搜档网
当前位置:搜档网 › 培优平行四边形辅导专题训练及详细答案

培优平行四边形辅导专题训练及详细答案

培优平行四边形辅导专题训练及详细答案
培优平行四边形辅导专题训练及详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.

(1)求证:△AED≌△CEB′

(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.

【答案】(1)证明见解析;(2).

【解析】

【分析】

(1)由折叠的性质知,,,,则由得到;

(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.

【详解】

(1)四边形为矩形,

,,

又,

(2),

在中,,

过点作于,

,,

,,

、、共线,

四边形是矩形,

.

【点睛】

此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.

2.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.

(1)用尺规将图1中的△ABC分割成两个互补三角形;

(2)证明图2中的△ABC分割成两个互补三角形;

(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.

①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.

【答案】(1)作图见解析(2)证明见解析(3)①62;②6

【解析】

试题分析:(1)作BC边上的中线AD即可.

(2)根据互补三角形的定义证明即可.

(3)①画出图形后,利用割补法求面积即可.

②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.

试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.

(2)如图2中,延长FA到点H,使得AH=AF,连接EH.

∵四边形ABDE,四边形ACGF是正方形,

∴AB=AE,AF=AC,∠BAE=∠CAF=90°,

∴∠EAF+∠BAC=180°,

∴△AEF和△ABC是两个互补三角形.

∵∠EAH+∠HAB=∠BAC+∠HAB=90°,

∴∠EAH=∠BAC,

∵AF=AC,

∴AH=AB,

在△AEH和△ABC中,

∴△AEH≌△ABC,

∴S△AEF=S△AEH=S△ABC.

(3)①边长为、、的三角形如图4所示.

∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,

∴S六边形=17+13+10+4×5.5=62.

②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,

∵AM∥CH,CH⊥BC,

∴AM⊥BC,

∴∠EAM=90°+90°﹣x=180°﹣x,

∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,

∴∠EAM=∠DBI,∵AE=BD,

∴△AEM≌△DBI,

∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,

∴△DBI和△ABC是互补三角形,

∴S△AEM=S△AEF=S△AFM=2,

∴S△EFM=3S△ABC=6.

考点:1、作图﹣应用与设计,2、三角形面积

3.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;

(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由

(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.

【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23

.

【解析】

【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;

(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;

(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.

【详解】(1)如图1中,延长EO交CF于K,

∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,

∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,

∵△EFK是直角三角形,∴OF=1

2

EK=OE;

(2)如图2中,延长EO交CF于K,

∵∠ABC=∠AEB=∠CFB=90°,

∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,

∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,

∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,

∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;

(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,

∵|CF﹣AE|=2,3AE=CK,∴FK=2,

在Rt△EFK中,tan∠FEK=

3

3

,∴∠FEK=30°,∠EKF=60°,

∴EK=2FK=4,OF=

1

2

EK=2, ∵△OPF 是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt △PHF 中,PH=1

2

PF=1,HF=3,OH=2﹣3, ∴OP=()

2

2123

62+-=-.

如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°, ∴∠BOP=90°, ∴OP=

33OE=233

, 综上所述:OP 的长为62-或

23

3

. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.

4.已知AD 是△ABC 的中线P 是线段AD 上的一点(不与点A 、D 重合),连接PB 、PC ,E 、F 、G 、H 分别是AB 、AC 、PB 、PC 的中点,AD 与EF 交于点M ;

(1)如图1,当AB =AC 时,求证:四边形EGHF 是矩形;

(2)如图2,当点P 与点M 重合时,在不添加任何辅助线的条件下,写出所有与△BPE 面积相等的三角形(不包括△BPE 本身).

【答案】(1)见解析;(2)△APE 、△APF 、△CPF 、△PGH . 【解析】 【分析】

(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=1

2

BC,GH∥BC,GH=

1

2

BC,推出

EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;

(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出

S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出

S△PGH=1

2

S△AEF=S△APF,即可得出结果.

【详解】

(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,

∴EG∥AP,EF∥BC,EF=1

2BC,GH∥BC,GH=

1

2

BC,

∴EF∥GH,EF=GH,

∴四边形EGHF是平行四边形,

∵AB=AC,

∴AD⊥BC,

∴EF⊥AP,

∵EG∥AP,

∴EF⊥EG,

∴平行四边形EGHF是矩形;

(2)∵PE是△APB的中线,

∴△APE与△BPE的底AE=BE,又等高,

∴S△APE=S△BPE,

∵AP是△AEF的中线,

∴△APE与△APF的底EP=FP,又等高,

∴S△APE=S△APF,

∴S△APF=S△BPE,

∵PF是△APC的中线,

∴△APF与△CPF的底AF=CF,又等高,

∴S△APF=S△CPF,

∴S△CPF=S△BPE,

∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,

∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC 底边BC上高的一半,

∴△PGH底边GH上的高等于△AEF底边EF上高的一半,

∵GH=EF,

∴S△PGH=1

2

S△AEF=S△APF,

综上所述,与△BPE 面积相等的三角形为:△APE 、△APF 、△CPF 、△PGH . 【点睛】

本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.

5.(感知)如图①,四边形ABCD 、CEFG 均为正方形.可知BE=DG . (拓展)如图②,四边形ABCD 、CEFG 均为菱形,且∠A=∠F .求证:BE=DG . (应用)如图③,四边形ABCD 、CEFG 均为菱形,点E 在边AD 上,点G 在AD 延长线上.若AE=2ED ,∠A=∠F ,△EBC 的面积为8,菱形CEFG 的面积是_______.(只填结果)

【答案】见解析 【解析】

试题分析:探究:由四边形ABCD 、四边形CEFG 均为菱形,利用SAS 易证得△BCE ≌△DCG ,则可得BE=DG ;

应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=3ED ,可求得△CDE 的面积,继而求得答案. 试题解析:

探究:∵四边形ABCD 、四边形CEFG 均为菱形, ∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F . ∵∠A=∠F , ∴∠BCD=∠ECG .

∴∠BCD-∠ECD=∠ECG-∠ECD , 即∠BCE=∠DCG . 在△BCE 和△DCG 中,

BC CD BCE DCG CE CG ??

∠∠???

=== ∴△BCE ≌△DCG (SAS ), ∴BE=DG .

应用:∵四边形ABCD 为菱形, ∴AD ∥BC ,

∵BE=DG ,

∴S △ABE +S △CDE =S △BEC =S △CDG =8, ∵AE=3ED , ∴S △CDE =

1

824

?= , ∴S △ECG =S △CDE +S △CDG =10 ∴S 菱形CEFG =2S △ECG =20.

6.如图①,在矩形ABCD 中,点P 从AB 边的中点E 出发,沿着E B C --速运动,速度为每秒2个单位长度,到达点C 后停止运动,点Q 是AD 上的点,10AQ =,设

PAQ ?的面积为y ,点p 运动的时间为t 秒,y 与t 的函数关系如图②所示.

(1)图①中AB = ,BC = ,图②中m = .

(2)当t =1秒时,试判断以PQ 为直径的圆是否与BC 边相切?请说明理由:

(3)点p 在运动过程中,将矩形沿PQ 所在直线折叠,则t 为何值时,折叠后顶点A 的对应点A '落在矩形的一边上.

【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=12、5、173

. 【解析】 【分析】

(1)由题意得出AB=2BE ,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P 在E 处,m=△AEQ 的面积=

1

2

AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出34PQ 为直径的圆的圆心为O',作O'N ⊥BC 于N ,延长NO'交AD 于M ,则MN=AB=8,O'M ∥AB ,MN=AB=8,由三角形中位线定理得出O'M=1

2

AP=3,求出O'N=MN-O'M=5<圆O'的半径,即可得出结论;

(3)分三种情况:①当点P 在AB 边上,A'落在BC 边上时,作QF ⊥BC 于F ,则

QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA ,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出22AQ QF '-,得出A'B=BF-A'F=4,在Rt △A'BP 中,BP=4-2t ,PA'=AP=8-

(4-2t )=4+2t ,由勾股定理得出方程,解方程即可;

②当点P 在BC 边上,A'落在BC 边上时,由折叠的性质得:A'P=AP ,证出∠APQ=∠AQP ,

得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;

③当点P在BC边上,A'落在CD边上时,由折叠的性质得:A'P=AP,A'Q=AQ=10,在

Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.

【详解】

(1)∵点P从AB边的中点E出发,速度为每秒2个单位长度,

∴AB=2BE,

由图象得:t=2时,BE=2×2=4,

∴AB=2BE=8,AE=BE=4,

t=11时,2t=22,

∴BC=22-4=18,

当t=0时,点P在E处,m=△AEQ的面积=1

2

AQ×AE=

1

2

×10×4=20;

故答案为8,18,20;

(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下:

当t=1时,PE=2,

∴AP=AE+PE=4+2=6,

∵四边形ABCD是矩形,

∴∠A=90°,

∴PQ=2222

106234

AQ AP

+=+=,

设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示:

则MN=AB=8,O'M∥AB,MN=AB=8,

∵O'为PQ的中点,

∴O''M是△APQ的中位线,

∴O'M=1

2

AP=3,

∴O'N=MN-O'M=534

∴以PQ为直径的圆不与BC边相切;

(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:

则QF=AB=8,BF=AQ=10,

∵四边形ABCD是矩形,

∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,

由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F=22

AQ QF

'-=6,

∴A'B=BF-A'F=4,

在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,

由勾股定理得:42+(4-2t)2=(4+2t)2,

解得:t=1

2

②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:

由折叠的性质得:A'P=AP,

∴∠APQ'=∠A'PQ,

∵AD∥BC,

∴∠AQP=∠A'PQ,

∴∠APQ=∠AQP,

∴AP=AQ=A'P=10,

在Rt△ABP中,由勾股定理得:22

108

-,

又∵BP=2t-4,

∴2t-4=6,解得:t=5;

③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示:

由折叠的性质得:A'P=AP,A'Q=AQ=10,

在Rt△DQA'中,DQ=AD-AQ=8,

由勾股定理得:DA'=22

108

=6,

∴A'C=CD-DA'=2,

在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t,由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2,

∴82+(2t-4)2=22+(22-2t)2,

解得:t=17

3

综上所述,t为1

2

或5或

17

3

时,折叠后顶点A的对应点A′落在矩形的一边上.

【点睛】

四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.

7.如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),

∠APE=90°,且点E在BC边上,AE交BD于点F.

(1)求证:①△PAB≌△PCB;②PE=PC;

(2)在点P的运动过程中,的值是否改变?若不变,求出它的值;若改变,请说明理由;

(3)设DP=x,当x为何值时,AE∥PC,并判断此时四边形PAFC的形状.

【答案】(1)见解析;

(2);

(3)x=﹣1;四边形PAFC是菱形.

【解析】

试题分析:(1)根据四边形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根据

PB=PB,即可证出△PAB≌△PCB,

②根据∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,从而证出PE=PC;

(2)根据PA=PC,PE=PC,得出PA=PE,再根据∠APE=90°,得出∠PAE=∠PEA=45°,即可求

出;

(3)先求出∠CPE=∠PEA=45°,从而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,从而证出BP=BC=1,x=﹣1,再根据AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB 得出∠BPA=∠BPC=67.5°,PA=PC,从而证出AF=AP=PC,得出答案.

试题解析:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.

∵PB=PB,∴△PAB≌△PCB (SAS).

②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,

又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.

(2)在点P的运动过程中,的值不改变.

由△PAB≌△PCB可知,PA=PC.

∵PE=PC,

∴PA=PE,

又∵∠APE=90°,

∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.

(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)

=67.5°.

在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.

∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,

∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,

∴∠AFP=∠BPA,∴AF=AP=PC,∴四边形PAFC是菱形.

考点:四边形综合题.

8.数学活动课上,老师给出如下问题:如图,将等腰直角三角形纸片沿斜边上的高AC剪开,得到等腰直角三角形△ABC与△EFD,将△EFD的直角顶点在直线BC上平移,在平移的过程中,直线AC与直线DE交于点Q,让同学们探究线段BQ与AD的数量关系和位置关系.

请你阅读下面交流信息,解决所提出的问题.

展示交流:

小敏:满足条件的图形如图甲所示图形,延长BQ与AD交于点H.我们可以证明

△BCQ≌△ACD,从而易得BQ=AD,BQ⊥AD.

小慧:根据图甲,当点F在线段BC上时,我们可以验证小慧的说法是正确的.但当点F在线段CB的延长线上(如图乙)或线段CB的反向延长线上(如图丙)时,我对小慧说法的正确性表示怀疑.

(1)请你帮助小慧进行分析,小敏的结论在图乙、图丙中是否成立?请说明理由.

(选择图乙或图丙的一种情况说明即可).

(2)小慧思考问题的方式中,蕴含的数学思想是.

拓展延伸:

根据你上面选择的图形,分别取AB、BD、DQ、AQ的中点M、N、P、T.则四边形MNPT 是什么样的特殊四边形?请说明理由.

【答案】成立;分类讨论思想;正方形.

【解析】

试题分析:利用等腰直角三角形的性质结合全等三角形的判定与性质得出BQ=AD,

BQ⊥AD;利用已知条件分类得出,体现数学中的分类讨论思想,

拓展延伸:利用三角形中位线定理结合正方形的判定方法,首先得出四边形MNPT是平行四边形进而得出它是菱形,再求出一个内角是90°,即可得出答案.

试题解析:(1)、成立,

理由:如图乙:由题意可得:∠FDE=∠QDC=∠ABC=∠BAC=45°,则DC=QC,AC=BC,

在△ADC和△BQC中∵,∴△ADC≌△BQC(SAS),∴AD=BQ,

∠DAC=∠QBC,

延长AD交BQ于点F,则∠ADC=∠BDF,∴∠BFD=∠ACD=90°,∴AD⊥BQ;

(2)、小慧思考问题的方式中,蕴含的数学思想是:分类讨论思想;

拓展延伸:四边形MNPT是正方形,

理由:∵取AB、BD、DQ、AQ的中点M、N、P、T,∴MN AD,TP AD,

∴MN TP,

∴四边形MNPT是平行四边形,∵NP BQ,BQ=AD,∴NP=MN,∴平行四边形MNPT 是菱形,

又∵AD⊥BQ,NP∥BQ,MN∥AD,∴∠MNP=90°,∴四边形MNPT是正方形.

考点:几何变换综合题

9.已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.

(1)求证:△ABM≌△CDN;

(2)矩形ABCD和矩形AECF满足何种关系时,四边形 AMCN是菱形,证明你的结论.【答案】(1)证明见解析;(2)当AB=AF时,四边形AMCN是菱形.证明见解析;【解析】

试题分析:(1)由已知条件可得四边形AMCN是平行四边形,从而可得AM=CN,再由AB=CD,∠B=∠D=90°,利用HL即可证明;

(2)若四边形AMCN为菱形,则有AM=AN,从已知可得∠BAM=∠FAN,又∠B=∠F=90°,所以有△ABM≌△AFN,从而得AB=AF,因此当AB=AF时,四边形AMCN是菱形.

试题解析:(1)∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD∥BC.

∵四边形AECF是矩形,∴AE∥CF.∴四边形AMCN是平行四边形.∴AM=CN.在

Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN.

(2)当AB=AF时,四边形AMCN是菱形.

∵四边形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90°.∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN.又∵AB=AF,∴△ABM≌△AFN.∴AM=AN.由(1)知四边形AMCN是平行四边形,∴平行四边形AMCN是菱形.

考点:1.矩形的性质;2.三角形全等的判定与性质;3.菱形的判定.

10.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点

B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.

(1)求矩形ABCD的边AD的长.

(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.

(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;

②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式

【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)

S=.

【解析】

试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.

试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.

(2)由折叠可知AM=MP,在Rt△MPD中,

∴∴y=-其中,0<x<3.

(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.

∴△PCN为等腰三角形,只可能NC=NP.

过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,

∴解得x=.

(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.

设MP=y,在Rt△ADM中,,即∴ y=.

∴ S=

考点:函数的性质、勾股定理.

三角形培优训练100题集锦

E D F C B A 三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围. 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

数学平行四边形的专项培优 易错 难题练习题含答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE, ∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的

平行四边形培优讲义新打印版

平行四边形培优讲义新 打印版 -CAL-FENGHAI.-(YICAI)-Company One1

平边四边形知识点 一.知识框架 二.知识概念 平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。 平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。 平行四边形的判别方法: 两组对边分别平行的四边形是平行四边形。 两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。 三角形的中位线平行于三角形的第三边,且等于第三边的一半。 矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。 矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴) 矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。 对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。 推论:直角三角形斜边上的中线等于斜边的一半。 菱形的定义:一组邻边相等的平行四边形叫做菱形。 菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 菱形的判别方法:一组邻边相等的平行四边形是菱形。 对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。 S菱形=1/2×ab(a、b为两条对角线)或底×高 正方形的定义:一组邻边相等的矩形叫做正方形。 正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有四条对称轴) 正方形常用的判定: 有一个内角是直角的菱形是正方形; 邻边相等的矩形是正方形;

最新八年级下册平行四边形的培优专题训练

八年级数学下册平行四边形的培优专题训练

一、基础归纳 1.性质:按边、角、对角线三方面分类记忆. 平行四边形的性质 ...???? ????? ??? ????? 对边平行;边对边相等对角相等;角邻角互补对角线:对角线互相平分 另外,由“平行四边形两组对边分别相等”的性质,可推出下面的推论:夹在两条平行线间的平行线段相等. 2.判定方法:同样按边、角、对角线三方面分类记忆. 边 ?? ??? 两组对边分别平行 一组对边平行且相等两组对边分别相等 角:两组对角分别相等 对角线:对角线互相平分 3.注意的问题: 平行四边形的判定定理,有的是相应性质定理的逆定理. 学习时注意它们的联系和区别,对照记忆. 4.特殊的平行四边形(矩形、菱形、正方形) 二、基本思想方法 研究平行四边形问题的基本思想方法是转化法,即把平行四边形的问题转化为三角形及平移、旋转和对称图形的问题来研究. 【典例分析】 的四边形是 平行四边形

例1.已知:如图1,在ABCD 中,AB =4cm ,AD =7cm ,∠ABC 的平分线 交AD 于点E ,交CD 的延长线于点F ,则DF = cm . 解析:由平行四边形的性质知,AD ∥BC ,得∠AEB =∠EBC , 又BF 是∠ABC 的平分线, 即∠ABE =∠EBC ,所以∠AEB =∠ABE .则AB = AE = 4cm .所以DE = AD -AE = 7-4 =3(cm ). 又由AB ∥CD ,则∠F =∠ABE ,所以∠F =∠AEB . 因为∠AEB=∠FED ,所以∠F =∠FED ,故DF = DE = 3cm . 例2.已知:如图2,在平形四边形ABCD 中,E ,F 是对角线AC 上的两点,且AF =CE . 求证:DE =BF . 例3.已知:如图3,在△ABC 中,AB =AC ,E 是AB 的中点,D 在BC 上,延长ED 到F ,使 ED = DF = EB ,连接FC .求证:四边形AEFC 是平行四边形. A D C B F E (图1) (图2) A D C B F E C

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

(完整版)平行四边形练习题(培优训练)

第8题图 F D ’ D C B A 平行四边形 一、填空. 1、用硬纸片剪一个长为16cm ,宽为12cm 的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形,其中周长最大的是________cm ,周长最小的是________cm ; 2、如图,在矩形ABCD 中,已知AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD 于点E ,PF ⊥AC 于点F ,那么PE+PF=_____________; 3、如图,□ABCD 的对角线相交于点O ,且AD≠CD ,过点O 作OM ⊥AC ,交AD 于点M ,若△CDM 周长为a ,则□ABCD 的周长为_________; 4、如图,已知矩形ABCD 中,对角线AC 、BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE :∠BAE=3:1,则∠EAC=_____; 5、如图,以△ABC 的三边在BC 的同一侧,分别作三个等边三角形,即△ABD 、△BCE 、△ACF. (1)四边形ADEF 是_________ (2)当△ABC 满足条件________________时,四边形ADEF 为矩形. (3)当△ABC 满足条件________________时,四边形ADEF 不存在; 6、如图,菱形ABCD 的对角线AC 、BD 相交于点O ,△AOB 的周长为33+,∠ABC=60o ,则菱形ABCD 的面积为__________; 7、已知一个三角形的一边长为2,这边上的中线为1,另外两边之和为31+, 则这两边之积为_______; 8、如图,矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点E 处, 则重叠部分△AFC 的面积为____________; 二、选择题 9、四边形的四条边长分别是a 、b 、c 、d ,其中a 、c 为对边,且满足a 2+b 2+c 2+d 2=2ab +2cd ,则这个四边形一定是( ) C B A C B A 12cm O 16cm E F P 第2题图 M O D 第1题图 第3题图 D B A O E D C A B O C B A F E D C 第6题图 第5题图 第4题图 D

平行四边形培优

F E D C B A 平行四边形综合提高 一 利用平行四边形的性质进行角度、线段的计算 1、如图,在 ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠EAF =60o ,则∠B =_______;若BC =4cm ,AB =3cm ,则AF =___________,□ABCD 的面积为_________. 2、已知ABCD 的周长为32cm,对角线AC 、BD 交于点O ,△AOB 的周长比△BOC 的周长多4cm ,求这个四边形的各边长。 二、利用平行四边形的性质证线段相等 3、如图,在 ABCD 中,O 是对角线AC 、BD 的交点,BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F .那么OE 与OF 是否相等?为什么? 三 直接利用平行四边形的判定和性质 4、如图在ABCD 中,E 、F 分别是AD 、BC 的中点,AF 与EB 交于点G ,CE 与DF 交于点H ,试说明四边形EGFH 的形状。 5、如图,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于点F ,求证:四边形AECF 为平行四边形。 B D B D

四 构造平行四边形解题 6、如图2-33所示.Rt △ABC 中,∠BAC=90°,AD ⊥BC 于D ,BG 平分∠ABC ,EF ∥BC 且交AC 于F . 求证:AE=CF . 7、已知,如图,AD 为△ABC 的中线,E 为AC 上一点,连结BE 交AD 于点F ,且AE=FE ,求证:BF=AC [能力提高] 1、如图2-39所示.在平行四边形ABCD 中,△ABE 和△BCF 都是等边三角形. 求证:△DEF 是等边三角形. 2、如图2-32所示.在ABCD 中,AE ⊥BC ,CF ⊥AD ,DN=BM .求证:EF 与MN 互相平分. B C D

平行四边形培优训练题

1、在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F. (1)求证:△ABE≌△CDF; (2)若AC与BD交于点O,求证:AO=CO. 2、如图,已知,□ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形. 3、在□ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF. 求证:四边形BEDF是平行四边形. 4、已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形. 5、已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.

(1)求证:四边形EFCD是平行四边形; (2)若BF=EF,求证:AE=AD. 6、如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F. (1)求证:BE=DF; (2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形 MENF的形状(不必说明理由). 7.已知:如图,在?ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.

8.如图,已知在?ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC 的延长线上,且AG=CH,连接GE、EH、HF、FG. (1)求证:四边形GEHF是平行四边形; (2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中 的结论是否成立 9、如图所示.?ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF. 10.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积. 11.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平 行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C (2,3),点D在第一象限. (1)求D点的坐标; (2)将平行四边形ABCD先向右平移个单位长度,再向下平移 个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少

全等三角形专题培优[带答案]

全等三角形专题培优 考试总分: 110 分考试时间: 120 分钟 卷I(选择题) 一、选择题(共 10 小题,每小题 2 分,共 20 分) 1.如图为个边长相等的正方形的组合图形,则 A. B. C. D. 2.下列定理中逆定理不存在的是() A.角平分线上的点到这个角的两边距离相等 B.在一个三角形中,如果两边相等,那么它们所对的角也相等 C.同位角相等,两直线平行 D.全等三角形的对应角相等 3.已知:如图,,,,则不正确的结论是() A.与互为余角 B. C. D. 4.如图,是的中位线,延长至使,连接,则的值为() A. B. C. D. 5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B. C. D. 6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有() A.个 B.个 C.个 D.个 7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可 供选择的地址有() A.一处 B.二处 C.三处 D.四处 8.如图,是的角平分线,则等于() A. B. C. D. 9.已知是的中线,且比的周长大,则与的差为() A. B. C. D. 10.若一个三角形的两条边与高重合,那么它的三个内角中() A.都是锐角 B.有一个是直角 C.有一个是钝角 D.不能确定 卷II(非选择题) 二、填空题(共 10 小题,每小题 2 分,共 20 分) 11.问题情境:在中,,,点为边上一点(不与点,重合) ,交直线于点,连接,将线段绕点顺时针方向旋转得

《平行四边形》培优专题训练1

平行四边形培优专题训练 一.选择题: 1.在平行四边形ABCD 中,点A 1、A 2、A 3、A 4和C 1、C 2、C 3、C 4分别是AB 和CD 的五等分点,点B 1、B 2和D 1、D 2分别是BC 和DA 的三等分点,已知四边形A 4 B 2 C 4 D 2的面积为1,则平行四边形ABCD 面积为( ) A.2 B. C. D.15 2、如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上一动点,PE ⊥AC 于E,PF ⊥BD 于F,则PE+PF 的值为( ) A 、125 B 、135 C 、5 2 D 、2 二.填空题: 1.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 。 2.以不共线的三点A 、B 、C 为顶点的平行四边形共有 个。 3. □ABCD 的对角线交于点O ,S △AOB =2cm 2,则S □ABCD =__________. 4. □ABCD 中,对角线AC 和BD 交于点O ,若AC =8,AB =6,BD =m ,那么m 的取值范围是________. 5.如图,△ABC 是等边三角形,P 是其内任意一点,PD ∥AB ,PE ∥BC ,DE ∥AC ,若△ABC 周长为12,则PD +PE +PF = 。 三.解答题: 1.□ABCD 中,E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,求CF 的长. F E D C B A P F E D C B A

相似三角形培优专题

相似三角形培优专题1. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D. 求证:(1)△ACD∽△ABC; (2)AC2=AD?AB; (3)CD2=AD?DB. A 证明:(1)∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°=∠ACB, ∵∠A=∠A, ∴△ACD∽△ABC. (2)∵△ACD∽△ABC, ∴AC AD AB AC =, ∴AC2=AD?AB; (3)∵CD⊥AB, ∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°, ∵∠ACB=90° ∴∠A+∠B=90° ∴∠ACD=∠B ∴△ACD∽△BCD, ∴CD AD BD CD =, ∴CD2=AD?DB.

2.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证: (1)△ACP∽△PDB, (2)CD2=AC?BD. 证明:(1)∵△PCD是等边三角形, ∴∠PCD=∠PDC=∠CPD=60°, ∴∠ACP=∠PDB=120°, ∵∠APB=120°, ∴∠APC+∠BPD=60°, ∵∠CAP+∠APC=60° ∴∠BPD=∠CAP, ∴△ACP∽△PDB; (2)由(1)得△ACP∽△PDB, ∴, ∵△PCD是等边三角形, ∴PC=PD=CD, ∴, ∴CD2=AC?BD.

3. 如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC 的边BC=15,高AH=10, (1)求证:△ADG∽△ABC; (2)求这个正方形的边长和面积. 解:(1)∵四边形形DEFG是正方形, ∴DG∥BC ∴△ADG∽△ABC; (2) 如图,高AH交DG于M,设正方形DEFG的边长为x,则DE=MH=x, ∴AM=AH﹣MH=10﹣x, ∵ADG∽△ABC, ∴DG AM BC AH =, ∴ 10 1510 x x - =, ∴x=6, ∴x2=36. 答:正方形DEFG的边长和面积分别为6,36.

培优易错试卷平行四边形辅导专题训练及详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.在四边形ABCD 中,180B D ∠+∠=?,对角线AC 平分BAD ∠. (1)如图1,若120DAB ∠=?,且90B ∠=?,试探究边AD 、AB 与对角线AC 的数量关系并说明理由. (2)如图2,若将(1)中的条件“90B ∠=?”去掉,(1)中的结论是否成立?请说明理由. (3)如图3,若90DAB ∠=?,探究边AD 、AB 与对角线AC 的数量关系并说明理由. 【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由 见解析. 【解析】 试题分析:(1)结论:AC=AD+AB ,只要证明AD= 12AC ,AB=1 2 AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题; (3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题; 试题解析:解:(1)AC=AD+AB . 理由如下:如图1中, 在四边形ABCD 中,∠D+∠B=180°,∠B=90°, ∴∠D=90°, ∵∠DAB=120°,AC 平分∠DAB , ∴∠DAC=∠BAC=60°, ∵∠B=90°,

∴AB=1 2 AC,同理AD= 1 2 AC. ∴AC=AD+AB. (2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E, ∵∠BAC=60°, ∴△AEC为等边三角形, ∴AC=AE=CE, ∵∠D+∠ABC=180°,∠DAB=120°, ∴∠DCB=60°, ∴∠DCA=∠BCE, ∵∠D+∠ABC=180°,∠ABC+∠EBC=180°, ∴∠D=∠CBE,∵CA=CE, ∴△DAC≌△BEC, ∴AD=BE, ∴AC=AD+AB. (3)结论:AD+AB=2AC.理由如下: 过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°, ∴DCB=90°, ∵∠ACE=90°, ∴∠DCA=∠BCE, 又∵AC平分∠DAB, ∴∠CAB=45°, ∴∠E=45°. ∴AC=CE. 又∵∠D+∠ABC=180°,∠D=∠CBE,

培优专题等腰三角形含答案

9、等腰三角形【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC中,D是AC的中点,E为BC 延长线上一点,且CE=CD,DM⊥BC,垂足为M。求证:M是BE的中点。 分析:欲证M是BE的中点,已知DM⊥BC,所以想到连结BD,证 1∠ABC,而由CE=CD,BD=ED。因为△ABC是等边三角形,∠DBE= 2 1∠ACB,所以∠1=∠E,从而问题得证。 又可证∠E= 2 证明:因为三角形ABC是等边三角形,D是AC的中点

平行四边形经典题型(培优提高)

中心对称与平行四边形的判定 知识归纳 1.中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与 原图形重合,那么就说这个图形是中心对称图形,这个点就是它的对称中心. 分析:一个图形;围绕一点旋转1800;重合. 2.思考:中心对称与中心对称图形有什么区别和联系? 1)区别: 中心对称是指两个全等图形之间的位置关系,成中心对称的两个图形中,其中一个图形上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点关于对称中心的对称点都在这;而中心对称图形是指一个图形本身成中心对称,中心对称图形上所有点关于对称中心的对称点都在这个图形本身上. 2)联系: 如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形也可以看成是关于中心对称的两个图形. 3.中心对称图性质 1)中心对称图形的对称点所连线段都经过对称中心,而且被对称中心所平分. 2)中心对称图形的两个部分是全等的. 注:常见的中心对称图形有:矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些规则图形等. 正偶边形是中心对称图形 正奇边形不是中心对称图形如:正三角形不是中心对称图形、等腰梯形不是中心对称图形 4.平行四边形的性质: ①平行四边形两组对边相等。 ②平行四边形两组对角相等。 ③平行四边形对角线互分平分。 5.平行四边形判定: 定理1、一组对边平行且相等的四边形是平行四边形 定理2、两组对边分别相等的四边形是平行四边形。 定理3、对角线互相平分的四边形是平行四边形。 定理4、两组对角分别相等的四边形是平行四边形。 6.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。 7.逆定理1:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是 三角形的中位线。 逆定理2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

培优专题讲解_等腰三角形(含解答)-

等腰三角形专题练习题 等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径. 例1如图1-1,△ABC中,AB=BC,M、N为BC边上两点,且∠BAM=∠CAN,MN=AN,求∠MAC的度数. 练习1 1.如图1-2,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于().A.7.5° B.10° C.12.5° D.18° 1-2 2.如图1-3,AA′、BB′分别是△ABC的外角∠EAB和∠CBD的平分线,且AA′=AB=B′B,A′、B、C在一直线上,则∠ACB的度数是多少? 1-3

3.如图1-4,等腰三角形ABC中,AB=BC,∠A=20°.D是AB边上的点,且AD=BC,?连结CD,则∠BDC=________. 1-4 例2 如图1-5,D是等边三角形ABC的AB边延长线上一点,BD?的垂直平分线HE?交AC 延长线于点E,那么CE与AD相等吗?试说明理由. 练习2 1.已知如图1-6,在△ABC中,AB=CD,D是AB上一点,DE⊥BC,E为垂足,ED?的延长线交CA的延长线于点F,判断AD与AF相等吗? 1-6 1-7 1-8 2.如图1-7,△ABC是等腰直角三角形,∠BAC=90°,点D是△ABC内一点,且∠DAC=∠DCA=15°,则BD与BA的大小关系是() A.BD>BA B.BD

《平行四边形》培优训练

F E D C B A E C B A C B A E O C B A H G F E 红绿橙蓝黄紫2l 1l F D C E B A P F E D C B A E D C B A 《平行四边形》培优训练 1、如图,□ABCD 的周长为20,BE ⊥AD ,BF ⊥CD ,BE=2,BF=3。则□ABCD 的面积为 。 1题图 2题图 2、如图,在□ABCD 中,已知AD=8,AB=6,DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A 、2 B 、4 C 、6 D 、8 3、如图,在周长为20的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( ) A 、4 B 、6 C 、8 D 、10 3题图 4题图 4、某广场上有一个形状是平行四边形的花坛(如图),分别有红、黄、蓝、绿、橙、紫6种颜色的花。如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法中错误的是( ) A 、红花、绿花种植面积一定相等 B 、紫花、橙花种植面积一定相等 C 、红花、蓝花种植面积一定相等 D 、蓝花、黄花种植面积一定相等 5、如图,1l ∥2l ,BE ∥CF ,BA ⊥1l ,DC ⊥2l ,下面的四个结论中:①AB=DC ;②BE=CF ;③DCF ABE S S ??=;④S □ABCD =S □BCFE 。其中正确的有( ) A 、4个 B 、3个 C 、2个 D 、1个 5题图 6题图 6、如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD=BC ,∠PEF=180,则∠PFE 的度数为 。 7、四边形中,有两条边相等,另两条边也相等,则这个四边形( ) A 、一定是平行四边形 B 、一定不是平行四边形 C 、可能是平行四边形 D 、以上答案都不对 8、如图,□ABCD 中,E 是BC 边上的一点,且AB=AE 。 (1)求证:△ABC ≌△EAD ; (2)若AE 平分∠DAB ,∠EAC=250,求∠AED 的度数。

平行四边形经典题型(培优提高)

1.平行四边形的性质: ①平行四边形两组对边相等。 ②平行四边形两组对角相等。 ③平行四边形对角线互分平分。 2.平行四边形判定: 定理1、一组对边平行且相等的四边形是平行四边形 定理2、两组对边分别相等的四边形是平行四边形。 定理3、对角线互相平分的四边形是平行四边形。 定理4、两组对角分别相等的四边形是平行四边形。 3.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。 4.逆定理1:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是 三角形的中位线。 逆定理2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

第四节:中心对称图形 课堂练习 1.下列图形中,既是中心对称图形,又是轴对称图形的是() A.正三角形B.平行四边形C.等腰直角三角形D.正六边形 2.下列图形中,不是中心对称图形的是() 3.下列图形中,既是轴对称图形又是中心对称图形的是(). 4.下三图是由三个相同的小正方形拼成的图形,请你再添加一个同样大小的小正方形, 使所得的新图形分别为下列A,B,C题要求的图形,请画出示意图. (1)是中心对称图形,但不是轴对称图形; (2)是轴对称图形,但不是中心对称图形; (3)既是中心对称图形,又是轴对称图形. 第五节:平行四边形的判定 例题讲解 例1:判断下列说法的正误,如果错误请画出反例图 ①一组对边平行,另一组对边相等的四边形是平行四边形。( ) ②一组对边相等,另一组对边平行的四边形是平行四边形. ( ) ③一组对边平行,一组对角相等的四边形是平行四边形.( ) ④一组对边平行且相等的四边形是平行四边形.( ) ⑤两组邻角互补的四边形是平行四边形。( )

三角形培优训练100题集锦(学生用)

三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图ABC ?中,5=AB ,3=AC ,求中线AD 的取值范围。 分析:本题的关键是如何把AB ,AC ,AD 三条线段转化到同一个三角形当中。 解:延长AD 到E ,使DA DE =,连接BE 又∵CD BD =,CDA BDE ∠=∠ ∴()SAS CDA BDE ???,3==AC BE ∵BE AB AE BE AB +- (三角形三边关系定理) 即822 AD ∴41 AD 2、如图,ABC ?中,E 、F 分别在AB 、AC 上,DF DE ⊥,D 是中点,试比较CF BE +与 EF 的大小。 证明:延长FD 到点G ,使DF DG =,连接BG 、EG ∵CD BD =,DG FD =,CDF BDG ∠=∠ ∴CDF BDG ??? E C A B D A

平行四边形培优

平行四边形性质培优 一:角的题型。 1、在?ABCD中,∠A:∠B:∠C:∠D可能是() A.1:2:3:4B.2:3:2:3C.2:2:1:1D.2:3:3:2 2.?ABCD中,∠B=5∠A,则∠C的度数为 3.已知?ABCD中,∠A+∠C=240°,则∠B的度数是 4.在?ABCD中,∠A﹣∠B=40°,则∠C的度数为 5.如图,?ABCD与?DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为 二:周长题型。 1.如图,平行四边形ABCD的周长为8,△AOB的周长比△BOC的周长多2,求:AB边的长。 2.在?ABCD中,O是AC、BD的交点,过点O与AC垂直的直线交边AD于点E,若?ABCD的周长为22cm,则△CDE的周长为 3、如图,?ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC 于点E,若△CDE的周长为10,则?ABCD的周长为 4.如图,EF过?ABCD的对角线的交点O,交AD于点E,交BC于点F.若?ABCD的周长为10,OE=1,线则四边形EFCD的周长为 5、如图所示,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,∠EAF=45°,且AE+AF=32求平行四边形ABCD的周长。 6、如图所示,在平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F处,若△FDE的周长为12,△FCB的周长为22,则FC的长为_________. 三:面积题型。 1、如图,□ABCD的两条对角线相交于点O,E,F分别是边CD,BC的中点,图中与△BCE面积相等的三角形(不包括△BCE)共有_______个. 2,如图,E是□ABCD中AB边上的任意一点,连接CE、DE,DE与对角线AC 相交于点F,则下列结论中不正确的是() A.S△ADE=S△BCE B.S△ACD=S△ABC

培优专题2 直角三角形(学生版)

培优专题2 直角三角形 一、 知识点回顾   二、典型例题分析 例1(2013?沈阳)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF. (1)求证:BF=2AE; 的长. (2)若CD=,求AD

例2、(2013?抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是 ; (2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论; (3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP 三者之间的数量关系.

n t h r e g 三、中考题练  一.选择题(共9小题)1.(2013?郴州)如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B ′处,则∠ADB ′等于( ) A .25° B .30° C .35° D .40°2.(2007?芜湖)如图,在△ABC 中AD ⊥BC ,C E ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH=EB=3,AE=4,则CH 的长是( )  A . 1B .2 C .3 D . 43.(2011?衡阳)如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .   4.(2010?滨州)如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 边上一点,若AE=2,EM+CM 的最小值为 .

全等三角形培优专题训练

探索三角形全等 1、一长方形纸片沿对角线剪开,得到两三角形纸片,再将这两纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ; ⑵若PB =BC ,请找出图中与此条件有关的一对全等三角形,并给予证明 2、如图,在△ABC 中,AC =BC ,∠ACB =90°,AD 平分∠BAC ,BE ⊥AD 交AC 的延长线于F ,E 为垂足,则结论:①AD =BF ;②CF =CD ;③AC +CD =AB ;④BE =CF ;⑤BF =2BE.其中正确的是( )

3、如图,点C在线段AB上,DA ⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFC的度数.

4、如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,O 为对角线AC 的中点, 过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线M 、N 上,且OE =OF. ⑴图中共有几对全等三角形,请把它们都写下来; ⑵求证:∠MAE =∠NCF 全等三角形的应用 全等三角形常用来转移线段和角,用它来证明: ①线段和角的等量关系 ②线段和角的和差倍分关系 ③直线与直线的平行或垂直等位置关系 1、如图,已知BD 、CE 分别是△ABC 的边AC 和AB 上的高,点P 在BD 的延长线上,BP =AC ,点Q 在CE 上,CQ =AB.试判断AP 与AQ 的关系,并证明. E

2、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且BF =AC ,FD =CD , 求证:BE ⊥AC 3、如图,在△ABC 中,AB =AC,AD =AE,∠BAC =∠DAC =90°. ⑴当点D 在AC 上时,如图①,线段BD,CE 有怎样的数量和位置关系?证明你猜想的结论. ⑵将图①中的△ADE 绕点A 顺时针旋转α角(0°<α<90°) ,如图②,线段BD 、CE 有怎样的数量关系和位置关系?问明理由. ①

相关主题