搜档网
当前位置:搜档网 › 二项式定理练习题

二项式定理练习题

二项式定理练习题
二项式定理练习题

二项式定理练习题

一、选择题: 1.在()

10

3

x -的展开式中,6

x 的系数为

( )

A .610

C 27- B .410

C 27 C .6

10C 9-

D .4

10C 9

2. 已知a 4b ,0b a =>+, ()n b a +的展开式按a 的降幂排列,其中第n 项与第n+1项相等,那么正整数n 等于

( )

A .4

B .9

C .10

D .11

3.已知(n a a )1

3

2

+

的展开式的第三项与第二项的系数的比为11∶2,则n 是 ( )

A .10

B .11

C .12

D .13 4.5310被8除的余数是

( ) A .1 B .2 C .3 D .7 5. (1.05)6的计算结果精确到0.01的近似值是

( )

A .1.23

B .1.24

C .1.33

D .1.34

6.二项式n

4x 1x 2??? ?

?+ (n ∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项

数是

( ) A .1

B .2

C .3

D .4

7.设(3x 3

1+x 2

1)n

展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2

项的系

数是

( )

A .2

1

B .1

C .2

D .3

8.在6

2)1(x x -+的展开式中5

x 的系数为

( )

A .4

B .5

C .6

D .7

9.n

x

x

)(513

1+展开式中所有奇数项系数之和等于1024,则所有项的系数中最大的值是

( )

A .330

B .462

C .680

D .790 10.54)1()1(-+x x 的展开式中,4

x 的系数为

( )

A .-40

B .10

C .40

D .45

11.二项式(1+sinx)n 的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为

2

5

,则x 在[0,2π]内的值为

( )

A .

6π或3π B .6π或65π

C .

3π或32π D .3

π或65π

12.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列 a n =3n -5的

( )

A .第2项

B .第11项

C .第20项

D .第24项

二、填空题: 13.9

2

)21(x

x -

展开式中9x 的系数是 . 14.若()

44104

x a x a a 3

x 2+???++=+,则()()2312420a a a a a +-++的值为__________.

15.若 3

2()n

x x -+的展开式中只有第6项的系数最大,则展开式中的常数项是 . 16.对于二项式(1-x)1999,有下列四个命题: ①展开式中T 1000= -C 19991000x 999; ②展开式中非常数项的系数和是1;

③展开式中系数最大的项是第1000项和第1001项; ④当x=2000时,(1-x)

1999

除以2000的余数是1.

其中正确命题的序号是__________.(把你认为正确的命题序号都填上)

三、解答题: 17.若n x

x )1

(6

6+

展开式中第二、三、四项的二项式系数成等差数列.

(1) 求n 的值;

(2)此展开式中是否有常数项,为什么?

18.已知(

1

24

x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.

19.是否存在等差数列{}n a ,使n

n n

1n 2n 31n 20n 12n C a C a C a C a ?=+???++++对任意*N n ∈都成立?若存在,求出数列{}n a 的通项公式;若不存在,请说明理由.

20.某地现有耕地100000亩,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%。

如果人口年增加率为1%,那么耕地平均每年至多只能减少多少亩(精确到1亩)?

21.设f(x)=(1+x)m +(1+x)n (m 、n N ∈),若其展开式中,关于x 的一次项系数为11,试问:m 、n 取何值时,

f(x)的展开式中含x 2项的系数取最小值,并求出这个最小值.

22.规定!

)1()1(m m x x x C m

x +--=

,其中x ∈R ,m 是正整数,且10=x C ,这是组合数m

n C (n 、m 是正

整数,且m ≤n )的一种推广. (1) 求3

15-C 的值;

(2) 设x >0,当x 为何值时,213)(x x

C C 取得最小值?

(3) 组合数的两个性质;

①m n n m n C C -=. ②m

n m n m n C C C 11+-=+.

是否都能推广到m

x C (x ∈R ,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若

不能,则说明理由.

完整版二项式定理测试题及答案

二项式定理测试题及答案 n 能使(n+i) 4 成为整数(B ) C.2 D.3 A A ; L L A ;J°,则S 的个位数字是(C ) -a ) 8展开式中常数项为1120,其 中实数a 是常数,则展开式中各项系数的和 x A. 15 个 B. 33 个 C. 17 个 D. 16 个 是(C ) A.28 B.38 C.1 或38 D.1 或 28 5.在(2 3 5)100的展开式中,有理项的个数是( 6.在、x 1 3x 24 的展开式中,x 的幕指数是整数的项共有(C B . 4项 -x)6的展开式中,含 、5 A. 3项 7?在(1 - x)5- (1 A 、一 5 B 、5 C & (1 x)5 (1 x)3的展开式中x 3的系数为(A A . 6 B. -6 C. 9 9.若x==,则(3+2x) 10的展开式中最大的项为(B 2 A.第一项 C . 5项 3 x 的项的系数是(C 、一10 B. 、10 ) D . -9 第三项 C. 第六项 D. 第八项 A. 7 B. 12 C. 14 D . 5 11.设函数 f(x) (1 2x)10 ,则导函数 2 f (x)的展开式x 项的系数为(C ) A. 1440 B .-1440 C .-2880 D .2880 12 .在(x 1 5 -I)5 x '的展开式中,常数项为( B ) (A ) 51 (B ) -51 (C )- ii (D ) ii 13 .若(x n n 1) x L 3.2. ax bx L 1(n N ),且 a:b 3:1,则n 的值为(C ) A. 9 B . 10 C . ii D. 12 14 .若多项式x 2 10 x =a 0 a i (x 1) a 9(x i)9 a i0(x i)i0, 则 a 9 ( ) (A ) 9 (B ) 10 (C ) 9 (D ) 10 10.二项式 n 的最小值为( ) A 解:根据左边 1,易知 a io 10 X 的系数为 1,左边x 9的系数为0,右边x 9的系数为 1 3 )n 的展开式中含有非零常数项,则正整数 3x 3 1.有多少个整数 A.0 B.1 2. 2 4 展开式中不含x 项的系数的和为(B ) A.-1 B.0 C.1 D.2 3?若 S =A 1 4.已知(x (2x 4

二项式定理高考题(带答案)

年全国卷Ⅲ理】的展开式中的系数为 A. 10 B. 20 C. 40 D. 80 【答案】C 【解析】分析:写出,然后可得结果 详解:由题可得,令,则,所以 故选C. 2.【2018年浙江卷】二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为, % 令得,故所求的常数项为 3.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】 决问题的关键. 4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为() A. 2 B. C. D.

【答案】B 5.【安徽省宿州市2018届三模】的展开式中项的系数为 __________. ' 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解: 的展开式为: ,当 ,时,,当 , 时,,据 此可得:展开式中项的系数为 . 6.【2017课标1,理6】621 (1)(1)x x + +展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】 试题分析:因为666 22 11(1)(1)1(1)(1)x x x x x + +=?++?+,则6(1)x +展开式中含2x 的项为2226115C x x ?=,621(1)x x ?+展开式中含2x 的项为44 262115C x x x ?=,故2x 前系数为 151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.【2017课标3,理4】()()5 2x y x y +-的展开式中x 3y 3的系数为 ¥ A .80- B .40- C .40 D .80 【答案】C

二项式定理的十大应用

二项式定理的十方面应用 一、利用二项式定理求展开式的某一项或指定项的系数 1.(2012年高考安徽卷理科7)(x2+2)( 1 x2-1)5的展开式的常数项是() (A)-3(B)-2(C)2(D)321世纪教【答案】D 【解析】第一个因式取x2,第二个因式取 1 x2得:1?C1(-1)4=5 5 第一个因式取2,第二个因式取(-1)5得:2?(-1)5=-2展开式的常数项是5+(-2)=3. 2.(2012年高考天津卷理科5)在(2x2- 1 x )5的二项展开式中,x的系数为() (A)10(B)-10(C)40(D)-40 点评:利用二项式定理求展开式的某一项或指定项的系数,实际上就是对二项展开式的通项公式的考查,此类问题是高考考查的重点. 3.在二项式(x-1)11的展开式中,系数最小的项的系数是 解:ΘT r+1 =C r x11-r(-1)r 11 ∴要使项的系数最小,则r必为奇数,且使C r为最大,由此得r=5,从而可知最小项的 11 系数为C5(-1)5=-462 11 二、利用二项式定理求展开式的系数和 1、若(1-2x)2013=a+a x+a x2+...+a 0122013 x2013(x∈R), 则(a+a)+(a+a)+(a+a)+Λ+(a+a 010******** )=_______。(用数字作答) 解析:在(1-2x)2013=a+a x+a x2+...+a 0122013 x2013中,令x=0,则a=1, 令x=1,则a+a+a+a+Λ+a 01232004 =(-1)2013=1 故(a+a)+(a+a)+(a+a)+Λ+(a+a 0102030 精品资料 2013 )

2018届浙江省基于高考试题的复习资料——二项式定理

(2)增减性与最大值:当r≤n+1 22 n 相等并同时取最大值。 九、计数原理与古典概率 (二)二项式定理 一、高考考什么? [考试说明] 3.了解二项式定理,二项式系数的性质。 [知识梳理] 1.二项式定理:(a+b)n=C0a n+C1a n-1b+ n n +C r a n-r b r+ n +C n b n,其中组合数C r叫 n n 做第r+1项的二项式系数;展开式共有n+1项,其中第r+l项T r+1=C r a n-r b r(r=0,1,2, n ???),会求常数项、某项的系数等 2.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m=C n-m; n n n+1 时,二项式系数C r的值逐渐增大,当r≥时, n C r的值逐渐减小,且在中间取得最大值。当n为偶数时,中间一项(第n n 2+1项) 的二项式系数C n 2 n 取得最大值。当n为奇数时,中间两项(第 n+1n+3 和项)的 22 二项式系数C n-12 n =C n+12(3)二项式系数的和: C0+C1+ n n +C r+ n +C n=2n; n C0+C2+???=C1+C3+???=2n-1。n n n n 3.展开式系数的性质:若 (a+bx)n=a+a x+ 01+a x n;令f(x)=(a+bx)n n 则:(1)展开式的各项系数和为f (1) (2)展开式的奇次项系数和为1 [f(1)-f(-1)] 2

(6) x - ? 展开式中的常数项是( ) 1 (3)展开式的偶次项系数和为 [ f (1)+ f (-1)] 2 二、高考怎么考? [全面解读] 从考试说明来看,二项式定理主要解决与二项展开有关的问题,从考题来看,每一年均 有一题,难度为中等,从未改变。命题主要集中在常数项,某项的系数,幂指数等知识点上。 掌握二项式定理主要以通项为抓手,由通项可解决常数项问题、某项的系数问题,系数要注 意二项式系数与展开式系数的区别。 [难度系数] ★★★☆☆ [原题解析] [2004 年] (7)若 ( x + 2 3 x )n 展开式中存在常数项,则 n 的值可以是( ) A .8 B .9 C .10 D .12 [2005 年] (5)在 (1- x)5 + (1- x) 6 + (1- x) 7 + (1- x) 8 的展开式中,含 x 3的项的系数是( ) A .74 B . 121 C .-74 D .-121 [2006 年] (8)若多项式 x 2 + x 10 = a + a ( x + 1) + 1 + a ( x + 1) 9 + a ( x + 1) 10 , 9 10 则 a = ( ) 9 A .9 B .10 C .-9 D .-10 [2007 年] ? 1 ?9 ? x ? A . -36 B . 36 C . -84 D . 84 [2008 年]

二项式定理-高考题(含答案)

二项式定理高考真题 一、选择题 1.(2012·四川高考理科·T1)相同7(1)x 的展开式中2x 的系数是( D ) (A )42(B )35(C )28(D )21 2.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B ) (A )80 (B )40 (C )20 (D )10 3.(2012·天津高考理科·T5)在5 212x x 的二项展开式中,x 的系数为( D ) (A)10 (B)-10 (C)40 (D)-40 4.(2011.天津高考理科.T5)在62() 2x x 的二项展开式中,2x 的系数为( C ) (A )15 4(B )15 4(C )3 8(D )3 8 5.(2012·重庆高考理科·T4)8 21x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x 的展开式中3x 的系数为( A ) (A)270 (B)90 (C)90 (D)270 7. (2013·大纲版全国卷高考理科·T7)8411+x y 的展开式中22x y 的系数是( D ) A.56 B.84 C.112 D.168

8.(2011·新课标全国高考理科·T8)51 2a x x x x 的展开式中各项系数的和为2,则该展开式中 常数项为( D )(A )-40 (B )-20 (C )20 (D )40 9. (2011·重庆高考理科·T4)n x)31((其中n N 且6n )的展开式中5x 与6x 的系数相等,则n ( B ) (A)6 (B) 7 (C)8 (D)910.(2011·陕西高考理科·T4)6(42)x x (x R )展开式中的常数项是(C ) (A )20(B )15(C )15 (D )20 二、填空题 11. (2013·天津高考理科·T10)61 x x 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11)181 3x x 的展开式中含15x 的项的系数为 17 . 13.(2011·全国高考理科·T13)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为 0 . 14.(2011·四川高考文科·T13)91)x (的展开式中3x 的系数是 84 (用数字作答). 15.(2011·重庆高考文科·T11)6)21(x 的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x (,则 1110a a = 0 . 17.(2011·广东高考理科·T10)72()x x x 的展开式中,4x 的系数是___84___ (用数字作答) 18.(2011·山东高考理科·T14)若62a x x 的展开式的常数项为60,则常数a 的值为 4 .

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

高考数学 考点23 两个计数原理、排列、组合及其应用、

考点23 两个计数原理、排列、组合及其应用、 二项式定理及应用 1.(2010·湖北高考文科·T6)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) (A)65(B)56(C)565432 2 ????? (D)6543 ????2 【命题立意】本题主要考查分类和分步计数原理,考查考生的逻辑推理能力. 【思路点拨】因每名同学可自由选择其中的一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,由分步计数原理即可得出答案. 【规范解答】选A.每名同学可自由选择5个讲座中的其中一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,因此共有65种不同选法. 【方法技巧】本题每名同学可自由选择其中的一个讲座,故每位同学的选择都有5种,共有65种不同选法.若将“每名同学可自由选择其中的一个讲座”改为“每一个讲座都至少有一位同学去听”,它就是一个典型的不同元素的分组问题.利用“先分堆,再分配”的思想将6名同学分为5堆,再分给5个不同的讲座, 有 25 65 1800 C A= 1 800种不同选法. 2.(2010·湖北高考理科·T8)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是() (A)152 (B)126 (C)90 (D)54 【命题立意】本题主要考查分类和分步计数原理,考查排列、组合知识的应用,考查考生的运算求解能力.【思路点拨】由甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作知,司机工作很特殊.按安排几个人担任司机工作可分为两类:①司机只安排1人;②司机安排2人,然后将其余的人安排到其他三个不同的位置. 【规范解答】选B.当司机只安排1人时,有 123 343 C C A =108(种);当司机安排2人时有 23 33 C A =18(种).由分类 计数原理知不同安排方案的种数是108+18=126(种). 【方法技巧】本题要求每项工作至少有一人参加,因此属于不同元素的分组问题,解题时往往采用“先分堆,再分配”的办法.若去掉“每项工作至少有一人参加”的限制,则甲、乙二人各有3种选择,丙、丁、 戊各有4种选择,因此共有33444576 ????=(种)安排方案. 3.(2010·全国高考卷Ⅱ理科·T6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) (A)12种(B)18种(C)36种(D)54种 【命题立意】本题考查了排列、组合的知识. 【思路点拨】运用先选后排解决,先从3个信封中选取一个放入标号为1,2的2张卡片,然后剩 余的2个信封分别放入2张卡片. 【规范解答】选B.标号为1,2的卡片放法有A 1 3种,其他卡片放法有 2 2 2 4 C C种,所以共有A132 2 2 4 C C=18 (种). 【方法技巧】先排列特殊元素是解决排列、组合问题的常用方法.

二项式定理 练习题 求展开式系数的常见类型

二项式定理 1.在()103x -的展开式中,6 x 的系数为 . 2.10()x -的展开式中64x y 项的系数是 . 3.92)21(x x -展开式中9x 的系数是 . 4.8)1(x x - 展开式中5x 的系数为 。 5.843)1()2 (x x x x ++-的展开式中整理后的常数项等于 . 6.在65 )1()1(x x ---的展开式中,含3x 的项的系数是 . 7.在x (1+x )6的展开式中,含x 3项的系数为 . 8.()()8 11x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。 10.54)1()1(-+x x 的展开式中,4x 的系数为 . 11.在6 2)1(x x -+的展开式中5x 的系数为 . 12.5)212(++x x 的展开式中整理后的常数项为 . 13.求(x 2+3x -4)4的展开式中x 的系数.

14.(x 2+x +y )5的展开式中,x 5y 2的系数为 . 15.若 32()n x x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 . 16.已知(124 x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数. 17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________. 18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________. 19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.

二项式定理 高考题(含答案)

二项式定理 高考真题 一、选择题 1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2 x 的系数是( D ) (A )42 (B )35 (C )28 (D )21 2.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B ) (A )80 (B )40 (C )20 (D )10 3.(2012·天津高考理科·T5)在5212x x ??- ?? ?的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10 (C)40 (D)-40 4.(2011.天津高考理科.T5)在6 的二项展开式中,2x 的系数为 ( C ) (A )154- (B )154 (C )38- (D )38 5.(2012·重庆高考理科·T4)821??? ? ?+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)4 35 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A ) (A)270- (B)90- (C)90 (D)270 7. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22 x y 的系数是 ( D )

A.56 B.84 C.112 D.168 8.(2011·新课标全国高考理科·T8)5 12a x x x x ????+- ???????的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20 (D )40 9. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8 (D)9 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C ) (A )20- (B )15- (C )15 (D )20 二、填空题 11.(2013·天津高考理科·T10)6x ?- ? 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11) 18 x ?- ? 的展开式中含15x 的项的系数为17. 13.(2011·全国高考理科·T13))20的二项展开式中,x 的系数与x 9的系数之差为0. 14.(2011·四川高考文科·T13) 91)x +(的展开式中3x 的系数是84(用数字作答). 15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是240. 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则 1110a a +=0. 17.(2011·广东高考理科·T10)72()x x x -的展开式中,4x 的系数是___84___ (用数字作答)

最新二项式定理应用常见题型大全(含答案)

二项式定理应用常见题型大全 一.选择题(共21小题) 1.(2012?重庆)的展开式中常数项为() .C D 2.(2012?桃城区)在的展开式中,有理项共有() 2012 4.(2008?江西)展开式中的常数项为() n*5 6.(2006?重庆)若的展开式中各项系数之和为64,则展开式的常数项为() 88 29211 2006 10.(2004?福建)若(1﹣2x)9展开式的第3项为288,则的值是() D. 11.若则二项式的展开式中的常数项为() 12.(a>0)展开式中,中间项的系数为70.若实数x、y满足则z=x+2y的最小值是()

C 10 14.的展开式中第三项的系数是() .C. 4n+1 n 17.设f(x)等于展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则m的取值范围是 [[,[ 18.在的展开式中系数最大的项是() 6 8 2010

参考答案与试题解析 一.选择题(共21小题) 1.(2012?重庆)的展开式中常数项为() .C D 的展开式通项公式中,令 的展开式通项公式为 = 2.(2012?桃城区)在的展开式中,有理项共有() ??, 2012

+ 4.(2008?江西)展开式中的常数项为() 的展开式的通项为 的展开式的通项为= 的通项为= ,时,展开式中的项为常数项 n*5

6.(2006?重庆)若的展开式中各项系数之和为64,则展开式的常数项为() 则展开式的常数项为 88 29211 2006

分别取, 时,有)( 时,有)( ( 10.(2004?福建)若(1﹣2x)9展开式的第3项为288,则的值是() D. 中,化简可得答案. , x= =2 11.若则二项式的展开式中的常数项为() ∴二项式的通项为 的展开式中的常数项为=160

最新二项式定理练习题(含答案)

二项式定理 1 单选题 2 (x+1)4的展开式中x的系数为3 A.2 B. 4 C. 6 D.8 4 答案 5 B 6 解析 7 分析:根据题意,(x+1)4的展开式为T r+1=C 4 r x r;分析可得,r=1时,有x 8 的项,将r=1代入可得答案.9 解答:根据题意,(x+1)4的展开式为T r+1=C 4 r x r; 10 当r=1时,有T 2=C 4 1( x)1=4x; 11 故答案为:4. 12 故选B. 13 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 14 2 (x+2)6的展开式中x3的系数是 15 A.20 B.40 C.80 D. 160 16 答案 17 D 18 解析 19 分析:利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中20 x3的系数. 21 解答:设含x3的为第r+1, 22 则Tr+1=C6rx6-r?2r, 23

24 令6-r=3, 25 得r=3, 26 故展开式中x3的系数为C63?23=160. 27 故选D. 28 点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工29 具 30 3在(1+数学公式)4的展开式中,x的系数为 31 A.4 B.6 C.8 D.10 答案 32 33 B 34 解析 35 分析:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;分析可36 得,r=2时,有x的项,将x=2代入可得答案. 37 解答:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r; 当r=2时,有T3=C42(数学公式)2=6x; 38 39 故选B. 40 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 4(1+x)7的展开式中x2的系数是 41 42 A.21 B.28 C.35 D.42 43 答案 A 44 45 解析

二项式定理10种题型的解法

二项式定理十种题型及解法 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

二项式定理的推广与应用

二项式定理的推广及应用 曲靖市麒麟高级中学 车保勇 [摘 要] 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.深入研究二项式定理的推广及其用途,巧妙应用,能为许多数学问题提供另类解法,同时解决一些难度较大的问题.因此,进一步探讨二项式定理的推广及应用仍是一项有意义的工作.但前人得出的应用范围仅局限于求值、近似计算、整除、求余数、证明不等式等方面,而且在推广方面不够完善,笔者对二项式定理的推广作进一步完善,系统整理已有用途,并给出一种前人尚未提及的用途:即用二项式定理处理特殊极限问题.纵观全文,深入研究二项式定理的用途,不仅为一些数学问题提供了另类解法,更重要的是拓宽了二项式定理的应用范围. [关键词] 二项式定理 推广 方幂 应用 1 引言 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为:() 0,(,,0)n n r n r r n r a b C a b n r N r n -=+=∈≤≤∑.它有着十分广泛的应用,遍及初等数学和高等数学领域[1] .认真研究问题的条件和结构,把一些表面与二项式定理或推广定理无关的问题作适当变形,构造出二项式定理或推广定理,再用其求解(证明),可使解题简洁明快.巧妙应用二项式定理或推广定理,不仅为许多问题提供另类解法,还能解决一些难度较大的数学问题.因此,把二项式定理进一步推广完善,并充分研究其用途,拓宽其应用范围,仍是一件有意义的工作.

2 问题的提出 虽然学者们对二项式定理的推广及应用的研究取得了丰硕的成果,但已有成果都存在两个不足方面:一是推广不够完善;二是应用范围不够广.针对此情况,笔者试图将其推广进一步完善,系统整理已有用途,并提出新的用途,拓宽其应用范围. 3 二项式定理的推广 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为: 011r n r r n n ()n n n n n n n a b C a C a b C a b C b --+=++ ++ +0 ,(,,0)n r n r r n r C a b n r N r n -==∈≤≤∑ 其中r n r r r 1T n C a b -+=叫做二项式的通项公式,()!!! r n n C r n r =-叫做二项式系数. 若令 -n r q =, 则 ! !! r n n C r q = ,(,,r q n)n r N ∈且+=. 3.1 推广一 在实际应用中,除遇到二项式外还常常遇到多项式问题,为便于应用,现将其作推广. 先考察三项式()()n a b c n N ++∈的展开式: ()[()]n n a b c a b c ++=++ ()n r r r n C a b c -=+++ ( )r q n r q q r n n r C C a b c ---= ++++ r q n r q q r n n r C C a b c ---= ++ 若令n r q p --=,便得到三项式()()n a b c n N ++∈展开式通项公式: (,,p q r n)r q p q r n n r C C a b c p q r N -∈且++=, 其中()()!(r)!! !!q!q !!q!p! r q n n r n n n C C r n r n r r --==---叫三项式系数.[2] 类似地可得四项式(d)()n a b c n N +++∈通项公式为 ! (,,,)!!!s! p q r s n a b c d p q r s N p q r ∈且p+q+r+s=n , 其中 ! !!!s! n p q r 称四项式系数.于是猜想m项式定理为: 定理112()n m a a a +++12 121212!!! !m m i i i m i i i n m n a a a i i i +++==∑,(,,1,2,,)k i n N k m ∈=.

二项式定理(基础+复习+习题+练习)

课题:二项式定理 考纲要求: 1.能用计数原理证明二项式定理 2.会用二项式定理解决与二项展开式有关的简单问题. 教材复习 1.二项式定理及其特例: ()101()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, ()21(1)1n r r n n n x C x C x x +=++ ++ + 2.二项展开式的通项公式:r r n r n r b a C T -+=1210(n r ,,, = 3.常数项、有理项和系数最大的项: 求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性. 4.二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式 系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和. 5.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量 的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图) 6.()1对称性. 与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=).直线2 n r = 是图象的对称轴. ()2增减性与最大值: 当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值 ()3各二项式系数和:∵1(1)1n r r n n n x C x C x x +=++ ++ +, 令1x =,则012 2n r n n n n n n C C C C C =+++ ++ +

(完整版)二项式定理高考题(带答案)

1.2018年全国卷Ⅲ理】的展开式中的系数为 A. 10 B. 20 C. 40 D. 80 【答案】C 【解析】分析:写出,然后可得结果 详解:由题可得,令,则, 所以 故选C. 2.【2018年浙江卷】二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为 , 令得,故所求的常数项为 3.【2018年理数天津卷】在的展开式中,的系数为____________. 【答案】

决问题的关键. 4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为() A. 2 B. C. D. 【答案】B 5.【安徽省宿州市2018届三模】的展开式中项的系数为__________. 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解:的展开式为:,当,时,,当,时,

,据此可得:展开式中项的系数为 . 6.【2017课标1,理6】621 (1)(1)x x + +展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】 试题分析:因为666 22 11(1)(1)1(1)(1)x x x x x + +=?++?+,则6(1)x +展开式中含2x 的项为2226115C x x ?=,621(1)x x ?+展开式中含2x 的项为44 262115C x x x ?=,故2x 前系数为 151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.【2017课标3,理4】()()5 2x y x y +-的展开式中x 3y 3的系数为 A .80- B .40- C .40 D .80 【答案】C 【解析】 8.【2017浙江,13】已知多项式() 1x +3 ()2x +2=5432112345x a x a x a x a x a +++++,则 4a =________,5a =________.

二项式定理试题类型大全

二项式定理试题类型大全 一.选择题 1.有多少个整数n 能使(n+i)4成为整数(B )A.0 B.1 C.2 D.3 2. ()82x -展开式中不含..4x 项的系数的和为(B )A.-1 B.0 C.1 D.2 3.若S=123100123100A A A A ++++L L ,则S 的个位数字是(C ) A 0 B 3 C 5 D 8 4.已知(x - x a )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( C )A.28 B.38 C.1或38 D.1或28 5.在3100(25)+的展开式中,有理项的个数是()A.15个B.33个.17个D.16个 6.在2431??? ? ??+x x 的展开式中,x 的幂指数是整数的项共有(C ) A .3项 B .4项 C .5项 D .6项 7.在(1-x)5-(1-x)6的展开式中,含x 3的项的系数是( C ) A 、-5 B 、 5 C 、10 D 、-10 8.35)1()1(x x +?-的展开式中3x 的系数为( ) A .6B .-6 C .9D .-9 9.若x= 21,则(3+2x)10的展开式中最大的项为(B )A.第一项B.第三项 C.第六项 D.第八项 10.二项式431(2)3n x x - 的展开式中含有非零常数项,则正整数n 的最小值为( ) A .7 B .12 C .14 D .5 11.设函数,)21()(10x x f -=则导函数)(x f '的展开式2x 项的系数为(C ) A .1440 B .-1440 C .-2880 D .2880 12.在51(1)x x +-的展开式中,常数项为( B ) (A )51 (B )-51 (C )-11 (D )11 13.若32(1)1()n n x x ax bx n *+=+++++∈N L L ,且:3:1a b =,则n 的值为( C ) A.9 B.10 C.11 D.12 14.若多项式102x x +=10109910)1()1()1(++++???+++x a x a x a a ,则=9a ( ) (A ) 9 (B )10 (C )9- (D )10- 故选D 。 17.若二项式6)sin ( x x -θ展开式的常数项为20,则θ值为( B ) A. )(22Z k k ∈+ππ B. )(22z k k ∈-ππ C. 2π D. 2π- 18.5310 被8除的余数是( )A 、1 B 、2 C 、3 D 、7 19已知i x +=2,设444334224141x C x C x C x C M +-+-=,则M 的值为( ) A 4 B -4i C 4i D 20.数(1.05)6的计算结果精确到0.01的近视值是………………………( ) A .1.23 B .1.24 C .1.33 D .1.44

二项式定理二项式定理的应用教案

排列、组合、二项式定理·二项式定理的应用·教案 教学目标 1.利用二项式定理及二项式系数的性质解决某些关于组合数的恒等式的证明;近似计算;求余数或证明某些整除或余数的问题等. 2.渗透类比与联想的思想方法,能运用这个思想处理问题. 3.培养学生运算能力,分析能力和综合能力. 教学重点与难点 数学是一门工具,学数学的目的就是为了应用.怎样建立起要解决的问题与数学知识之间的联系(如一个近似计算问题与二项式定理有没有联系,怎样联系),是这节课的难点,也是重点所在. 教学过程设计 师:我们已经学习了二项式定理及二项式系数,请大家用6分时间完成以下三道题: (1)在(1-x3)(1+x)10的展开式中,x5的系数是多少? (2)求(1+x-x2)6展开式中含x5的项. (全体学生参加笔试练习) 6分钟后,用投影仪公布以上三题的解答: (1)原式=(1+x)10-x3(1+x)10,可知x5的系数是(1+x) (2)原式=[1+(x-x2)]6=1+6(x-x2)+15(x-x2)2+20(x-x2)3+15(x-x2)4+6(x-x2)5+(x-x2)6. 其中含x5的项为:20·3x5+15(-4)x5+6x5=6x5.

师:解(1),(2)两题运用了变换和化归思想,第(2)题把三项式化为二项式,创造了使用二项式定理的条件. 第(3)题的解法是根据恒等式的概念,a,b取任何数时,等式都成立.根据习题结构特征选择a,b的取值.这种用概念解题的思想经常使用. 下面我们看二项式定理的一些应用. 师:请同学们想一想,例1怎样解? 生甲:从结构上观察,则与练习的第(3)题有相似之处,只是组合数的系数成等 比数列,是否根据二项式定理令a=1,b=3,即可得到证明. 师:请同学们根据生甲所讲,写出证明. (找一位同学板演) 证明:在(a+b)n的展开式中令a=1,b=3得: 师:显然,适当选取a,b之值是解这一类题的关键,再看练习题. 练习 生乙:这题与例1类比有共同点,仍是组合数的运算,不同点是缺

二项式定理练习题.doc

10.3二项式定理 【考纲要求】 1、能用计数原理证明二项式定理. 2、会用二项式定理解决与二项展开式有关的简单问题. 【基础知识】 1、二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( 二项式的展开式有1n +项,而不是n 项。 2、二项式通项公式:r r n r n r b a C T -+=1 (0,1,2,,r n =???) (1)它表示的是二项式的展开式的第1r +项,而不是第r 项 (2)其中r n C 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的 系数是字母幂前的常数。 (3)注意0,1,2,,r n =??? 3、二项式展开式的二项式系数的性质 (1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。即 m n C =m n n C - (2)增减性和最大值:在二项式的展开式中,二项式系数先增后减,且在中间取得最大值, 如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。 (3)所有二项式系数的和等于2n ,即n n n n n n n n n n C C C C C C 212210=++++++--ΛΛ 奇数项的二项式系数和与偶数项的二项式系数和相等,即 15314202-=+++=+++n n n n n n n C C C C C C ΛΛΛΛ 4.二项展开式的系数0123,,,,n a a a a a ???的性质: 对于2012()n n f x a a x a x a x =++++g g g 0123(1)n a a a a a f ++++???+=, 0123(1)(1)n n a a a a a f -+-+???+-=- 5、证明组合恒等式常用赋值法。 【例题精讲】 例1 若,,......)21(2004200422102004R x x a x a x a a x ∈++++=-求(10a a +)+(20a a +)+……+(20040a a +) 解:对于式子:,,......)21(2004200422102004R x x a x a x a a x ∈++++=- 令x=0,便得到:0a =1

相关主题