搜档网
当前位置:搜档网 › (完整版)高中数学二项式定理全章复习(题型完美版)

(完整版)高中数学二项式定理全章复习(题型完美版)

(完整版)高中数学二项式定理全章复习(题型完美版)
(完整版)高中数学二项式定理全章复习(题型完美版)

第十一讲二项式定理

课程类型:□复习□预习□习题

针对学员基础:□基础□中等□优秀

本章主要内容:

1?二项式定理的定义;

2?二项式定理的通项公式;

3?二项式定理的应用?

本章教学目标:

1?能用计数原理证明二项式定理(重点);

2?能记住二项式定理和二项展开式的通项公式(重点);

3?能解决与二项式定理有关的简单问题(重点、难点)?

课外拓展 __________________________________________________________________________________________

杨辉三角历史

北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算。

13世纪中国宋代数学家杨辉在《详解九章算术》里讨论这种形式的数表,并说明此表引自11世纪

前半贾宪的《释锁算术》,并绘画了“古法七乘方图”。故此,杨辉三角又被称为“贾宪三角”。

元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。

意大利人称之为“塔塔利亚三角形”以纪念在16世纪发现一元三次方程解的塔塔利亚。

在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。

布莱士?帕斯卡的著作Trait e du triangle arithm e tique (1655年)介绍了这个三角形。帕斯卡搜集

了几个关于它的结果,并以此解决一些概率论上的问题,影响面广泛,Pierre Raymond de Montmort (1708

年)和亚伯拉罕?棣?美弗(1730年)都用帕斯卡来称呼这个三角形。

近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle)。

同与例題牆讲

【知识与方法】

一?二项式定理的定义

在(a b)^(a ]b)(a「b);:(a「b)中,每个括号都能拿出a或b,所以每个括号有2种选择,n个括号

n个

就是2n种情况.a2b n J这一项,表达的意思是________________________________ ;所以,a2b n"共有____________ 个.

例如:(x y)7中x3y4表示的就是,有3个括号拿x,剩下的4个括号拿y,所以x3y4共有C C:项, 即C;项.

(a+ b)n的二项展开式本来共有_________ 项,合并之后共有_______ 项,其中各项的系数_________________ 叫做二项式系数.

二?二项展开式的通项

(a+ b)n的二项展开式的通项公式为_____________ ..

注意:1.T r 1与C;的关系,例如第5项,应该是C4 ;

2?二项式的展开式是按照前项降幕排列,例如(x 1)10与(1 X)10中的第4项是不同的;

3. a的指数从n逐项减到0,是降幕排列。b的指数从0逐项减到n,是升幕排列。各项的次数和等

于n ;

4?注意正确区分二项式系数与项的系数.

三.二项式系数的基本性质

四?展开式的二项式系数和

i.(a+ b)n展开式的各二项式系数和:c n+ c n+ C2+…+ c n= ___________ .

2?偶数项的二项式系数的和等于奇数项的二项式系数的和,即c n+c n+ c4+…=c1+ c3+c n+…=

五?展开式的系数和

若f(x) = a o + a i x+ a2X2+…+ a n x n,则f(x)展开式中各项系数之和为 __________ ,奇数项系数之和为a°+ a2

f (1) +f (T),偶数项系数之和为a i+ a3 + a5+…= .

+ a4 +…=

2

【例题与变式】

题型一通项公式及其应用

类型一二项式定理的原理应用

【例1】(2015全国卷I )(x2+ x+ y)5的展开式中,x5y2的系数为( )

A . 10 B. 20 c. 30 D . 60

【例2】(2018?滨州二模)(x2—2x—3)5的展开式中,x的系数为_________ .

1

【变式1】(2018?濮阳一模)(x+r^+l)8的展开式中,x3的系数为______________ .

x

【变式2】(2018?龙岩模拟)已知二项式(1」_2x)4,则展开式的常数项为()

x

A . -1 B. 1 C. -47 D . 49

类型二单括号型

2

【例4】(2018?内江三模)(x_勺4展开式中的常数项为()

x

A . 6

B . -6

C . 24

D . -24

【例5】设(x—J2)n展开式中,第二项与第四项的系数之比为*则含x2的项是____________ .

3

【例6】(2018?成都模拟)若(x—a)6的展开式中含x空项的系数为160,则实数a的值为()

J x

D. -2, 2

n的最小值等于(

D. 6

【变式3】(2018?河北区二模)二项式(X-?)6的展开式的第二项为()

x

4 4 4 4

A. 6x B . —6x C . 12x D. —12x

【变式4】(2018?四川模拟)(x- 1 )6展开式中的常数项为( )

、x

A . -20

B . -15

C . 15 D. 20

【变式5】(2016全国卷I )(2x+jx)5的展开式中,x3的系数是 _________ .(用数字填写答案)

_ _ 1

【变式6】(2018?上海二模)(x+b n的展开式中的第3项为常数项,则正整数n= ______ .

x

【变式7】(2018?普陀区二模)若(x3 - !)n的展开式中含有非零常数项,则正整数n的最小值为

x

类型三双括号型

【例

8】

(2018?肇庆三模)已知(1 -ax)(1 x)5的展开式中x2的系数为5, 则a=( )

A . 1B.2 C . -1D. -2

【例9】(2018?信阳二模)(x21)( 1 -2)5

x

的展开式的常数项是(

A . 5B.-10 C . -32D. -42

C . 2.2

【例B . -2

7】(2017东北四校联考A . 3 n

的展开式中含有常数项,则正整数

【例10】(2018?泉州模拟)(X—1)4(1+丄)4的展开式中,常数项是____________ .

X

【例11】(X—1)3(1+丄)4的展开式中,常数项是_______ .

X

【变式8】(2018 ?枣庄二模)若(x2 _a)(x+丄)10的展开式x6的系数为30 ,则a等于()

x

1 1

A . - B. - C. 1 D . 2

3 2

【变式9】(2018 ?咸阳二模)(x +y)(x _y)8的展开式中,x2y7的系数为 _________________ .

【变式10】(1 + 2x)3(1 - x)4展开式中x项的系数为_____ .

题型二展开式中的二项式系数

【例1】(2018?广州一模)已知二项式(2x2 -丄)“的所有二项式系数之和等于128,那么其展开式中含-项

x x 的系数是()

A . -84 B. -14 C . 14 D . 84

【例2】(2018?綦江区模拟)二项式(2、、x - a)n的展开式中所有二项式系数和为64,则展开式中的常数

项为-160,贝U a= ______ .

【变式1】(2018?宝山区一模)在(寿「x)n的二项展开式中,所有项的二项式系数之和为1024 ,

x

则常数项的值等于____________ .

【例3】(2018?唐山一模)(2x-1)6的展开式中,二项式系数最大的项的系数是____________________ .

【例4】(2018 ?马鞍山二模)二项式(3x 31)n的展开式中只有第11项的二项式系数最大,则

展开式中x的指数为整数的项的个数为()

A . 3

B . 5

C . 6 D. 7

【变式2】(2018?湖北模拟)在(3、x -勻“的二项展开式中,只有第5项的二项式系数最大,则二项展开式

x

常数项等于________ .

_ _ 1

【变式3】(2018?芜湖模拟)已知(1 2x)n展开式中只有第4项的二项式系数最大,则(V -^)(1 2x)n展

x

开式中常数项为_________ .

【变式4】(a+b)n二项展开式中,二项式系数最大项为第7项和第8项,则n= ________ .

题型三展开式中的系数

【例1】(2018?石家庄二模)已知(1 x)n的展开式各项系数之和为256,则展开式中含x2项的系

数为________ .

【变式3】(2018?河西区三模)设(x—2)5 =a0+a"x 十1)+a2(x+1)2+…+a5(x+1)5,则

【例2】(2018?朝阳三模)在二项式(、&+^)n的展开式中,各项系数之和为A,各项二项式系数之和为 B ,

x

且A+B=72,则展开式中常数项的值为()

A

.

6 B . 9C.12D. 18

3】(x a)(2x 一1)5的展开式中各项系数的和为

x x

2, 则该展开式中的常数项为() A

.

-40 B . -20C.20D. 40

4】

(2015?新课标n)(a x)(1 x)4的展开式

x的奇数次幕项的系数之和为32,则a=

【例5】已知(1 —2x)7= a o+ a i x+ a2x2+ …+ a7x7.

求:(1)a i + a2+ …+ a7;

(2) a i + a3 + a5+ a7;

(3) a o + a2 + a4+ a6;

⑷a0 1a^ |a^ a7 .

【例6】(2018?湖南三模)若(1 - x)(1 -2x)8 = a0 - 亠亠a9x9, x€ R,则a1 2 - a2吩亠亠a9 29的值为( )

9

B . 2 -1

C . 39D. 39-1

【变式1】(2018?赣州一模)若(x2 +2+2)n展开式中各项系数之和为

x

64,则展开式中的常数项是(

A. 10

B. 20 D . 40

【变式2】(2018 ?烟台模拟)已知(x3+2)n的展开式的各项系数和为

x

243,则展开式中x7的系数为(

B . 40 C. 20 D. 10

A . 42

2. (2015?大连模拟)(2 —.x)8的展开式中不含

C . 28

x4项的系数的和为(

A . -1

D. 21

)

D. 2

a1 +a2+ …+a5 = ________

B . 35

3. (2015?南昌质检)在(|_3L)n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是(

A . -7

B . 7

C . -28

D . 28

4. (2014?石家庄二模)设(x2+ 1)(x+ 1)9= a o+ a i(x+ 2)+ a2(x + 2)2+…+ a ii(x+ 2)11,则a i + a2+…+ a ii = ()

A . 5

B . 4

C . 3

D . 2

5. (2015?安徽)(x3+’)7的展开式中x5的系数是________ .(用数字填写答案)

x

6. (2015?温州十校联考)已知(1 +x+x2)(x+」y)n(n€ N*)的展开式中没有常数项,

且2令<8则n = .

x

本讲总结

1?实际完成情况:

□按计划完成;

□超额完成,原因分析 ________________________________________________________________________________ □未完成计划内容,原因分析 __________________________________________________________________________ 2?授课及学员问题总结:

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

高中数学经典题型50道(另附详细答案)讲解学习

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵ |sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟

悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。 2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与 地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆 的方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3 π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +

(完整word)高中数学二项式定理练习题

选修2-3 1.3.1 二项式定理 一、选择题 1.二项式(a +b )2n 的展开式的项数是( ) A .2n B .2n +1 C .2n -1 D .2(n +1) 2.(x -y )n 的二项展开式中,第r 项的系数是( ) A .C r n B . C r +1n C .C r -1n D .(-1)r -1C r -1n 3.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610 B .27 C 410 C .-9C 610 D .9C 410 4.(2010·全国Ⅰ理,5)(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 5.在? ?? ??2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3 B .5 C .8 D .10 6.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297 D .207 7.(2009·北京)在? ?? ??x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6 8.(2010·陕西理,4)(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于 ( ) A .-1 B.12 C .1 D .2

9.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是 ( ) A.112<x <15 B.16<x <15 C.112<x <23 D.16<x <25 10.在? ????32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项 二、填空题 11.(1+x +x 2)·(1-x )10的展开式中,x 5的系数为____________. 12.(1+x )2(1-x )5的展开式中x 3的系数为________. 13.若? ?? ??x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 14.(2010·辽宁理,13)(1+x +x 2)(x -1x )6的展开式中的常数项为________. 三、解答题 15.求二项式(a +2b )4的展开式. 16.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数. 17.已知在(3x -123x )n 的展开式中,第6项为常数项.

【精品】高中数学必修1经典题型总结

1.集合基本运算,数轴应用 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x << 2.集合基本运算,二次函数应用 已知集合{} {}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( ) A .]1,2[-- B . )2,1[- C..]1,1[- D .)2,1[ 3.集合基本运算,绝对值运算,指数运算 设集合{}{} ]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( ) A.]2,0[ B. )3,1( C. )3,1[ D. )4,1( 4.集合基本性质,分类讨论法 已知集合A= {} 22,25,12a a a -+,且-3 ∈A ,求a 的值 5.集合基本性质,数组,子集数量公式n 2 .集合A={(x,y)|2x+y=5,x ∈N,y ∈N },则A 的非空真子集的个数为( ) A 4 B 5 C 6 D 7 6.集合基本性质,空集意识 已知集合A={x|2a-1≤x≤a+2},集合B={x|1≤x≤5},若A∩B=A,求实数a 的取值范围. 7.函数解析式,定义域,换元法,复合函数,单调性,根式和二次函数应用,数形结合法 已知x x x f 2)1(+=+,定义域为:x>0 (1)求f(x)的解析式,定义域及单调递增区间 (2)求(-1)f x 解析式,定义域及最小值

8.函数基本性质,整体思想,解方程组 设1()满足2()()2,f x f x f x x -=求)(x f 9.函数基本性质,一次函数,多层函数,对应系数法 若f [ f (x )]=2x +3,求一次函数f (x )的解析式 10.不等式计算,穿针引线法 (1-x)(21)0(1)x x x +≥- 求x 取值范围 11.函数值域,反表示法,判别式法,二次函数应用,换元法,不等式法 求函数2241x y x +=-的值域 求函数2122 x y x x +=++的值域 求函数x x y 41332-+-=的值域 93(0)4y x x x =+> 12.函数值域,分类讨论,分段函数,数形结合,数轴应用 若函数a x x x f +++=21)(的最小值为3,则实数a 的值为 (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 13.函数单调性,对数函数性质,复合函数单调性(同增异减) 函数212 ()log (4)f x x =-的单调递增区间为 A.(0,)+∞ B.(-∞,0) C.(2,)+∞ D.(-∞,2)- 下列函数中,在区间(0,)+∞上为增函数的是( ) .A y 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+

高三数学 二项式定理

二项式定理 1. 知识精讲: (1)二项式定理:()n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(* ∈N n ) 其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555 156b a C T T n n -+== 亦可写成:=+1r T r n r n a b a C )( ()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=---ΛΛ(*∈N n ) 特别地:()n n n r n r n n n n n x C x C x C x C x +++++=+-ΛΛ101(* ∈N n ) 其中,r n C ——二项式系数。而系数是字母前的常数。 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 解:设n n n n n n n C C C C S 13 21393-++++=Λ,于是: n n n n n n n C C C C S 333333 3221++++=Λ=133333 32210 -+++++n n n n n n n C C C C C Λ 故选D 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求91 ()x x -的展开式中3 x 的系数及二项式系数解:(1)7 (12)x +的展开式的第四项是333317(2)280T C x x +==, ∴7 (12)x +的展开式的第四项的系数是280. (2)∵9 1()x x -的展开式的通项是9921991 ()(1)r r r r r r r T C x C x x --+=-=-, ∴923r -=,3r =, ∴3x 的系数339(1)84C -=-,3 x 的二项式系数3984C =. (2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的 二项式系数相等,即ΛΛ,,,,22110k n n k n n n n n n n n n n C C C C C C C C ---==== ②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

(推荐)高中数学二项式定理

二项式定理 【2011?新课标全国理,8】51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( ). A .-40 B .-20 C .20 D .40 【答案】D 【最新考纲解读】 二项式定理 (1)能用计数原理证明二项式定理. (2)会用二项式定理解决与二项展开式有关的简单问题. 【回归课本整合】 1.二项式定理的展开式 011()n n n r n r r n n n n n n a b C a C a b C a b C b --+=+++++,其中组合数r n C 叫做第r +1项的二 项式系数;展开式共有n +1项. 注意:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1 时,系数就是二项式系数。如在()n ax b +的展开式中,第r+1项的二项式系数为r n C ,第

3.项的系数和二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等( m n m n n C C- = ). 【方法技巧提炼】

(2)()()n m a b c d ++结构:①若n 、m 中一个比较小,可考虑把它展开得到多个;②观察()()a b c d ++是否可以合并;③分别得到()()n m a b c d ++、 的通项公式,综合考虑. 例2 61034(1)(1)x x 展开式中的常数项为( ) A .1 B .46 C .4245 D .4246

答案: D 例3 5 )2 1 2 (+ + x x 的展开式中整理后的常数项为 .

答案: 632 例5 若对于任意实数x,有 323 0123 (2)(2)(2) x a a x a x a x =+-+-+- ,则2 a的值为()

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

10道经典高中数学题

1.设Sn是等差数列{An}的前n项和,又S6=36,Sn=324,S(n-6)=144,则n=? ①Sn是等差数列 S6=a1*6+6(6-1)/2*d=36,则2a1+5d=12......& 最后六项的和S=an*6-6(6-1)/2*d=6an-15d S(n-6)=Sn-S=324-(6an-15d)=144,则2an-5d=60......@ &+@:a1+an=36 Sn=(a1+an)/2*n n=18 ②解:Sn-S(n-6)=a(n-5)+a(n-4)+......an=324-144=180 而 S6=a1+a2+...a6=36 有 Sn-S(n-6)+S6= a1+a2+...a6+ a(n-5)+a(n-4)+....an =6(a1+an)=180+36=216 那么 (a1+an)=36 Sn=n(a1+an)/2=324 即 36n/2 =324 所以 n=18 2.已知f(x)=(x-1)^2,g(x)=4(x-1),f(an)和g(an)满足,a1=2,且(an+1-an)g(an)+f(an)=0

(1)是否存在常数C,使得数列{an+C}为等比数列?若存在,证明你的结论;若不存在,请说明理由。 (2)设bn=3f(an)-[g(an+1)]^2,求数列{bn}的前n项和Sn (1)存在 C=-1 证明如下 (an+1-an)g(an)+f(an)=0 将f(x)、g(x)带入并化简 得4an+1 - 3an -1 =0 变形为4(an+1 -1)=3(an -1) 所以an-1是以3/4为等比 1为首项的等比数列 (2)an-1=(3/4)^n bn=3f(an)-[g(an+1)]^2 将f(an) g(an+1)带入不要急着化简先将an+1 - 1换成 3/4 (an-1) 化简后bn=-6(an -1)^2=-6*(9/16)^n bn是首项为-27/8等比是9/16的等比数列 Sn=a1(1-q^n)/(1-q)=54/7(9/16)^n-54/7 已知函数f(x)=x^2+ax+b,当实数p,q满足p+q=1,试证明pf(x)+qf(y)>=f(px+qy) pf(x)+qf(y)>=f(px+qy) <=> px^2+pax+pb+qy^2+qay+qb>=(px+qy)^2+apx+aqy+b

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

高中数学典型题型与解析

高中数学典型题型与解析 一、选择题 1.设,21,a b R a b +∈+=、则2224ab a b --有( ) A .最大值 1 4 B .最小值14 C .最大值 212 - D .最小值54- 2. 某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四 位同学分别给出下列四个结果:①2 6C ;②6 65 64 63 62C C C C +++;③726 -;④2 6A .其中 正确的结论是( ) A .仅有① B .仅有② C .②和③ D .仅有③ 3. 将函数y =2x 的图像按向量a →平移后得到函数y =2x +6的图像,给出以下四个命题:① a →的坐标可以是(-3.0);②a →的坐标可以是(0,6);③a →的坐标可以是(-3,0)或(0, 6);④a →的坐标可以有无数种情况,其中真命题的个数是( ) A .1 B .2 C .3 D .4 4. 不等式组? ??>->-a x a x 2412,有解,则实数a 的取值范围是( ) A .(-1,3) B .(-3,1) C .(-∞,1) (3,+∞) D .(-∞,-3) (1,+∞) 5. 设a >0,c bx ax x f ++=2 )(,曲线y =f (x )在点P (0x ,f (0x ))处切线的倾斜角 的取值范围为[0,4π ],则P 到曲线y =f (x )对称轴距离的取值范围为( ) A .[0,]1a B .0[,]21a C .0[,|]2|a b D .0[,|]21 |a b - 6. 已知)(x f 奇函数且对任意正实数1x ,2x (1x ≠2x )恒有 0) ()(2 121>--x x x f x f 则一定正确的是( ) A .)5()3(->f f B .)5()3(-<-f f C .)3()5(f f >- D .)5()3(->-f f 7. 将半径为R 的球加热,若球的半径增加R ?,则球的体积增加≈?V ( ) A . R R ?3 π3 4 B .R R ?2π4 C .2π4R D .R R ?π4 8. 等边△ABC 的边长为a ,将它沿平行于BC 的线段PQ 折起,使平面APQ ⊥平面BPQC ,若折叠后AB 的长为d ,则d 的最小值为( ) A . a 43 B .a 45 C .4 3a D . a 410 9. 锐角α、β满足β α βα2424sin cos cos sin +=1,则下列结论中正确的是( ) A .2π≠ +βα B .2π<+βα C .2π>+βα D .2 π=+βα

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素

高考数学 题型全归纳:数列在生活中的应用(含答案)

数列在生活中的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活关系的精彩描述。 首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。 若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得(an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。 (二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。 (三)数列在艺术中的广泛应用

高三数学-二项式定理

10.3二项式定理强化训练 【基础精练】 1.在二项式(x 2-1 x )5的展开式中,含x 4的项的系数是 ( ) A .-10 B .10 C .-5 D .5 2.(2009·北京高考)若(1+2)5=a +b 2(a ,b 为有理数),则a +b = ( ) A .45 B .55 C .70 D .80 3.在( 1x + 51 x 3 )n 的展开式中,所有奇数项的系数之和为1 024,则中间项系数 是 ( ) A .330 B .462 C .682 D .792 4.如果? ?? ?? 3x 2-2x 3n 的展开式中含有非零常数项,则正整数n 的最小值为 ( ) A .10 B .6 C .5 D .3 5.在? ? ??? 2x -y 25的展开式中,系数大于-1的项共有 ( ) A .3项 B .4项 C .5项 D .6项 6.二项式41(1)n x +-的展开式中,系数最大的项是 ( ) A .第2n +1项 B .第2n +2项 C .第2n 项 D .第2n +1项和第2n +2项 7.若(x 2+1 x 3)n 展开式的各项系数之和为32,则其展开式中的常数项是________. 8.( x +2 x 2)5的展开式中x 2的系数是________;其展开式中各项系数之和为________.(用 数字作答) 9.若? ? ? ??2x - 229 的展开式的第7项为214,则x =________. 10.已知(x - 124 x )n 的展开式中,前三项系数的绝对值依次成等差数列.

(1)证明:展开式中没有常数项; (2)求展开式中所有有理项. 11.设(2x-1)5=a0+a1x+a2x2+…+a5x5,求: (1)a0+a1+a2+a3+a4; (2)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|; (3)a1+a3+a5; (4)(a0+a2+a4)2-(a1+a3+a5)2. 【拓展提高】 1.在(3x-2y)20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.

相关主题