培养学生的逻辑思维、类比推导能力 时间分配 45分钟 编撰 黄小枚 校对 方玲玲 审核 危子青 修订 肖莉娜 二审 危子青 一、正文编写思路及特点: 思路:本文先借助速度和加速度的概念引出高阶导数的定义,

然后分别介绍常见的初等函数的高阶导数、莱布尼兹公式、隐函数的高阶导数、参数方程的高阶导数。 特点:通过实际问题引出高阶导数的概念,在求解高阶导数时分类进行讲解,层层递进,有助于学生理解和掌握。 二、授课部分 1.引例 (1) 变速直线运动的速度)(t v 是位置函数)(t s 对时间t 的导数,即 )()('t s t v = 或dt ds t v = )( (2) 速度函数)(t v 对时间t 的变化率就是加速度)(t a ,即)(t a 是)(t v 对t 的导数: []' ')(')()(t s t v t a ==或)()(dt ds dt d t a = (3)加速度)(t a 就是位置函数)(t s 对时间t 的导数的导数,称 为)(t s 对t 的二阶导数,记为)(' 't s 或22dt s d 2.高阶导数的定义 设y=f(x)在某区间上可导,即有 ()x f ' 存在,如果()x f '也可导,则称()x f ' 的导数为函数 f(x) 的二阶导数。记 y '', 或 )(x f '', 22dx y d , dx x f d ) (2 根据导数的定义可知:''0()() ()lim x f x x f x f x x →+-''=V V V 类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作 y ''', y (4), ? ? ? , y (n ) 或33dx y d , 44dx y d , ? ? ? , n n dx y d .

常见函数的导数

常见函数的导数 学习目标:能根据定义求几个简单函数的导数,加深对导数概念的理解,同时体会算法的 思想并熟悉具体的操作步骤。 学习重难点:利用导数公式求一些函数的导数 一、 知识点梳理 1. 基本初等函数,有下列的求导公式 '1.()(,)kx b k k b +=为常数 '2.()1x = 2'3.()2x x = 4.()0C '= 3'2 5.()3x x = ' 2 116.()x x =- '= 1 8.()x x ααα-'=(α为常数) 9.()ln (01)x x a a a a a '=>≠, a a 1110.(log x)log e (01)x xlna a a '= =>≠, x x 11.(e )e '= 112.(lnx)x '= 13.(sinx)cosx '= 14.(cosx)sinx '=- 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。 二、典例讲解 例1、求下列函数导数。 练习:(1)5 -=x y (2) 、x y 4= (3)、x x x y = (4)、x y 3 l o g = (5)、)100() 1(l o g 1 ≠>>-= x a a x a y x ,,, (6)、y=sin( 2π+x) (7)y=sin 3 π (8)、y=cos(2π-x) (9)、y=(1)f ' 例2、1.求过曲线y=cosx 上点P( 2π ,0 ) 的切线的直线方程. 2. 若直线y x b =-+为函数1 y x = 图象的切线,求b 的值和切点坐标. (1)(23)(2)(2)(3)3x x '-+='-='=4 (4)y x =3(6)y x -==0(5)sin 45y

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220 011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααααααααααααααααααααα ααααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++L L L L ()11 11 C x x x ααααααα---?== 所以原命题得证. 二、正弦函数()sin f x x =的导数公式推导过程 命题

推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程 命题

第三讲 柯西积分公式与解析函数的高阶导数

工程数学II 课程教案 授课时间:第 周 周 第 节 课时安排 课次__ 授课方式(请打√):理论课□ 讨论课□ 实验课□ 习题课□ 综合课□ 其他□ 授课题目(教学章、节或主题): §3.5 柯西积分公式;§3.6 解析函数的高阶导数. 教学目的、要求(分掌握、熟悉、了解三个层次): 1.熟练掌握柯西积分公式; 2.熟练掌握高阶导数公式. 教学重点及难点: 重点: 柯西积分公式;高阶导数公式. 难点: 柯西积分公式. 教学基本内容(要体现出教学方法及手段): §3.5 柯西积分公式 一、问题的提出 0 , .B z B 设为一单连通域为中一点 () , f z B 如果在内解析那末 ()f z z z -在 0.z 不解析0 () d ,C f z z z z -? 所以一般不为零0.C B z 为内围绕的闭曲线根据闭 路变形原理知, 该积分值不随闭曲线 C 的变化而改变, 求这个值. C 积分曲线取作以 00 , ,z z z δδ-=为中心半径为很小的的正向圆周 () ,f z 由的连续性 C 在上 0 () , f z z δ函数的值将随着的缩小而逐渐接近于它在圆心处的值0 ()d C f z z z z -? 00 () d .()C f z z z z δ-? 将接近于缩小, 00 ()d C f z z z z -? 000 1()d 2().C f z z if z z z π==-? 二、柯西积分公式 定理 () , f z D C D 如果函数 在区域内处处解析为内的任何一条正向简单闭 0, , , D z C 曲线它的内部完全含于为内任一点那末

常用基本初等函数求导公式积分公式.doc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设,都可导,则 ( 1)( 2)(是常数) ( 3)( 4) 反函数求导法则 若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且 或 复合函数求导法则 设,而且及都可导,则复合函数的导数为 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式: 常用积分公式表·例题和点评 ⑴kdx kx c ( k 为常数) ⑵x dx( 1) 1 x 1 c 1 特别, 1 dx 1 c , x d x 2 x23 c , 1 dx 2 x c x 2 x 3 x ⑶1 dx ln | x | c x ⑷ a x d x a x c , 特别,e x d x e x c ln a

⑸ sin x dx cos x c ⑹ cos x d x sin x c ⑺ 1 d x csc 2 x dx cot x c sin 2 x ⑻ 1 d x sec 2 x dx tan x c cos 2 x ⑼ 1 dx x c ( a 0) , 特别, a 2 x 2 arcsin a ⑽ 1 dx 1 x c (a 0) , 特别, a 2 x 2 arctan a a ⑾ 1 1 a x a 2 x 2 d x 2a ln a x c ( a 0) 或 1 1 x a x 2 a 2 dx 2a ln x a c ( a 0) ⑿ tan x dx ln cos x c ⒀ cot x dx ln sin x c 1 arcsin x c 1 d x x 2 1 1 x 2 dx arctan x c 1 ln csc x cot x c ⒁ csc x d x x dx ln tan c sin x 2 1 ln sec x tan x c ⒂ secx d x x dx c cos x ln tan 4 2 1 ( a 0) x 2 a 2 ⒃ a 2 dx ln x c x 2 ⒄ a 2 x 2 dx ( a 0) a 2 x x a 2 x 2 c arcsin 2 2 a ⒅ x 2 2 (a 0) x x 2 a 2 a 2 ln x x 2 a 2 c a d x 2 2

基本函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =, )(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数 )(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或()()y f u x ?'''= 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式: 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经过显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理 1 设函数),(y x F 在点 ),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式

高阶导数和高阶微分 泰勒公式

§2-9 高阶导数和高阶微分·泰勒公式 1.高阶导数和高阶微分 在§2-3中,我们讲了函数的二阶导数和二阶微分。一般地,函数 )(x y y =的n 阶导数就是 h x y h x y x y x y n n h n n ) ()(lim ])([)()1()1(0) 1() (--→--+='= (0)()()y x y x =???? 而n 阶微分就是 n n n n n n n n x x y x x x y x x y y y d )(d ]d )([]d )(d[]d[d d )(1)(1)1(1-====--- (x 是自变量;x d 被看成与x 无关的有限量) 因此,按照莱布尼茨的记法,函数)(x y y =的n 阶导数)()(x y n 也可记成 n n x x y d )(d 或简记成 n n x y d d (注意..n 的位置...) 这样,导数与微分之间的那种“乘或除”的转换关系被保留到n 阶导数与n 阶微分的关系中. 例33 因为指数函数e x 的导数(e )e x x '=,所以(e )(e )e x x x '''==. 依次类推,则有 ()()(e )e ,d (e )(e )d e d (1,2,)x n x n x x n n x n x x n ==== 例34 对于函数x y sin =,则 cos sin , sin sin 2,22 2y x x y x x '??πππ?? ???? '''==+=+=?+ ? ? ????? ?????? 一般地, ()sin 2n n y x π??=+ ???; ()d d sin d 2n n n n n y y x x x π??==+ ??? ),2,1( =n . 同理,对于函数cos y x =,有 ()cos 2n n y x π??=+ ???; ()d d cos d 2n n n n n y y x x x π?? ==+ ??? ),2,1( =n . 例35 对于函数ln(1)y x =+,则 2 23 112,,(1),1(1)(1)y y y x x x ''''''= =-=-+++ 一般地, (n 阶导数)() 1 (1)! (1)(1,2,)(1)n n n n y n x --=-=+ (n 阶微分)()1(1)!d d (1)d (1,2,)(1) n n n n n n n y y x x n x --==-=+ 例36 设函数1()e (0),(0)0x f x x f - =≠=.证明:),2,1(0)0()( ==n f n . 证 一方面,函数)(x f 在点0是连续的,因为

第十二讲高阶导数习题

第十二讲 高阶导数习题 一、选择题 1. 设x e x f 2)(=,则(0)f '''=【 】 A. 8 B. 2 C. 0 D. 1 2. 设x x x f cos )(=,则()f x ''=【 】 A. x x sin cos + B. x x x sin cos - C. x x x sin 2cos -- D. x x x sin 2cos + 3. 设y=sinx ,则y (10)|x=0=【 】 A. 1 B. -1 C. 0 D. 2n 4. 已知ln ,=y x x 则()6y =【 】 A. 5 1x - B. 51x C. 54!x D. 54!x - 二、填空题 1. 设函数)(x f 有任意阶导数且)()('2 x f x f =,则()f x '''= 。 2. 已知函数2x y e =,则y '''=_____________. 3. 设函数)(x f 在2=x 的某邻域内可导,且)()(x f e x f =',1)2(=f ,则=''')2(f _____________. 4. 设函数)(y f x =的反函数)(1x f y -=及)]([1x f f -'、)]([1x f f -''均存在,且 0)]([1≠'-x f f ,则=-212dx )x (f d _____________. 5. 设x x x f +-=11)(,则=)x (f )n (_____________. 6. 设x x y 44cos sin -=,则=) n (y ____________. 7. 184、设x x x y cos sin sin 3+=,则=) n (y ____________.

2-10高阶导数的概念及常见高阶导数公式

模块基本信息 一级模块名称 微分学 二级模块名称 基础模块 三级模块名称 高阶导数的概念及常见高阶导数公式 模块编号 2-10 先行知识 导数的概念 模块编号 2-2 知识内容 教学要求 掌握程度 1、高阶导数的概念 1、理解高阶导的概念 一般掌握 2、常见初等函数的高阶导数 2、熟记常见初等函数的高阶导 3、莱布尼兹公式 3、掌握隐函数高阶导的求解(一般是二阶) 4、隐函数的高阶导数 4、掌握参数方程高阶导的求解(一般是二阶) 5、参数方程的高阶导数 5、熟记正弦、余弦等常见函数的n 阶导数公式 能力目标 1、提高学生的观察分析能力 2、培养学生的逻辑思维、类比推导能力 时间分配 45分钟 编撰 黄小枚 校对 方玲玲 审核 危子青 修订 肖莉娜 二审 危子青 一、正文编写思路及特点: 思路:本文先借助速度和加速度的概念引出高阶导数的定义, 然后分别介绍常见的初等函数的高阶导数、莱布尼兹公式、隐函数的高阶导数、参数方程的高阶导数。 特点:通过实际问题引出高阶导数的概念,在求解高阶导数时分类进行讲解,层层递进,有助于学生理解和掌握。 二、授课部分 1.引例 (1) 变速直线运动的速度)(t v 是位置函数)(t s 对时间t 的导数,即 )()('t s t v = 或dt ds t v =)( (2) 速度函数)(t v 对时间t 的变化率就是加速度)(t a ,即)(t a 是)(t v 对t 的导数: []'')(')()(t s t v t a ==或)()(dt ds dt d t a =

(3)加速度)(t a 就是位置函数)(t s 对时间t 的导数的导数,称 为)(t s 对t 的二阶导数,记为)(' 't s 或22dt s d 2.高阶导数的定义 设y=f(x)在某区间上可导,即有 ()x f ' 存在,如果()x f '也可导,则称()x f ' 的导数为函数 f(x) 的二阶导数。记 y '', 或 )(x f '', 22dx y d , dx x f d )(2 根据导数的定义可知:''0()()()lim x f x x f x f x x →+-''= 类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作 y ''', y (4), ? ? ? , y (n ) 或33dx y d , 44dx y d , ? ? ? , n n dx y d . 函数f (x )具有n 阶导数, 也常说成函数f (x )为n 阶可导. 注:(1)如果函数f(x)在点x 处具有n 阶导数, 那么函数f(x)在点x 的某一邻域内必定具有一切低于n 阶的导数. (2)二阶及二阶以上的导数y '' y ''' y (4) ?? y (n )统称高阶导数. 3.常见初等函数的高阶导数 例1 已知3y x = 求()n y (一级) 解: ()()423;6;6;0;,0.n y x y x y y y ''''''===== 课堂练习:已知y =e x 求它的n 阶导数. 例2 已知sin y x =求它的n 阶导数. (一级) 解:)2 sin(cos π+=='x x y , )2 2sin()2 2 sin()2 cos(ππππ?+=++=+=''x x x y ,

求导法则(一)

§3.2 求导法则(一) 教学内容 1.函数的和、差、积、商的求导法则; 2.反函数的求导法则; 3.复合函数的求导法则. 教学重点与难点 导数的运算法则及导数基本公式. 简要复习上节内容 1.导数的定义; 2.导数的定义的几种形式; 3.可导的充要条件; 4.函数可导与连续的关系; 5.导数的几何意义、物理意义. 一、导数的四则运算法则 设),(x u u =)(x v v =都在x 处可导,则有 ①v u v u '±'='±)(; ②v u v u uv '+'=')(; u c cu '=')(; ③2 )(v v u u v v u '-'='. 我们现在只证明②. 证 设=)(x f )()(x v x u 则 h x f h x f x f h )()(lim )(0-+='→=h x v x u h x v h x u h ) ()()()(lim 0-++→ =h x v x u x v h x u x v h x u h x v h x u h )()()()()()()()(lim 0-+++-++→ =h x v h x v h x u h )()()(lim 0-++→+=-+→h x u h x u x v h ) ()() (lim 0=v u v u '+' 例1 2sin cos 4)(3π -+=x x x f ,求)(x f ',)2(π f '. 解 )(x f '=x x sin 432-, )2(πf '=443 2-π. 例2 求21 log 3tan sin a y x x x x =++的导数. 解 x x x a x x x x y a 2 22sin cos sec 3ln log 2-+++='.

基本初等函数的导数公式

基本初等函数的导数公式 学习目标: 掌握初等函数的求导公式; 学习重难点: 用定义推导常见函数的导数公式. 一、复习 1、导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的流程图。 (1)求函数的改变量()(x f x x f y -?+=? (2)求平均变化率 x y = ?? (3)取极限,得导数/y =()f x '=x y x ??→?0 lim 本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。 (1)、y=x (2)、y=x 2 (3)、y=x 3 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 二、学习过程 1、基本初等函数的求导公式: ⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数) ⑶ ()1x '= ⑷ 2()2x x '= ⑸ 32()3x x '= ⑹ 2 1 1()x x '=- ⑺ '= 由⑶~⑹你能发现什么规律? ⑻ 1()x x ααα-'= (α为常数) ⑼ ()ln (01)x x a a a a a '=>≠, ⑽ a a 11(log x)log e (01) x xlna a a '= = >≠,且 ⑾ x x e )(e =' ⑿ x 1)(lnx =' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -=' 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。

例1、求下列函数导数。 (1)5-=x y ( 2)x y 4= (3)x x x y = (4)x y 3log = (5)y=sin(2 π +x) (6) y=sin 3 π (7)y=cos(2π-x) 例2.若直线y x b =-+为函数1y x = 图象的切线,求b 的值和切点坐标. 变式1.求曲线y=x 2 在点(1,1)处的切线方程. 总结切线问题:找切点 求导数 得斜率 变式2:求曲线y=x 2过点(0,-1)的切线方程 变式3:已知直线1y x =-,点P 为y=x 2 上任意一点,求P 在什么位置时到直线距离最短. 三:课堂练习. 1.求下列函数的导数 (1)3y x = (2)y = (3)2 1y x = (4)3x y = (5)2log y x = (6)cos y x = 四、小结 (1)基本初等函数公式的求导公式 (2)公式的应用 随堂检测: 1. 已知3()f x x =,则'(1)f = 。 2.设y = ,则它的导函数为 。 3.过曲线3y x -=上的点1 (2,)8 的切线方程为 。 4.求下列函数的导函数 (1)2y x -= (2)y = (3)41y x = (4)2x y = (5)4log y x = (6)ln y x = (7)sin()2y x π=- (8)3cos()2 y x π =+ 5.求曲线x y e =在0x =处的切线方程。

常见函数的导数公式

几种常见函数的导数公式: ①C'=0(C为常数函数) ②(x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数。 ③(sinx)' = cosx (cosx)' = - sinx (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) ④(sinhx)'=coshx (coshx)'=sinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) ⑤(e^x)' = e^x (a^x)' = (a^x)lna (ln为自然对数)(Inx)' = 1/x(ln为自然对数)(logax)' =x^(-1) /lna(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2) 【其中第4类不用记,那是大学的内容】 希望回答对你有所帮助!

第十二讲高阶导数习题资料讲解

第十二讲高阶导数习 题

精品文档 收集于网络,如有侵权请联系管理员删除 第十二讲 高阶导数习题 一、选择题 1. 设x e x f 2)(=,则(0)f '''=【 】 A. 8 B. 2 C. 0 D. 1 2. 设x x x f cos )(=,则()f x ''=【 】 A. x x sin cos + B. x x x sin cos - C. x x x sin 2cos -- D. x x x sin 2cos + 3. 设y=sinx ,则y (10)|x=0=【 】 A. 1 B. -1 C. 0 D. 2n 4. 已知ln ,=y x x 则()6y =【 】 A. 5 1x - B. 51x C. 54!x D. 54!x - 二、填空题 1. 设函数)(x f 有任意阶导数且)()('2x f x f =,则()f x '''= 。 2. 已知函数2x y e =,则y '''=_____________. 3. 设函数)(x f 在2=x 的某邻域内可导,且)()(x f e x f =',1)2(=f ,则 =''')2(f _____________. 4. 设函数)(y f x =的反函数)(1x f y -=及)]([1x f f -'、)]([1x f f -''均存在,且 0)]([1≠'-x f f ,则=-2 12dx ) x (f d _____________. 5. 设x x x f +-=11)(,则=)x (f )n (_____________. 6. 设x x y 44cos sin -=,则=) n (y ____________. 7. 184、设x x x y cos sin sin 3+=,则=) n (y ____________. 8. 设)()()(x a x x f n ?-=,其中)(x ?在点a 的一个邻域内有)1(-n 阶连续导数,则

1常见函数的导数公式

1.常见函数的导数公式: (1)0'=C (C 为常数); (2)1)'(-=n n nx x (Q n ∈); (3)x x cos )'(sin =; (4)x x sin )'(cos -=; (5)a a a x x ln )'(=; (6)x x e e =)'(; (7)e x x a a log 1)'(log = ; (8)x x 1)'(ln = . 2.导数的运算法则: 法则1 )()()]()(['''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '=. 法则3 ' 2 ''(0)u u v uv v v v -?? =≠ ??? . 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 例题:一:1:求函数323y x x =-+的导数. 2: y = x x sin 2.函数y =x 2cos x 的导数为 。 函数y =tanx 的导数为 。 2:求下列复合函数的导数: ⑴3 2 )2(x y -=; ⑵2 sin x y =; ⑶)4 cos(x y -=π ; ⑷)13sin(ln -=x y .3 2 c bx ax y ++=

4.曲线y =x 3的切线中斜率等于1的直线 ( ) A .不存在 B .存在,有且仅有一条 C .存在,有且恰有两条 D .存在,但条数不确定 5.曲线3()2f x x x =+-在0P 处的切线平行于直线41y x =-,则0P 点的坐标为( ) A 、( 1 , 0 ) B 、( 2 , 8 ) C 、( 1 , 0 )和(-1, -4) D 、( 2 , 8 )和 (-1, -4) 6.f (x )=ax 3 +3x 2 +2,若f ′(-1)=4,则a 的值等于 ( ) A. 3 19 B. 3 16 C. 3 13 D. 3 10 7.曲线22x y =在点(1,2)处的瞬时变化率为( ) A 2 B 4 C 5 D 6 8.已知曲线122+=x y 在点M 处的瞬时变化率为-4,则点M 的坐标是( ) A (1,3) B (-4,33) C (-1,3) D 不确定 9.物体按照s (t )=3t 2+t +4的规律作直线运动,则在4s 附近的平均变化率 . 10.曲线y =x 3-3x 2 +1在点(1,-1)处的切线方程为__________________. 11.已知l 是曲线y = 3 1x 3 +x 的切线中,倾斜角最小的切线,则l 的方程是 . 12.已知过曲线y =3 1x 3上点P 的切线l 的方程为12x -3y =16,那么P 点坐标只能为 ( ) A.?? ? ??38, 2 B.?? ? ??- 34,1 C.?? ? ??- -328,1 D.?? ? ??320, 3 13.已知c bx ax x f ++=24)(的图象经过点(0,1),且在x =1处的切线方程是y=x -2. 求)(x f y =的解析式. 14.求过点(2,0)且与曲线y = x 1相切的直线的方程.

相关主题