搜档网
当前位置:搜档网 › 混沌理论及其应用

混沌理论及其应用

混沌理论及其应用
混沌理论及其应用

混沌理论及其应用

摘要:随着科学的发展及人们对世界认识的深入,混沌理论越来越被人们看作是复杂系统的一个重要理论,它在各个行业的广泛应用也逐渐受到人们的青睐。本文给出了混沌的定义及其相关概念,论述了混沌应用的巨大潜力,并指明混沌在电力系统中的可能应用方向。对前人将其运用到电力系统方面所得出的研究成果进行了归纳。

关键词:混沌理论;混沌应用;电力系统

Abstract: With the development of science and the people of the world know the depth, chaos theory is increasingly being seen as an important theory of complex systems, it also gradually by people of all ages in a wide range of applications in various industries. In this paper, the definition of chaos and its related concepts, discusses the enormous application potential chaos, and chaos indicate the direction of possible applications in the power system. Predecessors applying it to respect the results of power system studies summarized.

Keywords:Chaos theory;Application of ChaosElectric ;power systems

1 前言

混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。混沌理论是对确定性非线性动力系统中的不稳定非周期性行为的定性研究(Kellert,1993)。混沌是非线性系统所独有且广泛存在的一种非周期运动形式 ,其覆盖面涉及到自然科学和社会科学的几乎每一个分支[]1。近二三十年来,近似方法、非线性微分方程的数值积分法 ,特别是计算机技术的飞速发展 , 为人们对混沌的深入研究提供了可能 ,混沌理论研究取得的可喜成果也使人们能够更加全面透彻地认识、理解和应用混沌。

2 混沌理论概念

混沌一词原指宇宙未形成之前的混乱状态,中国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓“差之毫厘,失之千里”正是此一现象的最佳批注[]2。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。

2.1 混沌理论的发展

混沌运动的早期研究可以追溯到1963年美国气象学家Lorenz对两无限平面间的大气湍流的模拟[]3。在用计算机求解的过程中, Lorenz发现当方程中的参数取适当值时解是非周期的且具有随机性,即由确定性方程可得出随机性的结果,这与几百年来统治人们思想的拉普拉斯确定论相违背(确定性方程得出确定性结果)。随后, Henon和Rossler等也得到类似结论Ruelle,May, Feigenbaum 等对这类随机运动的特性进行了进一步研究,从而开创了混沌这一新的研究方向。

混沌理论解释了决定系统可能产生随机结果。理论的最大的贡献是用简单的模型获得明确的非周期结果[]4。在气象、航空及航天等领域的研究里有重大的作用。混沌理论认为在混沌系统中,初始条件十分微小的变化,经过不断放大,对其未来状态会造成极其巨大的差别。在没有变量的情况下,系统运动是一项有规律的重复行为,通过研究认识这一系统状态,非周期性行为就变成了可以观察的对象。

根据当代数学理论的定义,混沌系统就是“对初始条件极度敏感”的系统。换句话说,为了精确预测系统的未来状态,需要知道它无限精确的初始状态,即便很小的误差,都将立刻导致预测错误[]5。混沌理论已被广泛应用于各个领域,如商业周期研究、动物种群动力学、流体运动、行星运转轨道、半导体电流、医学预测(如癫痫发作)以及军备竞赛建模等等。20世纪60年代,美国麻省理工学院的气象学家Edward Lorenz在计算机上模拟气候类型,他的程序使用了12个回归方程来模拟影响天气的初始因素。当他把一个中间值提高精度再送回模型中去,惊奇地发现本来很小的差异,竟然完全改变了模型结果[]6。Lorenz这一偶然发现,就是著名的“蝴蝶效应”——即便很小的变化,都能造成结果的巨大不同,它是混沌理论的经典例子:香港的一只蝴蝶轻轻振动一下翅膀,就有可能在美国的德克萨斯州引发一场龙卷风[]7。

2.2 混沌理论特性

(1)随机性:体系处于混沌状态是由体系内部动力学随机性产生的不规则性行为,常称之为内随机性.例如,在一维非线性映射中,即使描述系统演化行为的数学模型中不包含任何外加的随机项,即使控制参数、初始值都是确定的,而系统在混沌区的行为仍表现为随机性。这种随机性自发地产生于系统内部,与外随机性有完全不同的来源与机制,显然是确定性系统内部一种内在随机性和机制作用。体系内的局部不稳定是内随机性的特点,也是对初值敏感性的原因所在[]8。

(2)敏感性:系统的混沌运动,无论是离散的或连续的,低维的或高维的,保守的或耗散的。时间演化的还是空间分布的,均具有一个基本特征,即系统的运动轨道对初值的极度敏感性。这种敏感性,一方面反映出在非线性动力学系统内,随机性系统运动趋势的强烈影响;另一方面也将导致系统长期时间行为的不可预测性。气象学家洛仑兹提出的所谓"蝴蝶效应"就是对这种敏感性的突出而形象的说明。

(3)分维性:混沌具有分维性质,是指系统运动轨道在相空间的几何形态可以用分维来描述。例如Koch雪花曲线的分维数是1.26;描述大气混沌的洛伦兹

模型的分维数是2.06体系的混沌运动在相空间无穷缠绕、折叠和扭结,构成具有无穷层次的自相似结构。

(4)普适性:当系统趋于混沌时,所表现出来的特征具有普适意义。其特征不因具体系统的不同和系统运动方程的差异而变化。这类系统都与费根鲍姆常数相联系。这是一个重要的普适常数δ=4.669201609l0299097…

(5)标度律:混沌现象是一种无周期性的有序态,具有无穷层次的自相似结构,存在无标度区域。只要数值计算的精度或实验的分辨率足够高,则可以从中发现小尺寸混沌的有序运动花样,所以具有标度律性质。例如,在倍周期分叉过程中,混沌吸引子的无穷嵌套相似结构,从层次关系上看,具有结构的自相似,具备标度变换下的结构不变性,从而表现出有序性[]9。

根据混沌理论,企业、组织都是复杂的、动态的、非线性的、共同作用的、极不平衡的系统,它们的未来表现不可能通过过去的或现在的事件、行为来预测。在混沌状态中,组织行为既不可预测(混沌),又有一定规律(有序)。

3 混沌理论应用

混沌理论在自然科学和社会科学中都有着广泛的应用,其具体的潜在应用可概括如下:

1.优化:利用混沌运动的随机性、遍历性和规律性寻找最优点,可用于系统辨识、最优参数设计等众多方面。

2.神经网络:将混沌与神经网络相融合,使神经网络由最初的混沌状态逐渐退化到一般的神经网络,利用中间过程混沌状态的动力学特性使神经网络逃离局部极小点,从而保证全局最优,可用于联想记忆、机器人的路径规划等。

3.图像数据压缩:把复杂的图像数据用一组能产生混沌吸引子的简单动力学方程代替,这样只需记忆存储这一组动力学方程组的参数,其数据量比原始图像数据大大减少,从而实现了图像数据压缩。

4.高速检索:利用混沌的遍历性可以进行检索,即在改变初值的同时,将要检索的数据和刚进入混沌状态的值相比较,检索出接近于待检索数据的状态。这种方法比随机检索或遗传算法具有更高的检索速度。

5.非线性时间序列的预测:任何一个时间序列都可以看成是一个由非线性机制确定的输入输出系统,如果不规则的运动现象是一种混沌现象,则通过利用混沌现象的决策论非线性技术就能高精度地进行短期预测[]10。

6.模式识别:利用混沌轨迹对初始条件的敏感性,有可能使系统识别出只有微小区别的不同模式。

7.经济混沌的定性预测和经济系统的定量预测:运用混沌理论研究包括财

政、金融在内的经济和管理问题,特别是有关证券市场股价指数、汇率变化方面问题。

8.故障诊断: 根据由时间序列再构成的吸引子的集合特征和采样时间序列数据相比较 ,可以进行故障诊断。

9.混沌理论在电力系统中的应用:电力系统实质上是一个强非线性的大系统,在一定条件下完全会出现混沌,其宏观上表现为无规则的机电振荡,严重时甚至会导致互联系统解列,混沌现象貌似随机的性质使得大多数电力系统分析和控制方法变得很不可靠。电力系统中混沌现象的研究始于20世纪80年代初期,人们最初是研究、分析和抑制混沌,如机电系统混沌振荡、混沌与电压骤降、电力经济中的混沌、水轮发电机组调速系统中控制器参数诱发的混沌等。其次是在电力系统中应用混沌,如混沌应用于电站经济运行最优负荷分配、静态负荷模型辨识、模糊电力系统稳定器的参数优化以及短期负荷预测、以及电气设备状态监测中信号的检测方面等[]10。

具体应用如下:

(1)在东北电力系统短期负荷预测中的应用。

(2)在解决电力系统经济负荷分配中的应用。

(3)在非线性电力系统稳定分析及其控制中的应用。

(4)在电力系统经济调度与经济优化中的应用。

(5)在大型电气设备状态监测中的应用。

虽然已有许多学者对电力系统中的混沌现象进行过初步探索,但还缺乏更为有效的分析手段,至于控制方法则研究甚少。如何对电力系统中的混沌现象实施有效的控制已成为摆在电力工作者面前的迫切任务之一。另一方面,如何在电力系统中利用混沌的信息处理能力、优化能力等也是一个值得研究的问题,混沌有望在电力系统的控制器设计、模型参数辨识、最优潮流、机组组合优化、经济负荷分配、电网规划等方面得到应用。

4 总结

混沌理论改变了经典物理学的世界观。经典力学假设牛顿力学是决定性的、可测量和可预测的。本世纪物理学的两次重大变革——相对论和量子力学,相对论消除了绝对空间与时间的幻象,即牛顿式的幻象。量子力学则消除了关于可控测量过程的牛顿式的梦。混沌表明决定性规律所产生的一条混沌轨道是如此的复杂,如掷骰子那样随机,不可能长期预测。这意味着不能以无限和精度无限长时间测量和计算连续变量[]8。这从根本粉碎了拉普拉斯(Laplace) 关于决定论的完全可预测性。混沌理论帮助我们打破固有思维,再次深刻认识世界上一切矛盾

体之间既对立又统一的辩证关系。混沌理论对牛顿力学的致使打击是从研究非线性力学中得到的。它使人们认识到牛顿力学既是确定论的又是随机论的。另外,由耗散结构理论提出的内部时间概念,由分形理论得到混沌吸引子的空间分维概念,又将引起对牛顿力学的时空观的新认识。它将指导我们在自然科学领域和社会科学领域进行更深入的研究。同时我们也应主动将混沌理论与自身专业领域结合起来,以期有新的发现和新的突破。

参考文献

[1] 余新科. 混沌理论的哲学思考[J]. 华南理工大学学报:社会科学版, 1999, (2).

[2] 程静. 从哲学的角度认识混沌理论[J]. 系统科学学报, 2004, 12(2):22-24.

[3] 王智勇, 左铁钏. 混沌及其对物理学与哲学思维的影响[J]. 自然辩证法研

究, 1997, (8):23-27.

[4] 唐巍, 李殿璞, 陈学允. 混沌理论及其应用研究[J]. 电力系统自动

化, 2000, 24(7):67-70.

[5] 刘业政, 潘生. 混沌理论对企业管理哲学的启示[J]. 科学技术哲学研

究, 2006, 23(3):100-104.

[6] 刘硕. 复杂性科学的方法论的意义研究[D]. 昆明理工大学, 2010. [7] 神秘的混

沌理论:让你通俗了解什么是混沌理论 BBC纪录片201

[7] Wang H O , Abed E H,Hamdan A M A.Bifurcations,Chao s,and Crises in V oltage

Collapse of a Model Power System. IEEE Trans on Circuits Systems,1994,11(3)

[8] Chiang H D,Liu C W ,Varaiya P,et al.Chaos in a Simple Power System. IEEE

Trans on Po wer Systems,1993,8(4)

[9] Kopell N,Washbum R B.Chaotic Motions in the Two-Degree-of -Freedom S wing Equations. IEEE Transactions on Circuits and Systems . 1982

[10]刘彬,王红蕾. 混沌理论在电力系统中的应用研究概述[J]. 中国西部科技,200 9,22:16-17+29

[11] 聂春燕,徐振忠. 混沌系统在弱信号检测中的应用[J]. 传感器技术. 2003(01) .

浅谈“蝴蝶效应”在网络传播中的应用及其对策

浅谈“蝴蝶效应”在网络传播中的应用及其对策 蝴蝶效应,即上世纪六十年代,“气象学家洛仑兹(E.N.Lorenz)在他的计算机上计算一个热力场中热对流问题的简化模型。”结果发现,初始条件的微小变化使“系统自任意初始状态出发的相轨线成蝴蝶形态,既不重复也无规律。”为了形象地说明这种现象,洛仑兹打了个比方:南美洲亚马逊河流域热带雨林中的一只蝴蝶,偶尔扇动几下翅膀,可能在两周后引起美国得克萨斯州的一场龙卷风。这就是广为人知的“蝴蝶效应”比喻。而后它作为混沌理论的一个核心概念被引入经济学,构成了行为金融学的重要分支,并广泛应用于各个领域。 本文借助混沌理论分析了网络传播中的“蝴蝶效应”,认为网络是一个混沌系统,网络传播是由有序到无序、再到新的有序的循环过程,其结局具有不可预测性,而网络环境恰恰都具备了混沌理论的性质:即有界性、非周期性、非线性、敏感初条件。 一、比比皆是的“蝴蝶效应”事件 “蝴蝶效应”反应在网络传播中通常呈现为公共性群体事件。近年来,随着互联网的发展,网络成为影响社会的一个重要力量。尤其以微博、SNS网站、BBS论坛等网络新兴媒体的崛起,为新闻媒体提供了一个丰厚的新闻来源集中地。细心观察,我们发现这两年出现的很多公共性事件、贪官落马、揭黑揭丑的新闻爆发地都来源于网络,而这些事件都以非线性地爆炸方式传播开来,有的引来民愤导致群体事件的爆发,有的引来看客们的围观和指点,有的在舆论的压迫中亟需解决。“蝴蝶效应”呈现出它的优势,同时暴露了某些弊端。 1.“虐婴门” 2012年6月,实习护士微博@小考拉avi 发布多张虐待婴儿照片,还称“2B孩纸”“小孩装死”,让脖子脆弱的新生儿处于危险姿势,极易折伤颈椎,甚至窒息。捉弄婴儿,在刚出生没多久的宝宝鼻子上贴猪鼻子。甚至还用手玩新生儿眼睛。为逃避责任已删了微博,但网友保留了截图。而后当事人在微博道歉。据了解,首先曝光它的是一位网名为“若馨守护神”的年轻母亲,自称在一名为“@小考拉avi”的微博上发现了多批含有虐待初生婴儿的自爆博文,言语轻佻,行为恶劣,使身为母亲的自己无法忍受,便“冒着被报复”的可能将之公之于众。而没想到的是,这条微博在短短时间内转发量达上万,引起网络的轩然大波。大多数网友表现得很激进和愤怒,公然指责当事人肖诗雨和浙江中医药大学的行为。而很多极端的网友开始“人肉搜索”,翻出当事人的所有资料和照片,并且放入各大论坛网站,设置头版头条来博取看客和哄客们的围观。一时事件失去控制,当事人和校方也随即发表道歉的声明。 而后,某些网友利用近几年紧张的医患关系现状做文章,通过不断地放大虐婴门事件,招来更多“同伴”,引得大家的同感。这在一定程度上激化社会矛盾,破坏社会的稳定秩序,有可能招致更大的社会动荡行为。 2.“房叔”事件、“表哥”事件 2012年10月8日,天涯社区的一个网帖曝出蔡彬及妻子、儿子名下共有21套房产,消息一出,即引起疯狂转发,网民纷纷要求纪检部门介入调查,各路媒体也跟进追问。事件发生2天后,即2012年10月10日,广州市纪委就迅速反应。当天上午9时许,市纪委即通过官方微博作出回应,“有关部门正在核查”。随后不久,番禺区政府新闻办公室官方微博发布也表示,“已关注到相关内容,目前,已成立了调查组,正在展开调查。”当天晚上,@廉洁广州发布微博称,网帖反映情况基本属实。10月11日,番禺区委已决定对其停职,并作进一步调查。2012年10月22日,蔡彬因涉嫌受贿被宣布“双规”。@廉洁广州也同时发布了这一最新消息。 又比如,因在特大交通事故中走红的的“微笑局长”杨达才,被网民人肉搜索出在五个不同的场合,杨达才佩戴了五款不同的名牌手表。随后,杨达才年公开称自己收入17、8万元,这些表都是自己合法收入买的,不过网友并不买账,又有人称杨达才有11块表,眼镜和腰带都是名牌,随后网友要求公开杨达才的工资收入。评论称,“表哥”一事经公共关

分岔与混沌理论与应用作业

分岔与混沌理论与应用 学院: 专业: 姓名: 学号:

我对混沌理论的认识 1、混沌理论概述 混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性--不可重复、不可预测,这就是混沌现象。混沌现象起因于物体不断以某种规则复制前一段的运动状态,而产生无法预测的随机效果。所谓“差之毫厘,失之千里”正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为简单,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。 混沌理论,是近三十年才兴起的科学革命,它与相对论与量子力学同被列为二十世纪的最伟大发现和科学传世之作。混沌的发现揭示了我们对规律与由此产生的行为之间--即原因与结果之间--关系的一个基本性的错误认识。我们过去认为,确定性的原因必定产生规则的结果,但它们可以产生易被误解为随机性的极不规则的结果。我们过去认为,简单的原因必定产生简单的结果(这意昧着复杂的结果必然有复杂的原因),但简单的原因可以产生复杂的结果。我们认识到,知道这些规律不等于能够预言未来的行为。这一思想已被一群数学家和物理学家,其中包括威廉·迪托(William Ditto)、艾伦·加芬科(Alan Garfinkel)和吉姆·约克(Jim Yorke),变成了一项非常有用的实用技术,他们称之为混沌控制。实质上,这一思想就是蝴蝶效应。初始条件的小变化产生随后行为的大变化,这可以是一个优点;你必须做的一切,是确保得到你想要的大变化。对混沌动力学如何运作的认识,使我们有可能设计出能完全实现这一要求的控制方案。这个方法已取得若干成功。 2、分叉的概述 分叉理论研究动力系统由于参数的改变而引起解的拓扑结构和稳定性变化的过程。在科学技术领域中,许多系统往往都含有一个或多个参数。当参数连续改变时,系统解的拓扑结构或定性性质在参数取某值时发生突然变化,这时即产

混沌理论及其应用

混沌理论及其应用 摘要:随着科学的发展及人们对世界认识的深入,混沌理论越来越被人们看作是复杂系统的一个重要理论,它在各个行业的广泛应用也逐渐受到人们的青睐。本文给出了混沌的定义及其相关概念,论述了混沌应用的巨大潜力,并指明混沌在电力系统中的可能应用方向。对前人将其运用到电力系统方面所得出的研究成果进行了归纳。 关键词:混沌理论;混沌应用;电力系统 Abstract: With the development of science and the people of the world know the depth, chaos theory is increasingly being seen as an important theory of complex systems, it also gradually by people of all ages in a wide range of applications in various industries. In this paper, the definition of chaos and its related concepts, discusses the enormous application potential chaos, and chaos indicate the direction of possible applications in the power system. Predecessors applying it to respect the results of power system studies summarized. Keywords:Chaos theory;Application of ChaosElectric ;power systems 1 前言 混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。混沌理论是对确定性非线性动力系统中的不稳定非周期性行为的定性研究(Kellert,1993)。混沌是非线性系统所独有且广泛存在的一种非周期运动形式,其覆盖面涉及到自然科学和社会科学的几乎每一个分支。近二三十年来,近似方法、非线性微分方程的数值积分法,特别是计算机技术的飞速发展, 为人们对混沌的深入研究提供了可能,混沌理论研究取得的可喜成果也使人们能够更加全面透彻地认识、理解和应用混沌。 2 混沌理论概念 混沌一词原指宇宙未形成之前的混乱状态,中国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓“差之毫厘,失之千里”正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。 2.1 混沌理论的发展 混沌运动的早期研究可以追溯到1963年美国气象学家Lorenz对两无限平面间的大气湍流的模拟。在用计算机求解的过程中, Lorenz发现当方程中的参数取适当值时解是非周期的且具有随机性,即由确定性方程可得出随机性的结果,这与几百年来统治人们思想的拉普拉斯确定论相违背(确定性方程得出确定性结果)。随后, Henon和Rossler等也得到类似结论Ruelle,May, Feigenbaum 等对这类随机运动的特性进行了进一步研究,从而开创了混沌这一新的研究方向。 混沌理论解释了决定系统可能产生随机结果。理论的最大的贡献是用简单的模型获得明确的非周期结果。在气象、航空及航天等领域的研究里有重大的作用。混沌理论认为在混沌系统中,初始条件十分微小的变化,经过不断放大,对其未来状态会造成极其巨大的差别。在没

浅谈混沌理论

目录 引言 说起“混沌”这个词,我们中国人首先想到的是我国古代传说中宇宙形成以前模糊一团的景象,即古哲学中认为盘古开天辟地之前,天地处于混沌状态。“太易者,未见气也;太初者,气之始也;太始者,形之似也;太素者,质之始也。气似质具而未相离,谓之混沌。”!!!(出自《庄子》)这里的混沌是指元气已具有物质的性质还没有进一步分化的状态。在国外,“混沌”这个词同样渊流悠久,《圣经》《创世纪》甚至埃及的神话故事中都有关于“混沌”的不同解释,这里我们不一一赘述。而在当代,混沌正在成为一种具有严格定义的科学概念,成为一门新科学的名字,它正在促使整个现代知识体系成为新科学。

不断的去探索大自然的规律是科学家的天职,无数的科学家在探索着这些规律,也终他们一生在挑战着人类未知的领域。物理学家要弄清楚物质的基本粒子,化学家则研究物质的构成、探索新的化学元素,天文学家探索宇宙的奥秘,生物学家则研究生物的演变与进化……他们的努力解决了一个个人类所遇到的难题,也创造出了人类发展史上的一个又一个奇迹。然而,还是会有很多复杂的问题在困扰着人们。人们总是思考,为什么天气变化存在着不可预测性,气体和流体在从平稳向湍流变化的过程中存在着哪些中间步骤等等各种所有在确定性系统中出现的貌似随机的不规则运动的问题,也慢慢的有人预感到,这些深奥的问题极可能揭示了大自然更深一层的规律。 早在公元前560年,我国的老子提出了宇宙起源于混沌的哲学思想;公元前450年左右,中国的古哲学家庄子也说过这样一句话:南海之地为倏,北海之帝为忽,中央天帝为浑沌。这里庄子最早把混沌理论引入到政治学的研究中。他的“中央之帝为混沌” 下面就让我们一起走进这个当代前沿科学“混沌”的世界。 一、混沌理论的提出——由线性科学到非线性科学 线性科学的成就 线性是指量与量之间的正比关系;在直角坐标系里,它是用一根直线表征的关系。 由于人的认识的发展总是从简单事物开始的,所以在科学发展的早期,首先从线性关系来认识自然事物,较多地研究了事物间的线性相互作用,这是很自然的。 例如:经典物理学中,首先考察的是没有摩擦的理想摆,没有粘滞性的理想流体,温度梯度很小的热流等;数学家们首先研究的是线性函数、线性方程等。 理论家们在对大自然中的许多现象进行探索时,总是力求在忽略非线性因素的前提下建立起线性模型,至少是力求对非线性模型做线性化处理,用线性模型近似或局部地代替非线性原型,或者借助于对线性过程的微小扰动来讨论非线性效应。 经过长期的发展,在经典科学中就铸造出一套处理线性问题的行之有效的方法,如牛顿经典力学等;就是设计物理实验,也主要是做那些可以做线性分析的实验。从这个特点看来,经典科学实质上是线性科

混沌原理与应用

课程论文课程系统科学概论 学生姓名 学号 院系 专业 二O一五年月日

混沌理论与应用 摘要:本文首先介绍了混沌理论的产生与背景。接着由混沌理论的产生引出了理解混沌系统需要注意的几个基本概念,并就两个容易混淆的概念进行了区分。然后本文对混沌系统的几个基本特征进行了阐述,而且详细解释了每个具体特征含义。在结尾部分本文简要叙述了混沌理论的应用前景。 关键词:混沌理论;混沌系统;基本特征;应用 1混沌理论的产生与背景 混沌一词很早就出现在人类的历史中,在世界的几个较为发达的古代文明中基本上都用自己的方式对混沌进行过描述,混沌基本就等同于未知。同时这些文明有一个对混沌有一个共同的观点,那就是:宇宙起源于混沌[1],这种观点可以说在某些方面与现代的理论不谋而合。虽然古人的这些观点大部分是基于自己的想象而且其含义也局限于哲学方面,但是可以说这是人类早期对混沌状态的一种探索。 在此后的上千年中,一代又一代的研究者们探索了无数未知的领域。以至于在混沌理论之前,没有人怀疑过精确预测的能力是可以实现的,一般认为只要收集够足够的信息就可以实现。十八世纪法国数学家拉普拉斯甚至宣称,如果已知宇宙中每一个粒子的位置与速度,他就能预测宇宙在整个未来的状态。然而混沌现象的发现彻底打破了这一假设。混沌系统对初始条件的敏感性使得系统在其运动轨迹上几乎处处不稳定,初始条件的极小误差都会随着系统的演化而呈现指数形式的增长,迅速达到系统所在空间的大小,使得预测能力完全消失[2]。例如,著名的蝴蝶效应:上个世纪70年代,美国一个名叫洛伦兹的气象学家在解释空气系统理论时说,亚马逊雨林一只蝴蝶翅膀偶尔振动,也许两周后就会引起美国得克萨斯州的一场龙卷风[3],可以说对天气的精准预测一直是人类未曾解决的问题。面对这样的问题,科学家们又用到了混沌这个词,看似又回到了起点,实际上今天的混沌理论与过去的说法已经有了天壤之别。 1903年,美国数学家J.H.Poincare在《科学与方法》一书中提到Poincare猜想,他把动力系统和拓扑学两大领域结合起来指出了混沌存在的可能性[4]。1963年美国气象学家爱德华·诺顿·洛伦茨提出混沌理论(Chaos),非线性系统具有的多样性和多尺度性。混沌理论解释了决定系统可能产生随机结果[5]。混沌也被认为是继量子力学和相对论之后,20世纪物理学界第三次重大革命,混沌也一样冲破了牛顿力学的教规。从此,混沌系统理论开始飞速发展,气象学、生理学、经济学中都发现了一种关于混沌的有序性。混沌理论正式诞生。

浅谈混沌理论的意义

浅谈混沌理论的哲学意义 姓名:文小刀

浅谈混沌理论的哲学意义 文小刀 摘要:本文首先介绍了混沌理论的内含和产生,在此基础上介绍了它对自然科学和哲学思维的影响,最后提出了混沌理论的几种应用,以期探寻混沌理论的哲学意义。 关键字:混沌理论影响应用哲学意义 混沌理论被认为是与相对论和量子力学齐名的震惊世界的第三大理论,是系统科学的重要组成部分。混沌理论这个迷人的“奇异吸引子”,吸引着人们去探索混沌奥秘的科学前沿,而且像极具生命力的种子,撒遍自然科学和社会科学各个领域的沃土。它将简单与复杂、有序与无序、确定与随机、必然与偶然的矛盾统一在一幅美丽的自然图景之中,推动了人类自然观与科学观的发展;也通过一系列崭新的范畴、语言和思维方式,充实了科学方法内容并促进了方法论的进步,对科学的发展和人类社会的发展必将产生深远的影响。 一、混沌理论的含义及其产生 混沌学是当代系统科学的重要组成部分,与相对论和量子力学的产生一样,混沌理论的出现对现代科学产生了深远的影响。混沌运动的本质特征是系统长期行为对初值的敏感依赖性,所谓混沌的内在随机性就是系统行为敏感地依赖于初始条件所必然导致的结果。我们可把混沌理解为:在一个非线性动力学系统中,随着非线性的增强,系统所出现的不规则的有序现象。这些现象可以通过对初值的敏感依赖性、奇异吸引子、费根鲍姆常数、分数维、遍历性等来表征。 混沌有如下的本质特征: 1.混沌产生于非线性系统的时间演化,作为系统基础的动力学是决定论的,无须引进任何外加噪声。因而混沌是非线性确定系统的内禀行为。 2.混沌行为对初始条件极具敏感,导致长期行为具有不可预测性,也即我们所说的确定系统产生的不确定性或随机性。这一特征不同于概率论中的随机过程,随机过程中的随机性是指演化的下一次结果无法准确预知,短期内无法预测,但长期演化的总体行为却呈确定的统计规律,混沌行为刚好相反,短期行为可确知,长期行为不确定。

混沌理论及其在经济学中的发展

混沌理论及其在经济学中的发展 摘要:利用数学知识来解释经济现象和经济理论历来是经济研究的热点,但经济系统本身就是由多种因素相互作用的非线性系统,时间上的不可逆性、线路上的多重因果反馈环及不确定性使其具有非常复杂的非线性特征。所以,改用非线性系统来研究经济学具有非常现实的意义。而混沌理论就是数学非线性系统中的一颗奇葩。因此,先介绍了混沌理论,并指出混沌经济系统的本质特征,然后总结了混沌经济学研究的发展及其意义。 关键词:混沌理论;混沌经济;研究;发展 1 混沌理论 混沌(chaos)是法国数学家庞加莱19世纪——20世纪之交研究天体力学时发现的,不过,由于当时牛顿力学在科学中占有统治地位,因而大多数数学家和物理学家都不理解。由于长久以来世界各地的物理学家都在探求自然的秩序,而面对无秩序的现象如大气、骚动的海洋、野生动物数目的突然增减及心脏跳动和脑部的变化,却都显得相当无知。这些大自然中不规则的部分,既不连续且无规律,在科学上一直是个谜。 1972年12月29日,美国数学家——混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷风。用混沌学的术语来表述,那就是天气对初值的敏感依赖性,即天气是不可能长期预报的。1986年,英国皇家学会在一次关于混沌的国际会议上提出了混沌的定义:数学上指在确定性系统中出现的随机状态。 混沌在之后的整个20世纪才被确定下来,有人把相对论、量子力学和混沌理论称为20世纪科学中的传世之作。混沌作为一种复杂运动形式,其影响最大的时期是20世纪80年代到90年代。从数学角度看,混沌是继不动点(平衡点、均衡点)、周期循环(极限环、周期运动)、拟周期运动(准周期运动)之后,另外一种新型的运动类型。对初值的敏感性和无序中的有序是混沌的两个特性。 2 混沌经济系统 著名的美国经济学家诺贝尔经济学奖获得者保罗.A.萨缪尔森钟指出:“经济学的规律只是在平均意义上才是对的,它们并不表现为准确的关系。”按照他的这种思想,在经济学领域里对混沌的理解和把握可以不必太拘泥于数学定义的苛刻与抽象,只需从平均意义上把握混沌的主要本质特征就可以了。所以就“平均意义”而言,我们可以从混沌经济系统所具有的本质特征入手来进行综合判断。 2.1 积累效应 积累效应俗称蝴蝶效应,即系统演化对初始条件的敏感性。在混沌出现的参数范围内,初始条件的一个微小误差在迭代过程中会不断的放大,不但使迭代结果变得极为不同,而目在近似随机的历经了整个吸引子以后,使得系统的长期预测变为不可能。刚开始,许多人认为这是由于人的能力不够所造成的。从客观上讲,在初始条件变化后的迭代过程中,确实存在两种误差:一种来自于物理量本身的测量误差。任何测量都有误差,只是仪器越精密,误差会越小,但科学技术再发展也不可能造出一台绝对没有误差的仪器;另一种来自于计算机,即使计算出一个整数,它也可能在小数点若干零后加上一个尾巴。同时在迭代过程中要把

浅谈湍流的认识与发展

浅谈湍流的认识与发展 摘要:本文结合流体力学课程的学习以及对湍流相关书籍的阅读,阐述个人对湍流运动的发展、特点、性质的理解。湍流作为“经典物理学最后的疑团”,人们不断地进行探索,建立湍流模型对其进行研究理论分析。近年来,对于湍流这一不规则运动,人们提出了并且倾向于应用混沌理论进行分析,并取得了一些成果。对湍流的认识在不断深入。 关键字:湍流概念湍流性质湍流强度模型建立混沌理论 在流体力学的学习过程中, 湍流一度被称为“经典物理学最后的疑团”,我对湍流这一流体的状态极其相关的力学性质进行了更深入的了解与学习,结合课堂上老师的讲解以及课后对相关参考文献的阅读理解,在此我想浅谈一下这一阶段我对湍流的学习与认识。 从湍流的定义出发,初识湍流,湍流是流体的一种流动状态。对于流体,大家都知道,当流速很小时,流体分层流动,互不混合,称为层流,也称为稳流或片流;逐渐增加流速,流体的流线开始出现波浪状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,层流被破坏。这时的流体作不规则运动,有垂直于流管轴线方向的分速度产生,这种运动称为湍流。流体作湍流时,阻力大流量小,能量耗损增加。能量耗损E与速度的关系为△ E= kv2(k是比例系数,它与管道的形状、大小以及管道的材料有关。v是平均流速)。所有流体都存在湍流现象。 我们可以用雷诺数的范围量化湍流。在直径为d的直管中,若流体的平均流速为v,由流体运动粘度v组成的雷诺数有一个临界值(大约为2300~2800),若Re小于该范围则流动是层流,在这种情况下,一旦发生小的随机扰动,随着时间的增长这扰动会逐渐衰减下去;若Re大于该范围,层流就不可能存在了,一旦有小扰动,扰动会增长而转变成湍流。雷诺在1883年用玻璃管做试验,区别出发生层流或湍流的条件。把试验的流体染色,可以看到染上颜色的质点在层流时都走直线。当雷诺数超过临界值时,可以看到质点有随机性的混合,在对时间和空间来说都有脉动时,这便是湍流。不用统计、概率论的方法引进某种量的平均值就难于描述这一流动。除直管中湍流外还有多种多样各具特点的湍流,虽经大量实验和理论研究,但至今对湍流尚未建立起一套统一而完整的理论。在流

浅谈分形科学及其哲学意义

在当今地世界科学界,分形理论与混沌理论、孤子理论被公认为是三大非线性科学地前沿.从上个世纪年代以来,分形地新概念成为全球科学界热议地话题之一,并形成了分形理论地研究和探索热潮.加入这个热潮地有各种门类地科学家,包括自然科学家、社会科学家、哲学家,甚至包括各类艺术家和电影制片工作者. 一、分形科学地产生及其基本特征[] 分形理论地创立者是当代美籍数学家曼德布罗特,他在欧式几何整数维度地基础上提出了分数维度地概念——分维,进而对大自然林林总总地各类粗糙地、貌似支离破碎地地不规则形状进行描述并研究,年冬天,曼德布罗特为这一门更加接近自然地新学科进行了命名——分形科学.自此,“分形”一词成为一种新方法,可以用来描绘、计算和思考那些不规则地、凹凸不平地、零散分布地、支离破碎地图形,例如从雪花晶体地曲线到散落在星系中地繁星点点.而分数维曲线,则代表一种隐藏在这些令人望而生畏地复杂图形中地有序结构.个人收集整理勿做商业用途 于是,分形地理论和方法被广泛采用.在那些最实用地水平上,它提供了一套工具,被研究人员广泛接纳,公认地非线性动力学提供良方地那些结构都证明是分形地.由于开辟了一条不寻常地学术成功之路,曼德布罗特被科学史家伯纳德·科恩列在与爱因斯坦、康托尔齐名地少数科学家地名单上,因为这些科学家地工作在科学史上具有革命地意义.个人收集整理勿做商业用途 分形理论告诉我们,那些外表极不规则与支离破碎地几何形体,有着自己内在地规律和特性:这就是自相似性、层次性、递归性和仿射变换不变性.个人收集整理勿做商业用途 自相似性就是局部地形态和整体地形态相似,或者说从整体中割裂出来地部分仍能体现整体地基本精神与主要特征.在曼德布罗特那里,无论是对自然过程中不规则结构地研究,还是对无限次重复形状地探讨,都贯穿着自相似性.例如,一个立于两面镜子之间地无穷反射,这是制作动画地最好方法.自相似性作为制作曲线地一种方法,同样地变换在越来越小地尺度上重复进行,就可以构造出美丽无比地科克雪花、谢宾斯基衬垫和地毯等图形.自相似性是分形理论地核心,是所有特性中地基本特性.个人收集整理勿做商业用途 层次性就是分形整体中存在地等级不同、规模不等地次级系统,可以说整体中地任何部分又是一个自身地整体,依次重复,直至无限.埃菲尔铁塔就是它地类似物,它地小梁、构架和大梁不断分叉成构件更细地格式,层次性地网络结构浑然一体.个人收集整理勿做商业用途递归性就是结构之中存在着结构.由于自相似性是不同尺度地对称,这就意味着递归.对于分形地成长历史来说,递归性犹如情节戏剧编制而成地一样.个人收集整理勿做商业用途 仿射变换不变性就是分形地局部与整体虽然不同,但经过拉伸、压缩等操作后,不仅相似,而且可以重叠. 曼德布罗特自己称为“一份宣言和一本手册”地《自然界地分形几何》一书,标志着分形思想地成熟.如今,它已成为额人们用来描述不规则形态地几何特征地一个有力工具.伽利略曾把宇宙比喻为一本大书,这本大叔是用数学地语言写成地.他说:“哲学是写在这部永远摆在我们眼前地大书中地——我这里指地是宇宙.但是,我们如果不首先学习用来写它地语言和掌握其中地符号,我们是不能了解它地.这部著作是用数学语言写成地,其中地符号就是三角形、圆和其他几何图形.没有这些数学语和数学符号地帮助,人们就会在黑暗地迷宫中徒劳地徘徊.[]”个人收集整理勿做商业用途 正因为有了分形这一描述宇宙不规则形态地数学语言,进一步帮助人们去读懂宇宙这本大书.正如曼德布罗特自己指出地那样,“这是一个美妙而极富生命力地领域”,深深吸引着各种专业地科学家去展翅翱翔.个人收集整理勿做商业用途 二、分形理论地分类和科学意义 按照分形理论,分形体内任何一个相对独立地部分(分形元或生成元),在一定程度上都是

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化

浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点, 一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的 系统性能应优于变化前的系统性能。 (2)适应功能:系统应具有适应受控对象动力学特性变化、环境变化 和运行条件变化的能力。这种智能行为是不依赖模型的自适应估计,较传 统的自适应控制有更广泛的意义。 (3)组织功能:对于复杂任务和分散的传感信息具有自组织和协调功

混沌理论及其在密码学的应用

混沌理论及其在密码学的应用 摘要:由于混沌系统对初始条件和混沌参数非常敏感以及生成的混沌序列具有非周期性和伪随机性的特性,近年来混沌系统在密码学领域中得到了较多的 研究。介绍了混沌学理论和现代密码学的具体内客,通过对混沌和密码学 之间关系的分析。提出了把混沌用于密码学之中的具体方法和混沌密码系 统的框架结构,给出了数字加密中选择混沌系统的原则。 关键词:密码学;混沌;混沌加密 正文: 计算机从出现到现在,已经从用于计算机转到主要用于信息处理。Internet 每天为用户提供大量的信息服务。由于Internet的基础协议不是完全安全的协议。未经特别加密的信息在网络上传送时,会直接暴露在整个网络上。现代高性能的计算机、自动分析和截获程序每秒可以搜索数百万个底码,对传统的加密算法构成严重的压力。信息领域急切希望拥有更安全、方便、有效的信息保护手段。在过去的十年中,随着对混沌理论研究的不断深入,混沌理论的应用范围也不断扩展。混沌在密码学中的应用成了热门的研究领域,并提出了大量的混沌加密算法。大多数模拟混沌的密码使用混沌同步技术通过有噪信道实现秘密通信。许多研究者都已提出混沌和密码学的密切联系。混沌的许多基本特征,例如:混频(nlixi 峭)和对初始条件的敏感性都与好的密码的属性——混乱和扩散相联系。由于混沌理论近几十年得到了极大发展,无数混沌系统都可应用在密码学中,所阻混沌应当成为密码学中的新的丰富资源。 1、现代密码学 密码学包含两个互相对立的分支,即密码编码学和密码分析学.前者寻求保证消息保密性或真实性的方法,而后者则研究加密消息的破译或消息的伪造。一个保密系统由下述几个部分组成:明文消息空间M,密文消息空间C,密钥空间K1和K2,在单钥体制下KI=K2=K.此时密钥K需经安全的密钥信道由发方传给收方;加密变换Ek1∈E,M—C,其中kl∈K1,由加密器完成;解密变换Dk2∈D,C∈M,其中k2∈K2,由解密器实现。称总体(M,C,K1,K2,Ekl,Dk2)为一保密系统。对于给定明文消息m∈M,密钥kl∈Kl,加密变换把明文m变换为密文c,即 c=f(m,k1)=Ekl(m) (1)

混沌理论发展现状的综述

混沌理论发展现状的综述 发表时间:2016-07-20T10:47:07.550Z 来源:《电力设备》2016年第8期作者:周士贻王涉叶汉霆[导读] 混沌现象是自然界的一个普遍现象,所以在工程实际中系统会不可避免的出现混沌现象而不能正常工作,这对生产生活造成了极大的影响。 周士贻王涉叶汉霆 (重庆大学 400044) 摘要:混沌理论是非线性科学的重要理论,是20世纪的三大科学革命之一,自提出以来在各个领域得到了广泛的应用,具有极大的研究意义。本文基于前人研究工作的基础上,总结了国内对于混沌理论的研究现状,并提出了其发展方向。 关键词: 1.前言 混沌现象是自然界的一个普遍现象,所以在工程实际中系统会不可避免的出现混沌现象而不能正常工作,这对生产生活造成了极大的影响。我们希望系统能够稳定的工作,并且能很好的对系统进行控制,使它按照人们的要求去工作。总的来说,研究混沌,目的就是为了在工程中应用混沌、避开混沌。因此,按照这一原则,用工程手段来处理混沌问题或者利用混沌解决实际问题具有十分重要的现实意义。近代以来,我国对混沌现象不断地进行着探索与研究,本文将对我国混沌理论的发展情况进行综述。 2.国内研究现状 我国物理学界对混沌现象的注意,始于1980年夏天在大连举行的第二届全国非平衡统计物理会议。我国著名的混沌学家、中国科学院院士郝柏林指出:“混沌,这个在中外文化渊源悠久的词,正在成为具有严格定义的科学概念,成为一门新科学的名字,它正在促使整个现代知识体系成为新科学。”他还指出:“越来越多的人认识到,这是相对论和量子力学问世以来,对人类整个知识体系的又一次巨大冲击.这也许是20世纪后半叶数理科学所做的意义最为深远的贡献。” 1983年,郝柏林院士在《物理学进展》1983年第3期上发表长篇论文“分岔、混沌、奇怪吸引子、湍流及其它”,这是在中国传播混沌学的最重要的文献之一。 1984年11月在桂林举行“非线性系统中不稳定性和随机性”学术讨论会时,80多位来自高等学校和科学院各所的与会者反映了我国各个学科工作者已经取得的一批研究成果,混沌现象的研究已经明确属于基础研究范围。科学院一批研究所进行了有关混沌的理论或实验研究课题。理论物理研究所在临界慢化、分频采样方法、一维映像的符号动力学和用符号动力学于常微分方程周期窗口排序,以及吸引子维数计算等方面有一批结果,并将混沌研究列为开放所的课题。物理研究所对光学双稳装置中的分岔和混沌,特别是两种以上延迟并存时的丰富现象作了深入研究。上海生物化学研究所生物物理室在人脑电波的维数分析和反映了神经胶质细胞作用的神经网络模型中,都运用了混沌概念。大气物理研究所在大气动力学方程中的混沌过程和数值模拟方面作了许多工作。力学研究所在新建立的“近代连续介质力学开放实验室”中,把混沌现象列为非线性和湍流研究的部分内容。 同年,赫柏林院士编辑出版《混沌》一书在新加坡问世。 1986年,第一届中国混沌理论会议在桂林召开,促进了全国范围内混沌研究的广泛展开。同年,中国学者徐京华在世界上第一个提出了三种神经细胞的复合网络,并证明了其中混沌的存在。 1988年,赫柏林院士在文献[1]中指出混沌现象本身不是研究的目的。“混沌”是普遍存在于自然界和数学模型中的一类客观现象,既有普适性质的种种表现,也必然在不同条件下具有特殊性。重要的是用混沌研究中形成的新概念武装起来,更深入地研究各个学科领域中具体的非线性模型和演化过程,并从而丰富混沌动力学的内容,而不能仅仅满足于又多了几个大同小异的混沌实例。 1989年,中国科学家卢侃、林雅谷、卢火等把混沌科学研究进入到实际于气功研究,使人们客观的用脑电图检查人的行为史成为可能。 2001年,华南理工大学张波教授提出在交流电机传动系统中存在混沌现象,从而为研究电机传动系统的不规则运动提供了一个重要的启示。 2002年,吕金虎等提出了统一混沌系统,该系统连接了Lorenz系统和Chen系统。 2005年,李冬辉、贾巍教授提出了用混沌理论检测直流供电系统节点故障。 2009年,邹国堂、王政、程明等教授出版了《混沌电机驱动及其应用》一书,标志着电机的混沌理论初步形成。 目前,关于混沌学的理论研究工作已到了缓慢发展的阶段,尽管有关混沌的检测方法、控制方法、混沌信号的统计特性分析及混沌信号的识别与分离等研究成果依然不断出现,但仅限于低维低阶的动力学系统,而对高维高阶系统的混沌理论研究与分析目前还处于探索阶段,一些通用的、规律性的研究工作还在进行之中。[2] 现有的研究成果多限于时间混沌控制,其它混沌的类型,如空间混沌、时空混沌及超混沌等应用研究仍是前沿课题,这些混沌系统的理论和方法有待进一步探索。 混沌理论的研究与实际应用之间仍有一定的差距,混沌理论的发展还有广阔的空间。如何将理论成果应用到具体的生产实践,把实验研究成果转向应用研究,发现并研究工程中出现的混沌并实时处理,消除实际系统中混沌不利的一面,还有大量的工作要做。 现阶段,混沌研究的发展前景主要包含三个方面: (1)混沌产生的道路。从周期性运动通向混沌的道路是多种多样的,除了目前人们已经发现的基本道路外,还存在着未知的道路,有待进一步的研究。 (2)判断混沌的方法。判断混沌的方法是多种多样的,目前主要有:数值分析法,庞加莱映射法,李雅普诺夫指数法等等。现阶段,具体应用哪种方法还没有统一的结论,运用不同方法得到的结论也存在一定的差距,有待于进一步研究。 (3)混沌的控制和利用。现阶段的研究主要应用于少量变量的混沌系统,高自由度的系统不易于控制,然而在高维甚至无穷维系统情况下其混沌吸引子可能是低维的。所以低维混沌系统的控制问题仍然是主要研究方向。此外,还应把混沌从低维系统的研究推向高维系统,从一般系统的研究推向复杂的工程实际系统,从对低余维分叉的研究推向高余维退化分叉,进一步探索物理机制从而发现更新更好的方法,向机理研究、分类和构造理论等方向发展。

浅谈混沌理论

2015 --2016 学年第 2 学期 物电 学院期末考试卷《 浅谈混沌理论 》 (课程论文等试卷样式) 学号: 2 姓名: 付鹏鹏 班级: 物理一班 成绩: 评语: (考试题目及要求) 装 订 线

浅谈混沌理论 姓名:指导老师:张爱霞 级别: 2013级专业:物理学 班级:物理(1)班学号:2013 摘要 混沌、分形和孤子理论,是物理界非线性理论的前沿科学,这些理论的诞生让神秘复杂的大自然变得越来越清晰化、简单化。Henry Adams曾说:“混沌是自然的法则,秩序是人类的梦想”。这句话充分体现了混沌现象的普遍性。本文从定性角度肤浅的探讨了混沌理论在社会、经济、艺术等研究中的进展情况及自己对这些研究领域的一些体会,但愿能给读者带来一些启发 关键词:混沌理论;蝴蝶效应;混沌的应用;混沌与艺术

目录 摘要 (2) 目录 0 引言 (1) 一、混沌理论的提出——由线性科学到非线性科学 (2) 1.1线性科学的成就 (2) 1.2线性科学的局限 (2) 1.3线性科学和非线性科学的差异 (2) 二、混沌理论——无序中的有序 (3) 2.1蝴蝶效应 (3) 2.2蝴蝶效应与混沌学 (4) 2.3什么是混沌呢 (4) 2.4混沌的特征 (5) 2.4.1对初始条件的敏感依赖性 (5) 2.4.2极为有限的可预测性 (5) 2.4.3混沌的内部存在着超载的有序 (5) 2.5混沌学的意义 (6) 2.6身边的混沌现象 (6) 三、混沌的应用 (6) 3.1混沌与经济学 (6) 3.2混沌与艺术 (8) 四、总结 (10) 参考文献 (10)

引言 说起“混沌”这个词,我们中国人首先想到的是我国古代传说中宇宙形成以前模糊一团的景象,即古哲学中认为盘古开天辟地之前,天地处于混沌状态。“太易者,未见气也;太初者,气之始也;太始者,形之似也;太素者,质之始也。气似质具而未相离,谓之混沌。”!!!(出自《庄子》)这里的混沌是指元气已具有物质的性质还没有进一步分化的状态。在国外,“混沌”这个词同样渊流悠久,《圣经》《创世纪》甚至埃及的神话故事中都有关于“混沌”的不同解释,这里我们不一一赘述。而在当代,混沌正在成为一种具有严格定义的科学概念,成为一门新科学的名字,它正在促使整个现代知识体系成为新科学。 不断的去探索大自然的规律是科学家的天职,无数的科学家在探索着这些规律,也终他们一生在挑战着人类未知的领域。物理学家要弄清楚物质的基本粒子,化学家则研究物质的构成、探索新的化学元素,天文学家探索宇宙的奥秘,生物学家则研究生物的演变与进化……他们的努力解决了一个个人类所遇到的难题,也创造出了人类发展史上的一个又一个奇迹。然而,还是会有很多复杂的问题在困扰着人们。人们总是思考,为什么天气变化存在着不可预测性,气体和流体在从平稳向湍流变化的过程中存在着哪些中间步骤等等各种所有在确定性系统中出现的貌似随机的不规则运动的问题,也慢慢的有人预感到,这些深奥的问题极可能揭示了大自然更深一层的规律。 早在公元前560年,我国的老子提出了宇宙起源于混沌的哲学思想;公元前450年左右,中国的古哲学家庄子也说过这样一句话:南海之地为倏,北海之帝为忽,中央天帝为浑沌。这里庄子最早把混沌理论引入到政治学的研究中。他的“中央之帝为混沌”则是对人类行为的混沌性态最早的哲学观点;1903年,美国数学家J.H.Poincare在《科学与方法》一书中提到Poincare猜想,他把动力系统和拓扑学两大领域结合起来指出了混沌存在的可能性。又从上世纪60年代开始,人们开始探索科学上的各种未解之谜,使混沌科学得到了飞速的发展,气象学、生理学、经济学中都发现了一种关于混沌的有序性。到了70年代,混沌科学发展到了一个光辉灿烂的年代。1977年,第一次国际混沌会议在意大利召开,混沌科学正式诞生!!!! 下面就让我们一起走进这个当代前沿科学“混沌”的世界。

混沌学及其应用

混沌学及其应用 混沌是20世纪最重要的科学发现之一, 被誉为继相对论和量子力学后的第三次物理革命;我们模拟的混沌电路因具有丰富的非线性动力学特性, 它打破了确定性与随机性之间不可逾 越的分界线。生活中的非线性系统混沌现象有很多,随着对其和混沌应用的研究深入,电子、通讯、信息处理、气象学、生态学、经济学等领域的混沌学的知识应用已经有了广泛的应用。 1、混沌学在通讯里发挥着重要的作用 电子商务的兴起,对保密通信提出了更高的要求。利用混沌进行保密,通信是现在十分热门的研究课题。混沌信号最本质的特征是对初始条件极为敏感,并导致了混沌信号的类随机特性。用它作为载调制出来的信号当然也具有类随机特性。因而,调制混沌信号即使被敌方截获, 也很难被破译,这就为混沌应用于保密通信提供了有利条件。 2、在气象学中的应用 在近年的气象研究中,利用混沌进行中期预报的研究。由于气候系统是线性系统,其初值问题的数值解是不确定的,研究气候状态的特征就要研究混沌态的特征,研究气候系统的演变机制就要研究混沌态的变化。在这些研究中使用的数学工具主要是分形理论,如分数维、李亚普诺夫指数、标度指数和功率谱指数等。利用这些数学方法分别考察、分析气候状态特征量随控制变量的变化。在数学上把天气预报问题提成初值问题,即用动力学的方法进行预报,从认识论上讲就是把大气看成是确定论的系统,这在较短的时间尺度内是行得通的,而在时间较长的时候却是有问题的,主要是大气运动是非线性、强迫和耗散的。 3、混沌学在医学中的应用(作为一个生物学生不得不讲的点) 单从生物医学角度来看,某一特定的机体可以看作一个确定性系统,其存在大量复杂、貌似随机而似有规律可循的现象。因此,混沌理论可用于指导对复杂性、系统性疾病的研究(某些复杂的免疫疾病,我查到有IgG4相关性疾病这些复杂的疾病),也可以用于对一个整体身体状况的评估:比如我们仔细测量一段时间内的心电图, 会发现健康的心脏几乎没有两处P-P 间期完全相等的, 应该说是“绝对不齐”才是健康的。将这些健康的节律动态曲线按混沌学方法重构吸引子, 结果是奇异吸引子, 是混沌的。假如等时节律越来越多, 即目前人们多称之为“心率变异性”的改变, 表明心功能在恶化, 而“钟摆律”是不再混沌了, 是临终前的表现。系统的复杂性越好, 应变能力就越强, 出现的可能性就越多, 必然就会处于混沌状态。如果一个病人动脉壁开始硬化, 弹性丧失, 其脉压差会变得比原来小, 复杂性也会表现出减退, 其吸引子中的轨迹线可能就会出现重叠, 可以认为混沌状态在减弱。 如果用混沌理论及测量生理学复杂性动力学的新方法用来测定正常的衰老过程, 则有定量 作用。也可用来测定预防疾病和改善其进程的各种手段的效果及加以改进。例如, 可测定健康老化与痴呆在认识事物上脑电图反应的复杂性, 以便鉴定到底属于哪一种状态, 以及特定的药物对认识功能和行为的作用如何。如果将心率和血压动力学的复杂性作为衰老的观测指标, 运动和营养对心血管的衰老效应就更容易定量。还可测某人由于衰老或是疾病所引起的适应能力降低的程度, 也可用来预测药物、手术或另一些压力因素的反效应。窦节律心跳间隔的间期变化在生理复杂性方面的丧失, 可用以分辨晕厥病人猝死的危险性。确定间歇性心律不齐的严重性,预测心肌梗死死亡率以及评估充血性心力衰竭的严重程度。

相关主题